
Constant Boundary Elements on Graphics Hardware: a GPU-CPU Complementary Implementation

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 475

Josué Labaki
labaki@fem.unicamp.br

University of Campinas

School of Mechanical Engineering

Department of Computational Mechanics

13083-970 Campinas, SP, Brazil

Luiz Otávio Saraiva Ferreira
lotavio@fem.unicamp.br

University of Campinas

School of Mechanical Engineering

Department of Computational Mechanics

13083-970 Campinas, SP, Brazil

Euclides Mesquita
euclides@fem.unicamp.br

University of Campinas

School of Mechanical Engineering

Department of Computational Mechanics

13083-970 Campinas, SP, Brazil

Constant Boundary Elements on
Graphics Hardware: a GPU-CPU
Complementary Implementation
Numerical simulation of engineering problems has reached such a large scale that the use
of a parallel computing approach is required to obtain solutions within a reasonable time.
Recent efforts have been made to implement these large scale computational tasks on
general-purpose programmable graphics hardware (GPGPU). The Graphics Processing
Unit (GPU) is specially well-suited to address problems that can be formulated in form of
data-parallel computations with high arithmetic intensity. This work addresses the
implementation of the direct version of the Boundary Element Method (DBEM) on a
complementary GPU-CPU system. In this article, constant elements were used for the
solution of 2D potential problems. A serial implementation of the BEM was rewritten
under the SIMT (Single Instruction Multiple Thread) parallel programming paradigm. The
code was developed on an NVidia CUDA programming environment. The efficiency of
the implemented strategies is investigated by solving a representative 2D potential
problem. The paper reviews in detail the classical BEM formulation in order to be able to
address the possible parallelization steps in the numerical implementation. The article
reports the performance of the GPU-CPU system compared to the classical CPU-based
system for an increasing number of boundary elements.
Keywords: boundary element method, graphics hardware, high-performance computing,
GPU-CPU systems

Introduction 1

General Purpose Graphics Processing Units (GPGPU) have
been largely investigated in the last years for the high performance
computing of Finite Difference Methods, Particle-Based Methods,
Lattice-Boltzmann Method, Finite Element Method and also to the
Boundary Element Method (Owens et al., 2007). Low-level,
graphics-dedicated APIs (Application Programming Interfaces) such
as Cg, OpenGL (Schreiner et al., 2005) and DirectX (Jones, 2004)
were employed by Takahashi (2006) and Oishi and Yoshimura
(2008) for their implementation of the Boundary Element Method
and Finite Element Method on the GPU.

A new technology of graphic devices was introduced by the end
of 2006, the architecture of which allows them to perform non-
graphic data processing. A new API called CUDA (Compute
Unified Device Architecture) was launched by NVidia
Corporation for this new generation of GPUs (CUDA, 2010).
CUDA allows the programmer to code the GPGPU in a higher level
paradigm, compared to the former graphics-dedicated APIs such as
OpenGL and DirectX (Owens et al., 2007; CUDA, 2010).

Graphics hardware is a very efficient parallel computation
device. They resemble non-graphic many-core clusters of ordinary
CPUs, but possessing unusually high-bandwidth memories and fast
floating-point operations. These features make the GPU an attractive
alternative for the implementation of expensive computational tasks.

Methods of discretization, such as the Boundary Element
Method (BEM), whose parallel formulations have already been
explored for CPU clusters (Beer, Smith and Duenser, 2008), are
good examples of such expensive computational tasks.

In the process of solution of a problem by the BEM, several
non-recursive numerical calculations have to be performed, which
are good candidates to parallelization on graphics hardware. Many
numerical integrations have to be done, a dense linear system has to
be built and solved, and some rectangular and square matrix-vector
multiplications have to be performed.

This work addresses the implementation of the Boundary
Element Method for two-dimensional potential problems on

Paper received 22 February 2011. Paper accepted 24 August 2011.
Technical Editor: Fernando Rochinha

graphics hardware within the CUDA programming environment.
The final dense, non-symmetric system of algebraic equations is
solved in serial execution on the CPU, which characterizes the
present code as a complementary GPU-CPU implementation. The
paper begins recalling the classical formulation and serial
implementation of the method. Next, the new technology of GPGPU
is described in some details. The structure of a GPU, as visible from
the CUDA programming environment, is briefly summarized in
order to formulate the possible strategies for parallel implementation
on the graphics card. It is described why the GPU-CPU
implementation is more efficient than its CPU-only counterpart and
how the coding of non-graphical algorithms is treated. The fourth
section shows how the BEM implementation was approached in
order to comply with the GPGPU philosophy. Finally, the presented
implementation is used to solve a simple, but representative
potential problem with closed-form solution. Its performance is
compared with an ordinary CPU serial code for an increasing
number of boundary elements.

