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Numerical Investigation of Constraint 
Effects on Ductile Fracture in Tensile 
Specimens 
This study explores the capabilities of a computational cell framework into a 3-D setting to 
model ductile fracture behavior in tensile specimens. The cell methodology provides a 
convenient approach for ductile crack extension suitable for large scale numerical 
analyses which includes a damage criterion and a microstructural length scale over which 
damage occurs. Laboratory testing of a high strength structural steel provides the 
experimental stress-strain data for round bar and circumferentially notched tensile 
specimens to calibrate the cell model parameters for the material. The present work 
applies the cell methodology using two damage criterion to describe ductile fracture in 
tensile specimens: (1) the Gurson-Tvergaard (GT) constitutive model for the softening of 
material and (2) the stress-modified, critical strain (SMCS) criterion for void coalescence. 
The present work first applies the cell methodology to investigate effects of constraint 
(stress triaxiality) on ductile crack initiation of notched tensile specimens. An application 
also follows to determine the dependence of ductility on stress triaxiality for the tested 
steel. These exploratory 3-D studies using computational cells clearly demonstrate its 
capability to predict the strong effects of constraint on measured stress-strain response for 
tensile specimens. 
Keywords: Ductile fracture, tensile specimen, constraint, computational cell, finite 
elements 
 
 
 

Introduction 

Failure assessments of damaged steel components subjected to 
large scale straining and plastic deformation remain a key issue in 
design and safety analysis of critical structures, including marine 
and nuclear facilities, oil and gas pipelines in onshore and offshore 
systems. Localized yield and subsequent plastic flow caused 
primarily by extreme or accidental loads potentially cause severe 
material damage with significant reduction in ductility and fracture 
toughness. Recent studies conducted after the Northridge earthquake 
in 1994 (Barson, 2002) and the Kobe earthquake in 1995 (Okashita 
et al., 1998; Yasuda et al., 2000) have demonstrated the strong effect 
of large plastic straining induced by ground motion on catastrophic 
(brittle) failure of welded steel structures. In such structures, full-
moment beam-to-column connections with transverse welds loaded 
in tension display high constraint and limited ductility. Crack-like 
defects that developed in these connections appeared after initiation 
of ductile cracks in highly strained (damaged) regions subjected to 
normal stresses. During further overload conditions, rapid ductile 
crack extension of these defects led to complete structural failure. 
Other typical examples of plastic straining effects on the material 
degradation process include reeling during the laying operation of 
steel risers, local buckling of structural components in ships and 
bridges subjected to overloading, and permanent deformation of 
buried gas transmission pipelines due to ground slide among others. 
Consequently, advanced and rational structural analysis procedures 
must consider the ability of notched components to deform 
plastically without developing ductile cracks.1 

Research efforts to model ductile crack initiation in structural 
components subjected to large plastic deformation have evolved 
primarily along methodologies using notched tensile bars. These 
approaches have largely focussed on the effect  of the stress state on 
the effective plastic strain to initiate ductile failure. Early work of 
Hancock and Mackenzie (1976), Mackenzie et al. (1977) and 
Beremin (1983) employed notched axisymmetric specimens to 
measure the ductility levels for a range of structural materials. In 
particular, the results of Hancock and Mackenzie (1976) led to the 
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construction of a failure locus where the strain to initiate cracking 
by void coalescence in the center of the specimen is a function of 
the stress triaxiality, h, defined by the ratio h=σm/σe, where σm is the 
hydrostatic (mean) stress and σe is the effective Mises stress. These 
predictions reveal an exponential dependence of ductility on stress 
triaxiality which compares well with the void growth model of Rice 
and Tracey (1969). 

However, the application of small scale tensile specimens in 
assessment procedures for ductile crack initiation in larger and more 
complex structural components requires an understanding of the 
nonlinear coupling between stress triaxiality and the plastic strain 
fields. Previous studies (Needleman, 1972, Tvergaard and 
Needleman, 1984 ) have provided quantitative descriptions of the 
necking behavior in unnotched tensile specimens; these analyses 
employ a convenient finite element formulation to describe the onset 
of necking. In particular, the numerical simulations of necking and 
failure in a tensile test conducted by Tvergaard and Needleman 
(1984)  incorporate a model for void nucleation into the formulation. 
Subsequent work by Becker et al. (1988) extends this model to 
describe void growth in round notched bars. While these results 
correctly capture the observed ductile failure behavior, studies 
which employ a micromechanics model based upon a local criterion 
to predict ductile failure in small scale tensile specimens remain 
relatively scarce. 

This work broadens previous studies on ductile behavior of 
tensile specimens to address effects of constraint (stress triaxiality) 
on ductile crack initiation based upon a micromechanics model 
incorporating void growth (Santos, 2003). The computational cell 
methodology proposed by Xia and Shih (1995) provides a 
convenient approach to describe ductile failure within the 
framework of large scale numerical analyses. These computational 
cells include a damage criterion and a microstructural length scale 
over which damage occurs. Ductile crack extension occurs through 
void growth and coalescence (by cell extinction) within a thin layer 
of material symmetrically located about the crack plane. An element 
vanish procedure removes highly voided cells from the analysis 
thereby creating new traction-free surfaces which extend the 
macroscopic crack. The cells have initial (smeared) void volume 
fraction denoted by f0. The layer thickness (D) introduces a strong 
length-scale over which damage occurs; elsewhere, the background 
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material obeys the flow theory of plasticity without damage by void 
growth. The 3-D form of the Gurson-Tvergaard (GT) dilatant 
plasticity theory (Gurson, 1977; Tvergaard, 1990) provides a 
suitable description of void growth within the cells. Laboratory 
testing of a high strength structural steel provides the experimental 
stress-strain data for round bar and circumferentially notched tensile 
specimens to calibrate the cell model parameters for the material. 
The present work first applies the cell methodology to investigate 
effects of constraint (stress triaxiality) on ductile crack initiation of 
notched tensile specimens. An application also follows to determine 
the dependence of ductility on stress triaxiality for the tested steel. 
These exploratory 3-D studies using computational cells clearly 
demonstrate its capability to predict the strong effects of constraint 
on measured stress-strain response for tensile specimens. 

