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Constant Boundary Elements on 
Graphics Hardware: a GPU-CPU 
Complementary Implementation 
Numerical simulation of engineering problems has reached such a large scale that the use 
of a parallel computing approach is required to obtain solutions within a reasonable time. 
Recent efforts have been made to implement these large scale computational tasks on 
general-purpose programmable graphics hardware (GPGPU). The Graphics Processing 
Unit (GPU) is specially well-suited to address problems that can be formulated in form of 
data-parallel computations with high arithmetic intensity. This work addresses the 
implementation of the direct version of the Boundary Element Method (DBEM) on a 
complementary GPU-CPU system. In this article, constant elements were used for the 
solution of 2D potential problems. A serial implementation of the BEM was rewritten 
under the SIMT (Single Instruction Multiple Thread) parallel programming paradigm. The 
code was developed on an NVidia CUDA programming environment. The efficiency of 
the implemented strategies is investigated by solving a representative 2D potential 
problem. The paper reviews in detail the classical BEM formulation in order to be able to 
address the possible parallelization steps in the numerical implementation. The article 
reports the performance of the GPU-CPU system compared to the classical CPU-based 
system for an increasing number of boundary elements. 
Keywords: boundary element method, graphics hardware, high-performance computing, 
GPU-CPU systems 
 
 

Introduction 1 

General Purpose Graphics Processing Units (GPGPU) have 
been largely investigated in the last years for the high performance 
computing of Finite Difference Methods, Particle-Based Methods, 
Lattice-Boltzmann Method, Finite Element Method and also to the 
Boundary Element Method (Owens et al., 2007). Low-level, 
graphics-dedicated APIs (Application Programming Interfaces) such 
as Cg, OpenGL (Schreiner et al., 2005) and DirectX (Jones, 2004) 
were employed by Takahashi (2006) and Oishi and Yoshimura 
(2008) for their implementation of the Boundary Element Method 
and Finite Element Method on the GPU. 

A new technology of graphic devices was introduced by the end 
of 2006, the architecture of which allows them to perform non-
graphic data processing. A new API called CUDA (Compute 
Unified Device Architecture) was launched by NVidia 
Corporation for this new generation of GPUs (CUDA, 2010). 
CUDA allows the programmer to code the GPGPU in a higher level 
paradigm, compared to the former graphics-dedicated APIs such as 
OpenGL and DirectX (Owens et al., 2007; CUDA, 2010). 

Graphics hardware is a very efficient parallel computation 
device. They resemble non-graphic many-core clusters of ordinary 
CPUs, but possessing unusually high-bandwidth memories and fast 
floating-point operations. These features make the GPU an attractive 
alternative for the implementation of expensive computational tasks. 

Methods of discretization, such as the Boundary Element 
Method (BEM), whose parallel formulations have already been 
explored for CPU clusters (Beer, Smith and Duenser, 2008), are 
good examples of such expensive computational tasks.  

In the process of solution of a problem by the BEM, several 
non-recursive numerical calculations have to be performed, which 
are good candidates to parallelization on graphics hardware. Many 
numerical integrations have to be done, a dense linear system has to 
be built and solved, and some rectangular and square matrix-vector 
multiplications have to be performed. 

This work addresses the implementation of the Boundary 
Element Method for two-dimensional potential problems on 
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graphics hardware within the CUDA programming environment. 
The final dense, non-symmetric system of algebraic equations is 
solved in serial execution on the CPU, which characterizes the 
present code as a complementary GPU-CPU implementation. The 
paper begins recalling the classical formulation and serial 
implementation of the method. Next, the new technology of GPGPU 
is described in some details. The structure of a GPU, as visible from 
the CUDA programming environment, is briefly summarized in 
order to formulate the possible strategies for parallel implementation 
on the graphics card. It is described why the GPU-CPU 
implementation is more efficient than its CPU-only counterpart and 
how the coding of non-graphical algorithms is treated. The fourth 
section shows how the BEM implementation was approached in 
order to comply with the GPGPU philosophy. Finally, the presented 
implementation is used to solve a simple, but representative 
potential problem with closed-form solution. Its performance is 
compared with an ordinary CPU serial code for an increasing 
number of boundary elements. 