Nomenclature

A = matrix containing mixed influence terms
B = matrix containing mixed influence terms
b’ = vector of boundary conditions
D = influence matrix of the internal points
G = influence matrix
H = influence matrix
h = interpolation function
n = normal vector
q = normal flux
q = vector of flux quantities
R = distance from the source point to the collocation point
S = influence matrix of the internal points
u = potential quantity
u = vector of potential quantities
x = position; vector of unkown quantities
x0 = collocation point

Greek Symbols

Ω = domain

Labaki et al.

476 / Vol. XXXIII, No. 4, October-December 2011 ABCM

Γ = boundary
δ = Dirac’s delta

Subscripts

b = bounded
∞ = unbounded
bu = boundary with prescribed Dirichlet boundary conditions
bq = boundary with prescribed Neumann boundary conditions
e = respective to the element

The Boundary Element Method

BEM is part of the group of numerical methods which involve
some discretization. As it is well-known, the solution of problems
by BEM can be divided into the following main steps:

(a) the transformation of the differential equation into a
boundary integral equation by a reciprocity relation or by a vector
identity;

(b) the discretization of the domain boundary by elements;
(c) the calculation of the matrices of influence coefficients by

means of integration over the boundary elements;
(d) the incorporation of boundary conditions in terms of nodal

values;
(e) the numerical solution of a fully populated algebraic system

of equations, furnishing as a result all unknown boundary data;
(f) the determination of the solution within the domain of the

problem by integration procedures weighted by the boundary data.

Formulation of BEM for potential problems

Consider a domain Ωb, shown in Fig. 1a, enclosed by a
boundary Γb= Γbu ∪ Γbq, in which the behavior of a scalar quantity
u(x) is described by the Laplace homogeneous equation, Eq. (1).

()2 0u∇ =x (1)

On the portion of the boundary indicated as Γbu, Dirichlet

boundary conditions u(x∈Γbu)=u are prescribed. On the
complementary boundary Γbq Neumann boundary conditions are
given, ∂u(x∈Γbq)/∂n = q. The quantity n indicates the unit vector
normal to the boundary.

Consider also two distinct solutions of the Laplace operator. The
first u(x) is the actual solution of the problem being solved. The
second solution u*(x, x0) is an auxiliary state that describes the
solution of the Laplace operator at point x for an unbounded domain
Ω

∞
, shown in Fig. 1b, presenting a Dirac’s Delta source applied at

point x0:

2 *
0 0(,) ()u δ∇ = −x x x (2)

a) actual bounded domain ΩΩΩΩb

b) auxiliary unbounded domain ΩΩΩΩ∞

Figure 1. Definitions for BEM.

This particular auxiliary solution u*(x, x0) is called fundamental
solution and plays a fundamental role in the formulation of the
Boundary Element Method. A reciprocity relation may be
established between these two solutions by applying Green’s
Second Identity, leading to (Kane, 1994):

() () () ()()

() () () () ()

* 2 2 *

*
*

, ,

,
,

b

b

b

u u u u d

u u
u u d

Ω

Γ

∇ − ∇ Ω

 ∂ ∂
= − Γ  ∂ ∂ 

∫

∫

0 0

0
0

x x x x x x

x x x
x x x x

n n

 (3)

In Eq. (3), the normal flux, or the derivative of the solution u*(x,

x0) with respect to the boundary normal n, is also present:

*
*0

0

(,)
(,)

u
q

∂ =
∂
x x

x x
n

 (4)

Using the properties of the Dirac’s Delta, and taking the source

point x0 to the boundary Γb, an integral equation, known as
Somigliana identity, may be established relating the boundary
values, u(x) and q(x), x ∈ Γb, of the actual problem (Kane, 1994):

*

* 0
0 0 0

() (,)
() () (,) ()

b

u u
C u u u d

Γ

 ∂ ∂= − Γ ∂ ∂ 
∫

x x x
x x x x x

n n
 (5)

The integration free term C(x0) is obtained as the result from a

limiting analysis when the collocation point x0 approaches the
boundary Γb (Kane, 1994). It depends fundamentally on the
geometry of the boundary Γb. Equation (5) forms the basis of the
classical BEM formulation for potential problems and it is an exact
Boundary Integral Equation in which line integrals must be
evaluated along the boundary Γb. For the 2D Laplace operator given
in Eq. (2), the fundamental solution is u*(x,x0) = −ln(R)/2π, with R
being the distance from the field point x to the collocation point x0,
R =x−x0|, (Kane, 1994).