Computational Cell Model for Ductile Crack Growth 

Micromechanism of Ductile Fracture 

Ductile fracture in metals is a multistep mode of material failure 
incorporating the combination of microvoid nucleation, growth and 
coalescence at the microscale level (see, e.g., the review of Garrison 
and Moody, 1987). Early experimental studies demonstrated the key 
role played by microvoid mechanisms on ductile failure of tensile 
specimens (Tipper, 1949; Puttick, 1959). Microvoids nucleate at 
inclusions or second-phase particles, either by decohesion of the 
particle-matrix interface or by fracture of the particle, most often in 
the center of the neck region as illustrated in Fig. 1(a). Under 
increased deformation, these microvoids grow until localized plastic 
flow and necking of the ligament between adjacent microvoids 
(coalescence of microvoids) create a continuous fracture path (most 
often assisted by the rapid growth and coalescence of secondary 
microvoids). Upon further deformation, this internal crack 
progresses until sufficient loss of cross sectional area leads to final 
failure of the specimen by a plastic collapse mechanism of the 
remaining ligament. 

Unlike cleavage fracture, which is a mechanism driven almost 
entirely by the local tensile stresses, inclusion of the microregime of 
ductile fracture in crack growth analyses is central to relate the 
material tearing behavior with a macroscopic (engineering) fracture 
parameter in a continuum framework. However, the complex 
interplay of the key processes (microvoid nucleation, growth and 
coalescence) leading to ductile failure underlies the need of 
additional consideration to describe the micromechanics of ductile 
tearing. Experimental observations and computational studies show 
that the plastic strains for nucleation are small thereby causing only 
little damage in the material ahead of the internal crack formed in 
the neck region. In contrast, the highly damaged material ahead of 
the internal crack in the final stages of microvoid coalescence 
carries only little stresses; the final link-up of microvoids has then a 
minor effect on the progressive crack growth. Consequently, the 
kinetics of the (macroscopic) crack extension process of ductile 
fracture can be considered as driven primarily by the growth of 
microvoids. Figure 1(b) pictures the schematic path of a growing 
crack in a ductile material. The material layer enveloping the 
growing crack, which must be thick enough to include at least a void 
or microcrack nuclei, identifies a process zone for the ductile 
fracture which conveniently gives the necessary length dimension 
for the model. Void growth and coalescence in the layer will cause 
the surface tractions that the process zone exerts on its surrounding 
drop to zero (this implicitly defines a traction-separation law for the 
process zone layer). Micrographs reveal a negligible degree of void 
growth in material distances from the crack plane of more than 1-2 
the spacing of larger inclusions (i.e., in the material outside the 

planar layer) as indicated in the figure. Although the highly 
localized path followed by the crack front becomes generally non-
planar and tortuous (alternate sliding-off), macroscopic growth 
follows a simpler planar character dictated by the symmetric, Mode 
I loading.  

 

Figure 1.  Phenomenological modeling of ductile fracture. (a) void 
nucleation and growth in a tensile specimen for a ductile material; (b) 
schematic path of a growing crack in a ductile material. 

Cell Model for Ductile Tearing  

Motivated by the above observations, Xia and Shih (1995) 
proposed a model using computational cells to include a realistic 
void growth mechanism, and a microstructural length-scale 
physically coupled to the size of the fracture process zone. Void 
growth remains confined to a layer of material symmetrically 
located about the crack plane, as illustrated in Fig. 2(a), and having 
thickness D, where D is associated with the mean spacing of the 
larger, void initiating inclusions. This layer consists of cubical cell 
elements with dimension D; each cell contains a cavity of initial 
volume fraction f0 (the initial void volume divided by cell volume). 
Material outside the computational cells, the “background” material, 
follows a conventional  flow theory of plasticity and remains 
undamaged by void growth in the cells. As a further simplification, 
the void nucleates from an inclusion of relative size immediately 
upon loading. Progressive void growth and subsequent macroscopic 
material softening in each cell are described with the Gurson-
Tvergaard (GT) constitutive model for dilatant plasticity (Gurson, 
1977; Tvergaard, 1990) given by 
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where g denotes the yield function, σe denotes the effective Mises 
(macroscopic) stress, σm is the mean (macroscopic) stress,  σY is the 
current flow stress of the cell matrix material and f defines the 
current void fraction. Under multiaxial stress states 
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 (2) 

 
and 
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where Sij denotes the deviatoric components of Cauchy stress and σl, 
l = 1, 2, 3 are the principal stresses. Factors q1, q2 and q3   introduced 
by Tvergaard (1990) in the above Eq. (1) improve the model 
predictions for periodic arrays of cylindrical and spherical voids; 
here we use the values q1 = 1.25, q2 = 1.0 and q3 = q1

2 proposed by 
Tvergaard. However, Faleskog et al. (1998) also provide additional 
values of parameters q1 and q2 for various ranges of material flow 
properties.  
 