Nomenclature 

A = matrix containing mixed influence terms 
B = matrix containing mixed influence terms  
b’ = vector of boundary conditions  
D = influence matrix of the internal points 
G = influence matrix 
H = influence matrix  
h = interpolation function 
n  = normal vector  
q = normal flux 
q = vector of flux quantities 
R = distance from the source point to the collocation point 
S = influence matrix of the internal points 
u = potential quantity 
u = vector of potential quantities 
x  = position; vector of unkown quantities 
x0  = collocation point 

Greek Symbols 

Ω = domain 
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Γ = boundary 
δ = Dirac’s delta 

Subscripts 

b = bounded 
∞ = unbounded 
bu = boundary with prescribed Dirichlet boundary conditions 
bq = boundary with prescribed Neumann boundary conditions 
e = respective to the element 

The Boundary Element Method 

BEM is part of the group of numerical methods which involve 
some discretization. As it is well-known, the solution of problems 
by BEM can be divided into the following main steps: 

(a) the transformation of the differential equation into a 
boundary integral equation by a reciprocity relation or by a vector 
identity; 

(b) the discretization of the domain boundary by elements; 
(c) the calculation of the matrices of influence coefficients by 

means of integration over the boundary elements; 
(d) the incorporation of boundary conditions in terms of nodal 

values; 
(e) the numerical solution of a fully populated algebraic system 

of equations, furnishing as a result all unknown boundary data; 
(f) the determination of the solution within the domain of the 

problem by integration procedures weighted by the boundary data. 

Formulation of BEM for potential problems 

Consider a domain Ωb, shown in Fig. 1a, enclosed by a 
boundary Γb= Γbu ∪ Γbq, in which the behavior of a scalar quantity 
u(x) is described by the Laplace homogeneous equation, Eq. (1). 

 

( )2 0u∇ =x  (1) 

 
On the portion of the boundary indicated as Γbu, Dirichlet 

boundary conditions u(x∈Γbu)=u are prescribed. On the 
complementary boundary Γbq Neumann boundary conditions are 
given, ∂u(x∈Γbq)/∂n = q. The quantity n indicates the unit vector 
normal to the boundary. 

Consider also two distinct solutions of the Laplace operator. The 
first u(x) is the actual solution of the problem being solved. The 
second solution u*(x, x0) is an auxiliary state that describes the 
solution of the Laplace operator at point x for an unbounded domain 
Ω

∞
, shown in Fig. 1b, presenting a Dirac’s Delta source applied at 

point x0: 
 

2 *
0 0( , ) ( )u δ∇ = −x x x  (2) 

 

a) actual bounded domain ΩΩΩΩb 

 

 
 

b) auxiliary unbounded domain ΩΩΩΩ∞ 

Figure 1. Definitions for BEM.  

 

This particular auxiliary solution u*(x, x0) is called fundamental 
solution and plays a fundamental role in the formulation of the 
Boundary Element Method. A reciprocity relation may be 
established between these two solutions by applying Green’s 
Second Identity, leading to (Kane, 1994): 
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In Eq. (3), the normal flux, or the derivative of the solution u*(x, 

x0) with respect to the boundary normal n, is also present: 
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Using the properties of the Dirac’s Delta, and taking the source 

point x0 to the boundary Γb, an integral equation, known as 
Somigliana identity, may be established relating the boundary 
values, u(x) and q(x), x ∈ Γb, of the actual problem (Kane, 1994): 
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The integration free term C(x0) is obtained as the result from a 

limiting analysis when the collocation point x0 approaches the 
boundary Γb (Kane, 1994). It depends fundamentally on the 
geometry of the boundary Γb. Equation (5) forms the basis of the 
classical BEM formulation for potential problems and it is an exact 
Boundary Integral Equation in which line integrals must be 
evaluated along the boundary Γb. For the 2D Laplace operator given 
in Eq. (2), the fundamental solution is u*(x,x0) = −ln(R)/2π, with R 
being the distance from the field point x to the collocation point x0, 
R =x−x0|, (Kane, 1994). 