Serial implementation of BEM using constant elements

The formulation of the BEM consists in the discretization of the
exact boundary integral expression given by Eq. (5). According to
this method, the boundary Γb is discretized in boundary elements Γe,
Γb=ΣΓe, each one having normal vectors ne pointing outward the
domain. The solution over the boundary elements is assumed to vary
according to some pre-defined interpolation function hi(x):

() () ; () ()i i i i

i i

u u h q q h= =∑ ∑x x x x (6)

Introducing equations (6) into Eq. (5) results:

*
0 0 0

*
0

() () (,) () ()

(,) () ()

e
i e i e e

e i

e
i e i e e

e i

e

e

C u q u h d

u q h d

Γ

Γ

= Γ

+ Γ

∑∑ ∫

∑∑ ∫

x x x x x x

x x x x
 (7)

Consider the simple two-dimensional case in which the

boundary is divided into N elements over which the values of u(x)
and q(x) are assumed to be constant. Then on the j-th element u(x) =
uj and q(x) = qj, x ∈ Γj, and the free term is C(x0) = 0.5 (Kane,
1994). Under these assumptions, Eq. (7) may be written as:

Constant Boundary Elements on Graphics Hardware: a GPU-CPU Complementary Implementation

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 477

1 1

0.5 (,) (,)
N N

i j j
i j i j

j jj j

u q d u u d q∗ ∗

= =Γ Γ

   
+ Γ ⋅ = Γ ⋅   

   
   

∑ ∑∫ ∫x x x x (8)

The index i from Eq. (8) denotes an arbitrary element on which

the fundamental solution is applied. The results of the integrals in
Eq. (8) are called influence coefficients and are usually defined as:

(,) ;

(,) 0.5;

i j

jij

i j

j

q d i j

H
q d i j

∗

Γ

∗

Γ

 Γ ≠
= 

Γ + =


∫

∫

x x

x x
 (9)

and

(,)ij
i j

j

G u d∗

Γ

= Γ∫ x x (10)

With the definitions (9) and (10), Eq. (8) may be written as:

1 1

N N
ij j ij j

j j

H u G q
= =

=∑ ∑ (11)

If the index i runs through all the N boundary elements (i = 1, N),

Eq. (11) becomes a system of algebraic equations given by:

H⋅u = G⋅q (12)

In Eq. (12), H and G are matrices with dimensions N × N, and u

and q are vectors N × 1. In a well-posed problem, each element j has
either a known Dirichlet boundary condition (bc) uj (x∈Γbu) and an
unknown Neumann bc qj (x∈Γbq), or vice-versa. Hence, every
problem will have N known variables and N unknowns. Equation (12)
has to be rearranged in order to introduce the prescribed boundary
conditions:

A⋅x = B⋅b’ (13)

In Eq. (13), matrices A and B are formed by a combination of

columns of H and G according to the problem’s boundary
conditions, i.e., according to which values of u or q are known in a
given element j. The vector x contains the unknowns of the problem
and the vector b’ contains the prescribed boundary conditions. The
matrix B and the vector b’ are multiplied to obtain the following
final system of algebraic equations:

A⋅x = b (14)

Equation (14) is solved to determine the unknowns of the

problem at the prescribed boundary. Once uj and qj are determined
for every element j, Eq. (7) can be applied to determine the
quantities u and q for any internal point xp of index p. Now that the
point xp belongs to the domain of the problem (xp∈Ωb), the value of
the constant C(xp) = 1 (Kane, 1994). Thus, Eq. (7) becomes:

N N

p pi i pi i

i 1 i 1

u D q S u
= =

= −∑ ∑ (15)

For the index p varying from 1 to M, in which M is the total

number of internal points within the domain, Eq. (15) becomes the
following matrix equation:

up = D⋅q − S⋅u (16)

In Eq. (16), up is a vector of dimension M × 1 containing the

solution of u(x) at the internal points, and u and q are the original
vectors N × 1 obtained from the solution of Eq. (12). S and D are
rectangular matrices with dimensions M × N.

In the serial implementation, the terms Hij and Gij of Eq. (14) are
calculated in a sequence of two loops. The iterator i represents the
collocation of the source-point on different elements. The iterator j
varies representing the element over which the integration is
performed. Depending on the method of integration adopted, an
additional inner loop, responsible for the numerical integration, will
have to be carried out for each pair i-j. For example, for the
integration by Gaussian Quadrature, an additional loop k over the Np
integration nodes will be necessary.

In a very simple programming scheme, once the matrices H and
G are numerically determined, the transition between Eqs. (12) and
(13) is performed. A loop of N terms fills the vectors x and b’ with
data from u and q according to the prescribed boundary conditions.
In this loop, the columns of A and B are created, with data from H
and G. Next, the linear system of Eq. (14) is solved.

To determine the solution at internal points, a new double loop
in p (p = 1, M) and i (i = 1, N) determines the new rectangular
matrices D and S. The multiplication of these matrices by already
known vectors u and q results in the solution of up for the internal
points.