Figure 2.  Modeling of ductile tearing using computational cells. 

 
Figure 2(b) shows the typical, plane strain finite element 

representation of the computational cell model where symmetry 
about the crack plane requires elements of size D/2. Material outside 
the computational cells, the “background” material, follows a 
conventional  flow theory of plasticity and remains undamaged by 
void growth in the cells. Material properties required for this 
methodology include: for the background material, Young's 
modulus (E), Poisson's ratio (ν), yield stress (σY) and hardening 
exponent (n) or the actual measured stress-strain curve; and for the 
computational cells: D and f0. The background material and the 
matrix material of the cells generally have identical flow properties. 
Using an experimental stress-strain curve obtained from 
conventional tensile specimens, a series of finite element analyses of 

the specimen are conducted to calibrate values for the cell 
parameters D and f0 which bring the predicted stress-strain curve 
into agreement with experiment. Experience with plane-strain finite 
element analyses of fracture specimens to estimate D and f0 for 
common structural and pressure vessel steels suggests values of 0.05  
- 0.2 mm for D (Ruggieri et al., 1996). 

Numerical Crack Growth Using a Cell Extinction Technique 

The GT yield function in Eq. (1) does not model realistically the 
rapid loss of stress capacity for larger void fractions nearing 
coalescence levels, nor does the model create new traction free 
surfaces to represent physical crack extension. In the present work, 
the evolution of stress within cells follows the original constitutive 
model of GT in Eq. (1) until f = fE, where fE typically has a value in 
the range 0.15 - 0.20. The final stage of void linkup with the 
macroscopic crack front then occurs by reducing the remaining 
stresses to zero in a prescribed manner. Tvergaard (1990) refers to 
this process as the element extinction or vanish technique. The cell 
extinction process adopted in this work implements a linear-traction 
separation model (see additional details in Ruggieri et al., 1996). 
When f in the cell incident on the current crack tip reaches a critical 
value, fE, the computational procedures remove the cell thereby 
advancing the crack tip in discrete increments of the cell size. 

Figure 3 illustrates the cell extinction process coupled with such 
a linear-traction separation model. This scheme provides 
computational simplicity while, at the same time, retaining close 
contact with the physical mechanism of void coalescence just 
described. Figure 3(a) shows a deformed cell element with initial 
size normal to the crack (symmetry) plane of D/2; let H0,avg denote 
the average elongation of the cell normal to the crack plane as 
indicated in Fig. 3(a) when the porosity reaches the critical value, f = 
fE. Forces, Pvc, exerted on adjacent nodes by the remaining cell 
stresses are saved and the cell stiffness set to zero (vanished cells 
remain in the model but are marked inactive). During subsequent 
load increments, the now vanished cell continues to deform; let   
Havg denote the current average (deformed) elongation. The nodal 
forces Pvc are relaxed to zero in a linear fashion with subsequent 
increases of Havg - H0,avg, as shown in Fig. 3(b). At any point after f = 
fE, the remaining fraction of nodal forces applied to the extinct cell 
is γ Pvc, with γ given by 
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where a typical value for the release factor, λ, is 0.1. 

This cell extinction process creates new traction free surfaces in 
a controlled manner and also eliminates numerical difficulties in the 
finite strain computations. Cell elements adjacent to the evolving 
crack front grow increasingly distorted under loading, especially for 
the small cell sizes commonly used (D ≈ 50 - 200×10-3mm). 
Compared to plane-strain models, the computations performed by 
Ruggieri et al. (1996) indicate this problem becomes far more acute 
in 3-D analyses. Non-uniform growth along the front causes local 
twisting of elements which would otherwise lead to inadmissible 
deformation gradients and termination of the analysis.  
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Figure 3.  Schematic illustration of the traction-separation model to 
release forces of extinct cell elements. 

Experimental Measurements 

Toyoda et al. (2000) recently reported on a series of tension tests 
conducted on a JIS STPT370 pipeline steel. A cylindrical (smooth 
round bar) and notched tensile specimens with different notch radius 
were extracted in the longitudinal direction from a 11 mm thick 
pipeline (outer diameter De = 165 mm) to measure the stress-strain 
response of the tested structural steel. The diameter of the central 
section for the round bar tensile specimen is 6 mm with a gage 
length L = 20mm. The notched specimens have a circumferential 
notch with a 1 mm and 2 mm notch root radius (Rn) and gage length 
L = 20 mm; the diameter of the central section for this specimen 
(deepest point of the notch root) is also 6 mm. These notched tensile 
specimens are denoted R1 and R2 specimens. Figure 4 presents the 
geometry and dimensions of the tensile specimens used in the 
experiments. The material has 315 MPa yield stress (σY) at room 
temperature (20°C) and relatively high hardening properties defined 
by the ration between the tensile strength, σt , and the yield stress for 
the round bar specimen given by  σt  /σY ≈ 1.4. Figure 5 shows the 
measured true stress-logarithmic strain curve for the round bar and 
the notched tensile specimens. 