Serial implementation of BEM using constant elements 

The formulation of the BEM consists in the discretization of the 
exact boundary integral expression given by Eq. (5). According to 
this method, the boundary Γb is discretized in boundary elements Γe, 
Γb=ΣΓe, each one having normal vectors ne pointing outward the 
domain. The solution over the boundary elements is assumed to vary 
according to some pre-defined interpolation function hi(x):  
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Introducing equations (6) into Eq. (5) results: 
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Consider the simple two-dimensional case in which the 

boundary is divided into N elements over which the values of u(x) 
and q(x) are assumed to be constant. Then on the j-th element u(x) = 
uj and q(x) = qj, x ∈ Γj, and the free term is C(x0) = 0.5 (Kane, 
1994). Under these assumptions, Eq. (7) may be written as: 
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The index i from Eq. (8) denotes an arbitrary element on which 

the fundamental solution is applied. The results of the integrals in 
Eq. (8) are called influence coefficients and are usually defined as: 
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and  
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With the definitions (9) and (10), Eq. (8) may be written as: 
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If the index i runs through all the N boundary elements (i = 1, N), 

Eq. (11) becomes a system of algebraic equations given by: 
 
H⋅u = G⋅q (12) 
 
In Eq. (12), H and G are matrices with dimensions N × N, and u 

and q are vectors N × 1. In a well-posed problem, each element j has 
either a known Dirichlet boundary condition (bc) uj (x∈Γbu) and an 
unknown Neumann bc qj (x∈Γbq), or vice-versa. Hence, every 
problem will have N known variables and N unknowns. Equation (12) 
has to be rearranged in order to introduce the prescribed boundary 
conditions: 

 
A⋅x = B⋅b’  (13) 
 
In Eq. (13), matrices A and B are formed by a combination of 

columns of H and G according to the problem’s boundary 
conditions, i.e., according to which values of u or q are known in a 
given element j. The vector x contains the unknowns of the problem 
and the vector b’  contains the prescribed boundary conditions. The 
matrix B and the vector b’  are multiplied to obtain the following 
final system of algebraic equations: 

 
A⋅x = b (14) 
 
Equation (14) is solved to determine the unknowns of the 

problem at the prescribed boundary. Once uj and qj are determined 
for every element j, Eq. (7) can be applied to determine the 
quantities u and q for any internal point xp of index p. Now that the 
point xp belongs to the domain of the problem (xp∈Ωb), the value of 
the constant C(xp) = 1 (Kane, 1994). Thus, Eq. (7) becomes: 

 
N N

p pi i pi i

i 1 i 1

u D q S u
= =

= −∑ ∑  (15) 

 
For the index p varying from 1 to M, in which M is the total 

number of internal points within the domain, Eq. (15) becomes the 
following matrix equation: 

 
up = D⋅q − S⋅u (16) 
 
In Eq. (16), up is a vector of dimension M × 1 containing the 

solution of u(x) at the internal points, and u and q are the original 
vectors N × 1 obtained from the solution of Eq. (12). S and D are 
rectangular matrices with dimensions M × N.  

In the serial implementation, the terms Hij and Gij of Eq. (14) are 
calculated in a sequence of two loops. The iterator i represents the 
collocation of the source-point on different elements. The iterator j 
varies representing the element over which the integration is 
performed. Depending on the method of integration adopted, an 
additional inner loop, responsible for the numerical integration, will 
have to be carried out for each pair i-j. For example, for the 
integration by Gaussian Quadrature, an additional loop k over the Np 
integration nodes will be necessary. 

In a very simple programming scheme, once the matrices H and 
G are numerically determined, the transition between Eqs. (12) and 
(13) is performed. A loop of N terms fills the vectors x and b’  with 
data from u and q according to the prescribed boundary conditions. 
In this loop, the columns of A and B are created, with data from H 
and G. Next, the linear system of Eq. (14) is solved. 

To determine the solution at internal points, a new double loop 
in p (p = 1, M) and i (i = 1, N) determines the new rectangular 
matrices D and S. The multiplication of these matrices by already 
known vectors u and q results in the solution of up for the internal 
points. 

In this section, the Boundary Element Method for the study of 
potential problems was described. The main steps of a very simple 
and classical serial implementation were reviewed. The 
parallelization strategies described in the text will address the steps 
of this simple serial implementation. Next, the technology of 
computation on graphics hardware will be presented. 