In this section, the Boundary Element Method for the study of
potential problems was described. The main steps of a very simple
and classical serial implementation were reviewed. The
parallelization strategies described in the text will address the steps
of this simple serial implementation. Next, the technology of
computation on graphics hardware will be presented.

Parallel Computing on Graphics Hardware

Ordinary CPUs must deal with many distinct jobs which include
recursive, adaptive, and interdependent problems. These tasks
demand a large amount of the computation resources to be dedicated
to communication of data and control (Kirk and Hwu, 2010). On the
other hand, graphics calculations require little control and
communication, compared to the volume of calculations (Kirk and
Hwu, 2010). That is the motivation for the development of graphics
hardware (GPU), since its beginning, as data-parallel computing
devices. GPUs are specially designed to tackle problems that can be
organized as data-parallel computations with high arithmetic
intensity (NVIDIA, 2008).

A typical GPU is organized as an array of highly threaded
streaming processors (SPs), distributed among streaming
multiprocessors (SMs). The GPU NVidia GeForce GTX 280 is
a representative of this new architecture of devices: it contains 240
calculation units (SPs), distributed among 30 SMs (see Fig. 2). This
architecture of cooperative many-cored computing units is similar to
the one found in some clusters of CPUs, but it is confined in a single
hardware device. In this typical graphics card, the majority of the
chip’s area is devoted to calculation units and, correspondingly, a
smaller area of the chip is dedicated to control and memory tasks.

More recently, GPUs have been redesigned to perform non-
graphics calculations. Because of their characteristic of many-core
computing, the programming of these General-Purpose Programmable
Graphics Processing Units (GPGPUs) follows a single instruction-
multiple thread programming paradigm (SIMT). GPGPUs have
already been applied to solve numerical problems for a large variety
of applications. In many cases a superior computational performance
has been obtained by these cards, when compared to regular CPUs

Labaki et al.

478 / Vol. XXXIII, No. 4, October-December 2011 ABCM

(Ryoo et al., 2008; Rasmusson et al., 2008; Stantchev et al., 2008;
Stantchev et al., 2009; Mesquita et al., 2009).

Figure 2. Typical architecture of a graphics card w ith 240 streaming
processors organized in 30 streaming multiprocessor s.

The developments of GPGPU also induced the development of

new APIs (Application Programming Interfaces). CUDA (Computer
Unified Device Architecture) is an API developed by NVidia
which allows graphics cards to be programmed to perform non-
graphics tasks (CUDA, 2009). CUDA is essentially an extension of
the C programming language with function extensions. It is
multiplatform and it can be compiled for any of the new NVidia’s
GPGPU architectures (NVIDIA, 2008).

The concepts of thread, thread block and grid are three
abstractions often referred to in the CUDA programming paradigm.
A thread is each of the many components responsible for executing
a given instruction (the kernel) over a single data. Multiple threads
work in parallel executing the same kernel on a set of data,
according to the SIMT paradigm. Threads are divided in thread
blocks, each of which is run by each SM of the GPU. Threads
within a block are able to share data through the SM’s shared
memory, and they can be synchronized at a certain point of their
execution. Thread blocks are grouped in grids, which spread them
among all the SMs of the GPU.

A thread block can be organized as a one-, two- or three-
dimensional array of threads, and CUDA offers variables with
which the index of every thread inside its block can be recovered.
Analogously, the grids may be one-, two- or three-dimensional
arrays of blocks. The thread blocks within the grids may also be
identified by means of indices.

GPUs also present another level of parallelization. Each thread
block, in turn, admits the execution of a limited number of threads at
a time. This number is called warp and for the present case it is of
32 threads. If the number of threads in a block is bigger than a warp,
the device will automatically queue the remaining threads to be
executed as soon as a processor is available.

Figure 3 depicts a reduced example of execution of a GPU. In
this example a card with only 2 processors is assumed for
illustration purposes. It is assumed that the warp size is of 16
threads. The present example was formulated as containing 3 blocks
with 20 threads in each. In Fig. 3, blank cells represent the data of
the blocks that were not processed yet. Hatched cells represent the
data being processed in the present round of execution, and shaded
cells represent the data already processed. In the first round of
execution, the first two thread blocks are assigned to the two
processors of the card. The third block is queued. Inside each of the
blocks (1) and (2), only 16 of their 20 threads are processed
simultaneously by each processor, because in this example the warp

has 16 threads. The four remaining threads are queued. In the
second round, the processors deal with these final 8 threads. Only
then, the next parcel of blocks is processed, which in this case
means the third block. Notice that, in this problem, one of the
processors is left inactive in the last two rounds of execution, which
is an undesired waste of calculation resource.

Figure 3. Reduced example of the two levels of para llelization with two
streaming multiprocessors (SMs).

Figure 4. Graphics card memory hierarchy (a) to the level of each
individual streaming processor and (b) to the level of the card.