To investigate the mechanism of ductile crack initiation and 
propagation, a number of tension tests were interrupted at several 
strain levels and the specimens were unloaded. These unloaded 
specimens were sectioned near the center plane (longitudinal 
symmetry) followed by preparation and polishing of the sectioned 
surface. Laboratory observation using an optical microscope 
revealed the onset of ductile tearing and growth of the 
(macroscopic) crack with increased levels of applied strains at the 
center of the specimen sections. Moreover, post-test fractographs of 
the fracture surface for the specimens loaded until final failure 
clearly showed equiaxed dimples in the central region of the 
fractured specimens with a large number of small microvoids 
nucleated in the material surrounding the larger microvoids 
(nucleated from the larger inclusions dispersed in the matrix). 
Toyoda et al. (2000) present additional details of the experimental 
program which provide strong support to use the micromechanics 
approach for ductile failure based upon the cell model adopted in 
this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Geometry of tensile specimen employed in the experiments: (a) 
round bar specimen; (b) circumferentially notched specimen. 
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Figure 5.  Experimentally measured true stress - logarithmic strain curve 
for the round bar and circumferentially notched tensile specimens 
(Toyoda et al, 2000). 

Computational Procedures 

Finite Element Models 

Figures 6(a-b) show the finite element models constructed for 3-
D analyses of the cylindrical tensile specimens (round bar and R2 
notched specimen) utilized to measure the stress-strain response for 
the structural steel employed in this study. The geometry and size of 
the models match those for specimens tested in the experiments 
previously described (see Fig. 4). To decrease execution time, the 3-
D finite element models do not include modeling of the specimen 
rigid grip shown in Fig. 4; numerical analyses indicate a negligible 
effect of this region on the tensile response for the specimens.  The 
rigid grip conditions are modelled by imposing X-direction and Y-
direction constraints on the external surface of the outermost layer 
(Z = L/2). Symmetry of the geometry and loading conditions enables 
analyses using only one-quarter, 3-D model of the specimens. 
Appropriate constraints are imposed on the symmetry planes. 
Displacement controlled loading (∆) of the models as indicated in 
Fig. 6 permits continuation of the analyses once the load decreases 
during necking. 

The 3-D model for the round bar tensile specimen has 13860, 8-
node elements arranged into 22 variable thickness layers over the 
half-length (L/2), as illustrated in Fig. 6(a). The first layer arranged 
on the central region of the specimen (Z = 0) contains a square of 
400 (20×20) computational cells (each one modelled by a cubic 
element of dimension D/2×D/2×D/2). This layer enables modeling 
of the planar ductile crack extension well at the longitudinal center 
plane (neck region). The 3-D model for the circumferentially 
notched specimen (R2) has 24470, 8-node elements arranged into 28 
variable thickness layers over the half-length (L/2), as illustrated in 
Fig. 6(b). The first layer contains an approximate square with 474 
computational cells to model planar ductile crack extension well at 
the longitudinal center plane (deepest point of the notch region). 
Each cell is also modelled by a cube of dimension D/2×D/2×D/2 in 
a similar arrangement for the round bar tensile specimen to 
accommodate the notch root geometry (see Fig. 4).  

The analyses utilize a piecewise-linear approximation of the 
measured true stress-logarithmic strain curve for the round bar 
tensile specimen shown in Fig. 4, but with the uniaxial true stress 
corrected for necking effects on plastic flow using Davidenkov's 
equation (see additional details in Toyoda et al, 2000). Other 

mechanical properties needed for the analyses include E = 206 GPa 
and ν = 0.3. The matrix material of the computational cell elements 
and the void-free background material are assigned these properties.  
 

Figure 6. Finite element 3-D models for the tensile specimens employed in 
the analyses: (a) round bar specimen; (b) circumferentially notched 
specimen). 

Numerical Solutions 

Finite element solutions are generated using the WARP3D code 
(Koppenhoefer et al., 1994) which: (1) implements the GT and 
Mises constitutive models in a 3-D finite-strain framework, and (2) 
provides automatic cell extinction coupled to the GT model. The 
nonlinear implementation of the finite element method in WARP3D 
employs a continuously updated formulation naturally suited for 
solid elements having only translational displacements at the nodes.  
The governing equations of equilibrium derive from the principle of 
virtual work expressed on the current configuration at step k+1 
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where Sκ+1 denotes the Cauchy stress, T defines the applied surface 
tractions, δ u defines an admissible virtual displacement field acting 
on the model at k+1, and δ e represents the symmetric rate of the 
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virtual deformation tensor relative to the current configuration (see 
Malvern, 1969). Vk+1 and Ak+1 denote the current deformed volume 
and surface area, respectively. Starting from Eq. (5) linearized about 
the current configuration, the global solution proceeds in an 
incremental-iterative (implicit) manner with nodal equilibrium 
stringently enforced at k+1. Full Newton iterations advance the 
solution from k → k+1. An extrapolation scheme to estimate the 
displacement increment for the step and the use of consistent 
tangent moduli for the GT and Mises constitutive models prove 
essential to maintain rapid convergence of the iterations. Final 
increments of logarithmic strain over k → k+1 are then computed 
using the linear strain-displacement matrix evaluated on the 
converged mid-increment configuration, xk+1/2.   

To accommodate finite strains and rotations, the GT and Mises 
constitutive equations are formulated using strains-stresses and their 
respective rates defined on an unrotated frame of reference, 
computed from polar decompositions of the deformation gradients. 
The stress-update proceeds using a conventional small-strain, 
backward Euler procedure as described by Healy and Dodds (1992). 
The polar decompositions insure accuracy in the rotational 
operations independent of the displacement gradient magnitudes 
over k → k+1. The implementation of the backward Euler 
integration scheme for the GT model builds upon Aravas's work 
(Aravas, 1987). The linearized form of Eq. (5) requires a tangent 
operator which couples the spatial rates of Cauchy stress and 
deformation tensor. The procedure adopted here follows that 
described by Nagtegaal and Veldpaus (1984), which uses the exact 
consistent tangent operator on the unrotated configuration and the 
Green-Naghdi rate of the spatial Cauchy stress. 

WARP3D analyzes fracture models constructed with three-
dimensional, 8-node hexahedral elements. Use of the so-called Bbar 
formulation (Hughes, 1980) precludes mesh lock-ups that arise as 
the deformation progresses into fully plastic, incompressible modes. 
Dilatational terms of the original strain-displacement matrix, Bdil, 
are replaced by a volume averaged set of dilatational terms, (Bdil)avg, 
which yield uniform mean stress over the element and minimal 
locking. The B matrix thus has the form Bbar= Bdev + (Bdil)avg , where  
Bdev denotes the unmodified deviatoric contribution. Stabilization to 
prevent hourglass modes takes the form Bbar= Bdev + (Bdil)avg + ξ [ 
Bdil - (Bdil)avg] with ξ  typically 0.10. 

Calibration of Cell Parameters 

The cell size D and initial porosity f0 define the key parameters 
coupling the physical and computational models for ductile crack 
growth at the neck region of the tensile specimens. To apply the cell 
model to a specific material, these two parameters must be 
calibrated to bring the numerical predictions into agreement with 
experimental measurements. These parameters should not be viewed 
as metallurgical parameters representing the microscopic 
observations of void spacing and initial void volume fraction but 
rather as computational parameters phenomenologically calibrated. 
Here, we choose the cell parameters D and f0 which provide the best 
fit to the experimentally measured stress-strain data for the material. 

The approximate measure of spacing between the large 
inclusions for common pressure vessel steels provides values for D 
in the 0.05-0.2 mm range (Xia and Shih, 1995; Ruggieri et al., 
1996). Such range of values should also be applicable to the 
modeling of ductile failure behavior in tensile specimens using the 
computational cells. While the mapping of one finite element per 
cell must provide adequate resolution of the stress-strain fields in 
the active layer and in the adjacent background material, the 
numerical stress-strain response of the tensile specimen scales 
almost proportionally with D for a fixed f0 (a thicker layer requires 
more total work to reach critical conditions). Consequently, to avoid 

potential numerical difficulties with too low f0-values while, at the 
same, using a sufficiently refined mesh, the present work adopts 
D=0.2 mm as the cell size parameter employed in the numerical 
analyses. With parameter D determined, the initial volume fraction, 
f0, remains as the only parameter unspecified. The calibration 
process then focuses on determining a suitable value for the initial 
volume fraction, f0, that produces the best fit to the measured tensile 
data for the material. 

Figure 7 shows the measured and predicted true stress-
logarithmic strain curves for the round-bar tensile specimen with ε 
defined by ln (A0/Ai), where A0 is the initial cross sectional area and 
Ai is the current (instantaneous) cross sectional area (neck region). 
Predicted curves are shown for four values of the initial volume 
fraction, f0 = 0.0075, 0.01, 0.0135 and 0.015. For all f0-values, the 
predicted tensile response agrees well with the measured values up 
to strain levels of ≈ 100 %. However, the prediction of instability by 
ductile failure (point marked × ) in the specimen varies widely with 
initial volume fractions; this point follows the onset of rapid crack 
growth in the internal region of neck section with a marked decrease 
of the load carrying capacity of the specimen. For f0 = 0.0135, the 
predicted instability point agrees well with the experimental 
measure. In contrast, the use of f0 = 0.0075, 0.01 and 0.015 predicts 
the instability for the specimen at very different strain levels. 

 

Figure 7.  Comparison of measured and predicted true stress - logarithmic 
strain curve for the round bar tensile specimen. 

 
Figures 8 and 9 show the measured and predicted true stress-

logarithmic strain curves for the circumferentially notched (R2 and 
R1) tensile specimen with ε defined by ln (A0/Ai). The numerical 
analyses for these specimens also adopt D=0.2 mm as the cell size 
parameter. The numerical results are shown for f0 = 0.01, 0.004 and 
0.005. In both plots, the predicted tensile responses agree well with 
the measured values up to strain levels of ≈ 40 % for all f0-values 
but we note that the numerical predictions provide slightly higher 
stress values for a fixed strain level for the R2 specimen. Such 
behavior is most likely associated with discrepancies between the 
(numerical) elastic-plastic hardening model and the actual hardening 
behavior for the material at higher strains. Most importantly, 
however, the prediction of instability by ductile failure (point 
marked × ) in the specimens also varies widely with initial volume 
fractions; this point follows the onset of rapid crack growth with a 
marked decrease of the load carrying capacity for these specimens. 
Here, the predicted instability point agrees well with the 
experimental measures of both specimens for f0 = 0.004. 
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Figure 8.  Comparison of measured and predicted true stress - logarithmic 
strain curve for the R1 notched specimen. 

 

Figure 9.  Comparison of measured and predicted true stress - logarithmic 
strain curve for the R2 notched specimen. 

Effects of Constraint on Stress and Strain Behavior 

Constraint most generally refers to the evolving level of stress 
triaxiality ahead of a notch front under increased remote loading. A 
widely adopted approach to describe the levels of constraint (stress 
triaxiality) which develop in notched specimens upon increased 
loading defines a constraint parameter, h, as the ratio of mean 
(hydrostatic) stress, σm, to Mises stress, σe, i.e., h = σm/σe. Since 
parameter h varies with position ahead of the notch, it reflects the 
mechanism of ductile fracture by void growth in the present context 
(recall that the rate of void growth depends exponentially on the 
hydrostatic stress as indicated by the yield function, Eq. (1), 
previously described). 