In CUDA programming, a significant decision regards the way in

which data of the problem will be divided in terms of thread blocks
and grids. Klöckner et al. (2009) provided a metaprogramming
application that allows the GPU program to set these parameters
automatically.

The memory architecture of the graphics hardware is rather
complex. There are many types and levels of memories within the
card (see Fig. 4). A Graphics Double Data Rate (GDDR) DRAM,
which currently reaches up to 4 gigabytes, often referred to as global
memory, is the most important of them (Kirk and Hwu, 2010). The
global memory is a common choice to place a data that must be
accessible by all the active threads. Threads from different blocks

Constant Boundary Elements on Graphics Hardware: a GPU-CPU Complementary Implementation

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 479

cannot communicate, nor be synchronized. On the other hand, the
threads belonging to a same block can access their block’s shared
memory, which has a much smaller, device-dependent size, but that
possesses a smaller latency than global memory’s. Moreover,
threads possess private local memories and register space.

The graphics card also has the constant and texture read-only
cache memories, devoted to specific purposes in the graphics
calculation (Kirk and Hwu, 2010; NVIDIA, 2008). Its specific
properties, however, have been also explored for non-graphics
purposes (Nguyen, 2007; Pharr and Fernando, 2005).

Besides all these graphics hardware memories, a CUDA
program also has to deal with the ordinary CPU RAM memory, as
every classical low-medium level program does.

The execution of GPU programs requires manipulation of data
between all these types of memories. First, all the data of the problem
are stored in the RAM memory of the CPU that hosts the graphics
device. Next, the part of these data that must be available to the
threads is transferred to the GPU’s global memory. The kernels can
only be executed over data available in some of the GPU memories.
The final results of their calculations are saved on the GPU’s global
memory. Finally, these data are transferred back to the CPU’s
memory so that they can be post-processed. Because these data
transferring consume some processor clock cycles, any comparison of
performance between CPU and GPU must take into account the time
spent by GPU and CPU to perform these memory manipulations.

The following section reports how the GPGPU programming
paradigm was approached in the present implementation of the BEM.

Implementation on the GPU

In Section 2, a classical serial algorithm of the implementation
of BEM was summarized. The part of that algorithm regarding the
calculation of the matrices H and G, i.e., the calculation of the
influence coefficients Hij and Gij (Eq. (12)), is one of the simplest
cases to be coded in a parallel algorithm, if the formulation of
discontinuous elements is adopted.

The present implementation is applied to two-dimensional
potential problems, discretized by constant boundary elements. The
required input data are: the coordinates (xi, yi) of the vertices of the
N elements; the incidence of the elements; the type (u or q) and the
value of the boundary conditions, and the coordinates (xp, yp) of the
internal points.

The matrices H and G are allocated as vectors of size N2 and
passed as argument to the kernel that will perform the calculations
of their terms Hij and Gij. The data of the problem, such as the
coordinates of the nodes and the incidence of the elements are
passed as arguments as well.

A number of threads is chosen to perform the calculations. In
the present implementation, these threads are distributed among
two-dimensional thread blocks of 22 × 22 threads. The number 22 is
chosen because 22 × 22 is the largest dimension a square block can
have within the maximum number of threads per block that can be
dealt by the graphics card (23 × 23 > 512) (CUDA, 2010). The size
of a two-dimensional grid is calculated automatically by the
program so as to contain as many blocks as needed to accommodate
the N2 terms of H and G.

Figure 5 illustrates the sizes of grids and blocks for a reduced
example. In this example, matrices H and G will have dimensions of
N × N = 6 × 6. The thread blocks were defined as containing 4 × 4
threads. From Fig. 5, it is observed that the grid will then be
calculated to contain 2 × 2 blocks, in a total of 8 × 8 = 64 threads.
Even so, only 6 × 6 = 36 out of the 64 threads will perform the
calculations of Hij and Gij. The darkened cells in Fig. 5 represent the
terms that will perform some calculation, while the blank cells
represent the threads that were created, but left inactive.

Figure 5. Reduced example of a grid of thread block s.

Two 22 × 22 sub-matrices (of H and G) are allocated at each

thread block’s shared memory. The calculation of Hij and Gij
performed by these threads are initially stored in these sub-matrices.
In parallel execution, instead of two chain loops, each thread of the
whole grid will have its own index i-j. Based on this index, the
threads will be able to univocally determine, from the data of the
problem (node coordinates, element incidence, etc.) the parameters
needed to perform the numerical integration of their respective Hij
and Gij. In this paper, four-node Gaussian Quadrature is adopted to
perform this integration. The four terms loop referring to the
Gaussian Quadrature is performed sequentially by each thread.