Figure 10 shows the distribution of stress triaxiality, h, at the 
specimen centerplane (Z = 0) with radial distance (measured from 
specimen center), R, for the round bar tensile specimen. Plots are 
shown at three loading levels: ε = 5%, maximum load (which 
corresponds to a deformation level ≈ 20% for this specimen and 
marks the beginning of necking) and load corresponding to the onset 
of crack growth at the internal region of neck section. The results 
indicate: (1) at ε = 5% and maximum load, the stress triaxiality is 

nearly invariant along the specimen cross section, and (2) stress 
triaxiality at the onset of crack growth increases significantly in the 
internal region of the specimen cross (neck) section.  

 

Figure 10.  Distribution of stress triaxiality, h, with radial distance, R, for 
the round bar tensile specimen. 

 
Additional insight into the effects of increased stress triaxiality 

can be gained by examining the necking process in the central 
region of the specimen. Figures 11(a-b) present key results obtained 
from numerical simulation of the ductile behavior for the round bar 
tensile specimen using the cell model with the calibrated cell 
parameter, f0 = 0.0135. With increased deformation after the 
initiation of necking in the specimen (≈ 20%), the axial load begins 
to fall below the peak load due to increased damage in material of 
the internal region at the central section. After intense necking 
develops in the specimen, final failure occurs at strain level 
ε ≈ 105% as illustrated by the deformed profile of Fig. 11(a). During 
this process, higher values of stress triaxiality develop at the center 
region of the specimen cross section causing extensive local crack 
growth (notice the strong effect of  σm in the GT potential function, 
Eq. (1), on reducing the material stress capacity during void 
growth). Figure 11(b) shows a snapshot of the (macroscopic) 
internal crack at the instability point (ε ≈ 105%). For consistency, 
the location of the growing crack tip in the plane-strain analyses is 
taken at the cell with f = 0.1. This corresponds to a position between 
the cell currently undergoing extinction and the peak stress location; 
at this position stresses are decreasing rapidly and the void fraction 
is increasing sharply; Xia and Shih (1995) discuss this issue in 
detail. Here, the internal crack has extended ≈ 1.4 mm (≈ 14 cells in 
the X-direction and Y-direction) before final failure. When an 
instability point is eventually reached (point marked as × in Fig. 7), 
the remaining material in the specimen ligament cannot keep pace 
with the increased deformation so that specimen collapse occurs. 
Unfortunately, the comparison of the predicted size for the internal 
crack at ductile failure with experimental measurements cannot be 
made here - such measurements are not available. Nevertheless, this 
trend of void growth development is entirely consistent with the 
experimental observations reported by Toyoda et al (2000) in that 
the internal crack is formed in the center of the neck region and 
progresses towards the specimen surface. 
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Figure 11.  Evolution of necking and void growth of the round bar tensile 
specimen for the analysis using f0= 0.0135: (a) necking at final failure for 
ε = 105%; (b) internal crack formed by void growth at ε = 105%. 

 
Figures 12 and 13 provide the distribution of stress triaxiality, 

h = σm/σe, at the specimen centerplane (Z = 0) with radial distance 
(measured from specimen center), R, for the R2 and R1 specimens. 
Plots are also shown at three loading (deformation) levels: ε = 5%, 
maximum load and load corresponding to the onset of crack growth 
at the internal region of neck section. As could be expected, the 
results show a significant elevation of stress triaxiality for the 
notched specimens at all load levels as compared to the stress 
triaxiality levels for the round bar specimen. Moreover, for every 
load level considered, the increase in stress triaxiality is much more 
pronounced for the R1 specimen (note that the scales of the plots are 
different). These levels of stress triaxiality, h, correlate directly with 
the numerical predictions previously displayed in Figs. 8 and 9; 
notice again the key role played by h in the evolution of void growth 
expressed by the GT potential function, Eq. (1). The numerical 
results also predict the growth of an internal crack in the center of 
the notch (neck) region for both specimens, which progresses 
towards the specimen surface (to conserve space, they are not shown 
here). This behavior again follows the same trends previously 
described for the round bar specimen and entirely agrees with the 
experimental observations reported by Toyoda et al. (2000). 

 

Figure 12.  Distribution of stress triaxiality, h, with radial distance, R, for 
the R2  tensile specimen. 

Figure 13.  Distribution of stress triaxiality, h, with radial distance, R, for 
the R1  tensile specimen. 

Ductile Failure Locus 

The previous results demonstrated the strong effect of constraint 
(stress triaxiality) on ductile fracture for the tensile specimens with 
varying notch geometry. Earlier experimental studies on the 
correlation of failure strains with the stress state ahead of notches in 
high strength structural steels led Hancock and Mackenzie (1976) to 
propose a simplified criterion to describe ductile failure in terms of a 
stress triaxiality parameter and the effective plastic strain at failure 
initiation. Based upon the Rice and Tracey (1969) model for void 
growth, Hancock and Mackenzie (1976) provide the critical plastic 
fracture strain, εp,crit, in the form 
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⎜⎜
⎝

⎛
−=

e

m
critp σ

σβαε exp,
 (6)  

 
where α and β are material constants calibrated from experimentally 
measured tensile data. Equation (6) defines a failure locus for the 
material which represents all critical combinations of plastic strain, 
εp, and stress triaxiality (σm/σe) leading to ductile failure.  

Panontin and Shepard (1995) describe a complete study of the 
calibration process to estimate α  and β from notched-tensile data 
for an A516 pressure vessel steel and an HY 80 steel. In their work, 
Panontin and Shepard refer to Eq. (6) as the stress-modified, critical 
strain (SMCS) criterion for void coalescence. However, such study 
employs a conventional elastic-plastic analysis to determine the 
plastic strain at failure which does not consider material damage nor 
crack growth. The present work defines the critical combination of 
equivalent plastic strain (εp) and stress triaxiality (h = σm/σe) for the 
damaged material at the onset of crack growth at the internal region 
of neck section. Operationally,  εp and h are taken at the cell with 
current porosity f = 0.1 for both conditions which corresponds to a 
position between the cell currently undergoing extinction and the 
peak stress location as previously discussed. Fig. 14 presents the 
variation of stress triaxiality with equivalent plastic strain for the 
tested material using the crack growth analyses for the tensile 
specimens. The calibrated parameters which define the ductile 
failure locus for the tested steel are α = 1.77 and β = 0.51.  

Concluding Remarks 

This study describes a 3-D computational framework to model 
ductile failure behavior in cylindrical tensile specimens. Material 
separation and formation of an internal (macroscopic) crack occurs 
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through a local fracture mechanism based on the growth and 
coalescence of microvoids dispersed in the material. The Gurson-
Tvergaard dilatant plasticity model for voided materials describes 
the eventual loss of material stress capacity under sustained loading. 
Fixed-size computational cell elements defined on a thin layer 
adjacent to the crack plane provide an explicit length scale for the 
continuum damage model. An element vanish procedure removes 
highly voided cells from further consideration in the analysis, 
thereby creating new traction-free surfaces which extend the 
macroscopic crack. The key micromechanics parameters are D, the 
thickness of the computational cell layer, and f0, the initial cell 
porosity. These parameters are calibrated through numerical 
analyses to match the stress-strain response obtained by testing 
conventional tensile specimens. Such calibration scheme provides 
computational parameters which are loosely coupled, at best, with 
metallurgical features of the material. 

The 3-D analyses of round bar and circumferentially notched 
tensile specimens demonstrate the capability to predict the tensile 
response and the ductile behavior including the evolution of void 
growth. In particular, numerical results for the tensile specimens 
analyzed in this work predict the instability point (ductile failure) in 
very good agreement with experimental measurements. The 
computations predict remarkably well the development of necking 
in the specimens and the growth of a macroscopic crack at the 
internal region of neck section prior to instability. The present work 
also demonstrates the strong effect of specimen constraint on ductile 
failure. The 3-D analyses reveal increased stress triaxiality at 
specimen center with increased deformation which has important 
implications on the phenomenology of ductile failure for notched 
structurals components. While additional experimental and 
numerical studies are needed to further validate applications of the 
cell model to predict ductile failure in larger structures, the present 
study, when taken together with previous analyses (Xia and Shih, 
1995; Ruggieri et al., 1996; Gao et al, 1998), provide an additional 
body of results against which the robustness of the cell model 
approach can be weighed. Ongoing work is currently underway to 
extend the model to correlate ductile cracking in damaged pipelines 
subjected to large scale straining. 

 

Figure 14.  Ductile failure locus for the tested steel. 

Acknowledgements 

This investigation was supported by Fundação de Amparo à 
Pesquisa do Estado de São Paulo (FAPESP) through Grant 
01/06919-9. Funding to the author is also provided by Conselho 
Nacional de Desenvolvimento Científico e Tecnológico (CNPq).  

The many valuable discussions and contributions from Prof. Masao 
Toyoda and Dr. Mitsuru Ohata (Osaka University) are also 
gratefully aknowledged. 

References 
Aravas, N., 1987, “On the Numerical Integration of a Class of Pressure-

Dependent Plasticity Models,” International Journal for Numerical Methods 
in Engineering, Vol. 24, pp. 1395-1416. . 

Barson, J. M., 2002, “Fatigue and Fracture Behavior of Moment Frame 
Connections Under Seismic Loading (Northridge Earthquake,” in Fatigue 
and Fracture Mechanics: 33rd Volume, ASTM STP 1417, R. S. Piascik and 
W. G. Reuter, Eds., American Society for Testing and Materials, 
Philadelphia, pp. 57-72.  

Becker, R., Needleman, A., Richmond, O. and Tvergaard, V, 1988, 
“Void Growth and Failure in Notched Bars”, Journal of the Mechanics and 
Physics and Solids, Vol. 36, pp. 317. 

Beremin, F.M., 1983, “A Local Criterion for Cleavage Fracture of a 
Nuclear Pressure Vessel Steel,” Metallurgical Transactions, Vol. 14A, pp. 
2277-2287.  

Faleskog, J., Gao, X. and Shih, C. F., 1998, “Cell Model for Nonlinear 
Fracture Analysis - Micromechanics Calibration,” International Journal of 
Fracture, Vol. 89, pp. 375-398.  

Gao, X. Falescog, J., Dodds, R. H., and Shih, C. F., 1998, “Ductile 
Tearing in Part-Trough Surface Cracks: Experiments and Cell Model 
Predictions” Engineering Fracture Mechanics, Vol. 59, pp. 761-770.  

Garrison, W. M, Jr. and Moody, N. R., 1987, “Ductile Fracture,” Journal 
of the Physics and Chemistry of Solids, Vol. 48, pp. 1035-1074.  