After all the block’s threads have ended their calculations, these
data can be finally copied back to the vectors that contained H and
G, allocated on the GPU’s global memory. Actually, in the present
implementation a more direct, saving-time strategy is adopted.
When transferring its terms Hij and Gij from the shared memory to
the global memory, each thread i-j copies them directly to the right
place of the matrices A and B, according to the boundary conditions
(see transition between Eqs. (12) and (13)). In this same step, vector
b’ (see Eq. (13)) is also assembled from u and q (see Eq. (12))
according to the boundary conditions.

In the calculation of the matrices S and D from Eq. (16), a
similar procedure is employed. The same size of thread blocks is
used. The difference is that as the number of internal points might
be different from the number of elements, the matrices might
present more or less rows than columns, and therefore the grids will
also have more or less thread blocks in their “vertical” direction.

In order to apply Eq. (16), it is also necessary that the vector x,
which comes from the solution of Eq. (14), and b’ be unmixed to
form the final solution u and q at the boundary of the problem. To
accomplish this switching task, one-dimensional 22 × 1 thread
blocks are created. A one-dimensional grid is automatically
calculated by the program to contain as many thread blocks as
necessary to fit entirely the vectors u and q, which have dimensions
of N × 1. This dimensioning is analogous to what was described in
Fig. 5. Now, each thread of the grid has its index i and is responsible
for switching the terms xi and b’

i to either ui or qi, depending on the
boundary conditions.

The remaining calculations, such as the multiplication of
matrices by vectors and the solution of the linear system expressed
by Eq. (14) are performed in serial execution by the CPU. There are
initiatives to implement methods for solution of dense non-
symmetric linear systems in GPGPU, but the present available
implementations are still immature or ill-documented. Therefore, the
present implementation characterizes a CPU-GPU complementary
approach.

The aforementioned algorithm was implemented in an NVidia
GeForce GTX 280 graphics card hosted by a regular AMD dual-
core CPU. Single precision floating-point arithmetic was used
throughout the present implementation. The final code was applied
to solve an elementary potential problem by the BEM, and the
results are reported in the next section.

Labaki et al.

480 / Vol. XXXIII, No. 4, October-December 2011 ABCM

Numerical Results

The present implementation was used to solve the thermal
problem depicted in Fig. 6. The problem refers to a square plate
with an edge of unitary length. Each edge is discretized by N/4
equal elements. As boundary conditions, all the elements of the left
border have zero temperature (u = 0), all the elements of the right
border have unit temperature (u = 1), and the remaining borders are
insulated (q = 0). This problem has a closed-form analytical solution
given by u(x) = x, according to the given system of coordinates (see
Fig. 6).

Figure 6. Two-dimensional square plate of unitary e dge.

Figure 7 shows the time consumed by the CPU and the GPU to

build the matrices H and G of Eq. (12) with the number of elements
N ranging from 4 to 10,000. In the GPU, this time corresponds to
the time spent by the specific kernel that calculates these matrices.
Notice that, in the present implementation, the threads in this kernel
determine H and G and save the results of their calculations directly
into the matrices A and B according to the boundary conditions (see
Section 4 and Eqs. (12) and (13)). Therefore, the time spent on
switching H and G into A and B is also included in these
measurements. In the CPU, this time corresponds to the time spent
by the specific function, written in serial C code, that determines H
and G and switch their columns into A and B.

Figure 7. Time spent by the GPU and the CPU to calc ulate H and G and
store the results directly in A and B.

At the beginning of the graphic, it can be observed that there is a

number of elements under which the use of CPU is more
advantageous than the GPU. The reason to that is that, in order to
execute the kernel that calculates H and G on the GPU, a few
allocations and copies of memory are needed, which are not
necessary in the CPU. This allocation time is rather short and
depends little on the number of elements N, so the increase of N
causes it to dissolve in the total execution time of the kernel.

Beyond this point, the superiority of performance of the GPU is
observed. In the final experiment, in which a problem of 10,000
elements was considered, the GPU obtained the matrices H and G in
a time 56.8 times shorter than the CPU.

The present study also compared the time consumed to map the
vectors x and b’ into the vectors u and q (see transition between Eqs.
(12) and (13)) so that the solution of up at the internal points could be
determined by Eq. (16). The comparison is shown by Fig. 8.

Figure 8. Time spent by the GPU and the CPU to dist ribute the vectors u
and q among x and b’.

It is again observed that there is a certain number of elements,

upon which the use of GPU is worth. The reason is the same: there is
some memory handling required before any calculation can
commence. Because the calculation of the distribution of vectors and
transposition of columns of matrices is much simpler than the
calculation of the matrices H and G, this problem has smaller
arithmetic intensity than the prior. For this reason, the use of GPU is
advantageous only from a larger number of elements (for N > 3800
elements) than in that previous investigation (for N > 10 elements).

The performance of GPU versus CPU in the calculation of
internal points was also investigated. A mesh of M equally-spaced
internal points was spread inside the domain of the same problem of
Fig. 6. Figure 9 shows the distribution of the internal points when M =
9 internal points and N = 16 boundary elements.

Figure 9. Distribution of internal points inside th e domain of the square plate.

Figure 10 reports the time spent by the GPU and the CPU to

calculate the matrices S and D from Eq. (16) as the number of
internal points increase. The number of internal points (M) varies
along with the number of boundary elements (N) according to the
rule N = M/2. It is observed a superiority of the GPU in numerical
efficiency in this calculation. In the final experiment, in which M =
14,400 internal points and N = 7,200 boundary elements were
considered, the GPU obtained the matrices S and D in a time 15.16
times shorter than the CPU.

Constant Boundary Elements on Graphics Hardware: a GPU-CPU Complementary Implementation

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 481

Figure 10. Time spent by the GPU and the CPU to cal culate S and D.

The calculation times reported in Fig. 10 are the ones necessary

to determine the values at internal points, after the whole boundary
value problem has been solved, that is, the solution of the linear
system (15) and the mapping of vectors x and b’ to u and q have
been completed.

Finally, a complete problem was solved. The time spent in the
solution is shown in Fig. 11 for varying number of elements N. The
experiment was carried out for values of N between 4 and 6,160
elements. These times include the time to determine the influence
matrices H and G, to exchange their columns into A and B and to
map the vectors u and q into x and b’ according to the boundary
conditions, and to determine the matrices S and D of internal points.
The number of internal points (M) varies along with the number of
boundary elements (N) according to the rule N = M/2.

Figure 11. Times of execution to solve a complete p roblem.

Some parts of the GPU-CPU complementary code are

executed in the CPU, such as the solution of the final system of
equations (see Eq. (14)) and the matrix-vector multiplications
necessary to obtain b = B⋅b’ (see Eqs. (13) and (14)) and later to
obtain up according to Eq. (16). Because these times are the same
in the GPU-CPU code as in the pure CPU code, they are not
included in the results shown in Fig. 11. However, these results do
include the time spent by the pair CPU-GPU with communication
of data. They include the time spent to transfer the necessary data
of the problem from the CPU’s RAM to the GPU’s global memory
prior to the calculations, such as the vectors containing the
coordinates of the nodes of the mesh and the boundary conditions.
They also include the time spent to transfer back the results of the
calculations from the GPU’s memory.

In previous results, some memory operations were also
involved. However, those memory operations referred only to
memory passing between different GPU memories, mainly the data
transfer from the GPU’s global memory to the SMs’ shared
memory. No memory operation between CPU and GPU was
involved. Because now all the memory operations required by the
complete program are taken into account, it is observed that the
solution of a complete BEM problem has reduced arithmetic
intensity when compared, for example, to the calculation of H and
G alone. For this reason, the use of GPU is more advantageous from
a larger number of elements (for N > 27 elements) than what was
observed in Fig. 7 (for N > 10 elements).

Even so, an overall superior performance of the GPU over the
CPU is observed. In the final experiment, in which N = 6,160
elements and M = 12,321 internal points were considered, the
graphics hardware solved the problem – both the solution at the
boundary and at the internal points – in a time 15.75 times shorter
than the CPU.

The RAM (global) memory of 1 GB available in the present
graphics card (NVidia GeForce GTX 280) poses a limit to the
number of elements that can be used. The major occupancy of
memory is given by the two square matrices H and G of N × N
terms, and by the two rectangular matrices D and S of M × N terms.
Every term of these four matrices contains one floating-point
variable of 8 bytes. Part of the memory allocated is implicitly and
dynamically freed, so it is not possible to determine a priori what the
limits of N and M are, but the program warns, in execution time,
when the limit of memory has been reached. For the present
implementation, the limits are N = 6,160 elements and M = 12,321
internal points, if the rule N = M/2 is to be followed. It is important
to notice, however, that the model GeForce GTX 280 is yet thought
to perform graphics calculations, for which the memory of 1 GB is
enough for most situations. There are other architectures such as
NVidia’s Tesla, which are specially designed for non-graphics
calculations (CUDA, 2010). These special GPUs possess up to 4 GB
of RAM memory. Furthermore, a different saving-memory approach
could be thought for the present implementation, if a larger number
of elements were necessary.

Concluding Remarks

This paper has described the implementation of the Boundary
Element Method for two-dimensional potential problems on
graphics processing devices. The classical serial implementation
was rewritten under the SIMT parallel programming paradigm.