Gurson, A. L., 1977, “Continuum Theory of Ductile Rupture by Void 
Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous 
Ductile Media,” Journal of Engineering Materials and Technology, Vol. 99, 
pp. 2-15.  

Hancock, J.W. and Mackenzie, A. C., 1976, “On the Mechanism of 
Ductile Failure in High-Strength Steels Subjected to Multiaxial Stress-
States”, Journal of Mechanics and Physics of Solids, Vol. 24, pp. 147-169. 

Healy, B.E. and Dodds, R..H., 1992, “A Large Strain Plasticity Model 
for Implicit Finite Element Analyses,” Computational Mechanics, Vol. 9, 
No. 2,  pp. 95-112 

Hughes, T. J., 1980, “Generalization of Selective Integration Procedures 
to Anisotropic and Nonlinear Media,” International Journal for Numerical 
Methods in Engineering, Vol. 15, pp. 1413-1418. .  

Koppenhoefer, K., Gullerud, A., Ruggieri, C., Dodds, R. and Healy, B.,  
1994, “WARP3D: Dynamic Nonlinear Analysis of Solids Using a 
Preconditioned Conjugate Gradient Software Architecture”, Structural 
Research Series (SRS) 596, UILU-ENG-94-2017, University of Illinois at 
Urbana-Champaign. .  

Mackenzie, A. C., Hancock, J.W. and Brown, D. K. 1977, “On the 
Influence of State of Stress on Ductile Failure Initiation in High Strength 
Steels”, Engineering Fracture Mechanics, Vol. 9, pp. 167-188. 

Malvern, L., 1969, “An Introduction to the Mechanics of Continuum 
Media”, Prentice-Hall, New Jersey. 

Nagtegaal, J. C. and Veldpaus, F. E., 1984, “On the Implementation of 
Finite Strain Plasticity Equations in a Numerical Model,” In Numerical 
Analysis of Forming Processes (edited by J.F. Pittman, O. C. Ziekiewicz, R. 
D. Wood and J. M. Alexander), p. 351. John Wiley and Sons, New York.  

Needleman, A., 1972, “A Numerical Study of Necking in Circular 
Cylindrical Bars”, Journal of the Mechanics and Physics and Solids, Vol. 20, 
pp. 111-127.  

Okashita, K., Ohminami, R., Michiba, K., Yamamoto, A., Tomimatsu, 
M., Tanji, Y. And Miki, C., 1998, “Investigation of the Brittle Fracture at the 
Corner of P75 Rigid-Frame Pier in Kobe Harbor Highway During the 
Hyogoken-Nanbu Earthquake”, Journal of the Japan Society of Civil 
Engineers, Vol. 591-I43, pp. 243. 

Panontin, T. L. and Sheppard, S. D., 1995, “The Relationship Between 
Constraint and Ductile Fracture Initiation as Defined by Micromechanical 
Analyses” in Fracture Mechanics: 26th Volume, ASTM STP 1256 (W. G. 
Reuter, J. H. Underwood and J. C. Newman, Jr., Eds.), pp. 54-85.  

Puttick, K. E., 1959, “Ductile Fracture in Metals,” Philosophical 
Magazine, Vol. 4, pp. 964-969.  

Rice, J. R. and Tracey, D. M., 1969, “On the Ductile Enlargement of 
Voids in Triaxial Stress Fields”, Journal of the Mechanics and Physics and 
Solids, Vol. 17, pp. 201-217.  

Ruggieri, C., Panontim, T. and Dodds, R. H., 1996, “Numerical 
Modeling of Ductile Crack Growth in 3-D Using Computational Cell 
Elements,"”International Journal of Fracture, Vol. 82, pp. 67-95, 1996.  

 



Numerical Investigation of Constraint Effects on … 

J. of the Braz. Soc. of Mech. Sci. & Eng.       Copyright © 2004 by ABCM              April-June  2004, Vol. XXVI, No. 2 / 199 

Santos, F. F., 2003, “A Micromechanics Approach to Ductile Fracture in 
Structural Steels and Applications to Failure Analysis in Pipelines”, MSc. 
Thesis, Polytechnic School, Faculty of Engineering, University of Sao Paulo.  

Tvergaard, V., 1990, “Material Failure by Void Growth to 
Coalescence,” Advances in Applied Mechanics, Vol. 27, pp. 83-151, 1990. .  

Tvergaard, V. and Needleman, A., 1984, “Analysis of Cup-Cone 
Fracture in a Round Tensile Bar”, Acta Metallurgica, Vol. 32, pp. 157.  

Tipper, C. F., 1949, “The Fracture of Metals,” Metallurgia, Vol. 39, pp. 
133-137, 1949. 

Toyoda, M., Ohata, M, Ayukawa, N., Ohwaki, G., Ueda, Y and 
Takeuchi, I., 2000, “Ductile Fracture Initiation behavior pf Pipe Under a 

Large Scale Cyclic Bending” in Pipeline Technology, Vol. II (R. Denys, 
Ed.), pp. 87-102. 

Yasuda, O., Hirono, M., Ohata, M. and Toyoda, M., 2000, “Ductile 
Crack Initiation Behavior of Pre-Strained Steel,” International Institute of 
Welding, IIW Doc. X-1461  

Xia, L. and Shih, C. F., 1995, “Ductile Crack Growth - I. A Numerical 
Study Using Computational Cells with Microstructurally-Based Length 
Scales,”  Journal of the Mechanics and Physics of Solids, Vol. 43, pp. 233-
259.  

 