The paper reports the performances of GPU and CPU on dealing
with three important steps of BEM: a) the calculation of the influence
matrices used for the solution of the boundary values, b) the
calculation of influence coefficients to determine the values at internal
points, and c) the rearrangement of vectors according to the prescribed
boundary conditions. It was observed that the point from which the
GPU outperforms the CPU is function of the arithmetic intensity of
each problem. In all the cases, however, the graphics hardware has
shown to be more numerically efficient than the CPU with increasing
number of elements and internal points. For the largest number of
boundary elements the GPU implementations were able to outperform
the CPU ones by more than one order of magnitude.

The present implementation shows that graphics cards represent
a promising strategy to accelerate the numerical efficiency of the
Boundary Element Method.

References

Araújo, F.C., Gray, L.J., 2008, “Evaluation of Effective Material
Parameters of CNT-reinforced Composites via 3D BEM”, CMES: Computer
Modeling in Engineering & Sciences, Vol. 24(2), pp. 103-121.

Labaki et al.

482 / Vol. XXXIII, No. 4, October-December 2011 ABCM

Beer, G., Smith, I., Duenser, C., 2009, “The Boundary Element Method
with Programming: For Engineers and Scientists”, Springer.

CUDA, 2010, Developer’s Zone. http://www.nvidia.com/ object/cuda
home.html.

CUDA, 2009, NVIDIA CUDA C Programming Best Practices Guide.
NVIDIA Corporation, Santa Clara.

Jones, W., 2004, Beginning Directx9. Premior Press.
Kane, J.H., 1994, “Boundary Element Analysis in Engineering

Continuum Mechanics”, Prentice Hall Englewood Cliffs.
Kirk, D.B., Hwu, W.M.W., 2010, “Programming Massively Parallel

Processors: A Hands-On Approach”, Morgan Kaufmann Publishers.
Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A.,

2009, “Metaprogramming Graphics Processors from High-Level
Languages”, Parallel Computing (submitted).

Manavski, S.A., Valle, G., 2008, “CUDA Compatible GPU Cards as
Efficient Hardware Accelerators for Smith-Waterman Sequence Alignment”,
In: BMC Bioinformatics 2008, 9:1-10.

McNamee, J.M., 2004, “A comparison of methods for accurate
summation”, ACM SIGSAM Bulletin, Vol. 38, No. 1.

Mesquita, E., Labaki, J., Ferreira, L.O.S., 2009, “An Implementation of
the Longman’s Integration Method on Graphics Hardware”, CMES:
Computer Modeling in Engineering & Sciences, Vol. 51(2), pp. 143-168.

Nguyen, H., 2007, “GPU Gems 3”, Addison-Wesley Professional.
NVidia, 2008, NVIDIA CUDA – Compute Unified Device Architecture

– Programming Guide. NVIDIA Corporation, Santa Clara.
Oishi, A., Yoshimura, S., 2008, “Finite Element Analyses of Dynamic

Problems Using Graphics Hardware”, CMES: Computer Modeling in
Engineering & Sciences, Vol. 25, pp. 115-131.

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J.,
Lefohn, A.E., Purcell, T.J., 2007, “A survey of general-purpose computation
on graphics hardware”, Computer Graphics Forum, 26:80-113.

Peercy, M., Segal, M., Gerstmann, D., 2006, “A performance-oriented
data parallel virtual machine for GPUs”, In: ACM SIGGRAPH 2006
Conference Abstracts and Applications.

Pharr, M., Fernando, R., 2005, “GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computation”,
Addison-Wesley Professional.

Rasmusson, A., Mosegaard, J., Sørensen, T.S., 2008, “Exploring parallel
algorithms for volumetric mass-spring-damper models in cuda”, In:
International Symposium on Computational Models for Biomedical
Simulation, pp. 49-58.

Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B.,
Hwu, W.M.W., 2008, “Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA”, In: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, February 20-23, Salt Lake City, UT, USA.

Shreiner, D., Woo, M., Neider, J., Davies, T. (eds.), 2005, “OpenGL
Programming Guide”, 5th edition Addison-Wesley.

Stantchev, G., Dorland, W., Gumerov, N., 2008, “Fast parallel Particle-
To-Grid interpolation for plasma PIC simulations on the GPU”, Journal of
Parallel and Distributed Computing, Vol. 68 No. 10, pp. 1339-1349.

Stantchev, G., Juba, D., Dorland, W., Varshney, A., 2009, “Using
Graphics Processors for High-Performance Computation and Visualization of
Plasma Turbulence”, Computing in Science and Engineering, Vol. 11, No. 2,
pp. 52-59.

Takahashi, T., 2006, “GPU for BEM”, In: Proceedings of the IABEM,
Symposium of the International Association for Boundary Element Methods.
Editors: Schanz, M., Steinbach, O., Beer, G. and Langer, U; pp. 101-104.

Wloka, M., Zeller, C., Fernando, R., Harris, M., 2004, “Programming
Graphics Hardware”, http://http.download.nvidia.com/Eurographics/
EG_04_TutorialNotes.pdf