Parallel Computing on Graphics Hardware 

Ordinary CPUs must deal with many distinct jobs which include 
recursive, adaptive, and interdependent problems. These tasks 
demand a large amount of the computation resources to be dedicated 
to communication of data and control (Kirk and Hwu, 2010). On the 
other hand, graphics calculations require little control and 
communication, compared to the volume of calculations (Kirk and 
Hwu, 2010). That is the motivation for the development of graphics 
hardware (GPU), since its beginning, as data-parallel computing 
devices. GPUs are specially designed to tackle problems that can be 
organized as data-parallel computations with high arithmetic 
intensity (NVIDIA, 2008). 

A typical GPU is organized as an array of highly threaded 
streaming processors (SPs), distributed among streaming 
multiprocessors (SMs). The GPU NVidia GeForce GTX 280 is 
a representative of this new architecture of devices: it contains 240 
calculation units (SPs), distributed among 30 SMs (see Fig. 2). This 
architecture of cooperative many-cored computing units is similar to 
the one found in some clusters of CPUs, but it is confined in a single 
hardware device. In this typical graphics card, the majority of the 
chip’s area is devoted to calculation units and, correspondingly, a 
smaller area of the chip is dedicated to control and memory tasks. 

More recently, GPUs have been redesigned to perform non-
graphics calculations. Because of their characteristic of many-core 
computing, the programming of these General-Purpose Programmable 
Graphics Processing Units (GPGPUs) follows a single instruction-
multiple thread programming paradigm (SIMT). GPGPUs have 
already been applied to solve numerical problems for a large variety 
of applications. In many cases a superior computational performance 
has been obtained by these cards, when compared to regular CPUs 
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(Ryoo et al., 2008; Rasmusson et al., 2008; Stantchev et al., 2008; 
Stantchev et al., 2009; Mesquita et al., 2009). 

 
 

 

Figure 2. Typical architecture of a graphics card w ith 240 streaming 
processors organized in 30 streaming multiprocessor s. 

 
The developments of GPGPU also induced the development of 

new APIs (Application Programming Interfaces). CUDA (Computer 
Unified Device Architecture) is an API developed by NVidia 
which allows graphics cards to be programmed to perform non-
graphics tasks (CUDA, 2009). CUDA is essentially an extension of 
the C programming language with function extensions. It is 
multiplatform and it can be compiled for any of the new NVidia’s 
GPGPU architectures (NVIDIA, 2008). 

The concepts of thread, thread block and grid are three 
abstractions often referred to in the CUDA programming paradigm. 
A thread is each of the many components responsible for executing 
a given instruction (the kernel) over a single data. Multiple threads 
work in parallel executing the same kernel on a set of data, 
according to the SIMT paradigm. Threads are divided in thread 
blocks, each of which is run by each SM of the GPU. Threads 
within a block are able to share data through the SM’s shared 
memory, and they can be synchronized at a certain point of their 
execution. Thread blocks are grouped in grids, which spread them 
among all the SMs of the GPU.  

A thread block can be organized as a one-, two- or three-
dimensional array of threads, and CUDA offers variables with 
which the index of every thread inside its block can be recovered. 
Analogously, the grids may be one-, two- or three-dimensional 
arrays of blocks. The thread blocks within the grids may also be 
identified by means of indices.  

GPUs also present another level of parallelization. Each thread 
block, in turn, admits the execution of a limited number of threads at 
a time. This number is called warp and for the present case it is of 
32 threads. If the number of threads in a block is bigger than a warp, 
the device will automatically queue the remaining threads to be 
executed as soon as a processor is available. 

Figure 3 depicts a reduced example of execution of a GPU. In 
this example a card with only 2 processors is assumed for 
illustration purposes. It is assumed that the warp size is of 16 
threads. The present example was formulated as containing 3 blocks 
with 20 threads in each. In Fig. 3, blank cells represent the data of 
the blocks that were not processed yet. Hatched cells represent the 
data being processed in the present round of execution, and shaded 
cells represent the data already processed. In the first round of 
execution, the first two thread blocks are assigned to the two 
processors of the card. The third block is queued. Inside each of the 
blocks (1) and (2), only 16 of their 20 threads are processed 
simultaneously by each processor, because in this example the warp 

has 16 threads. The four remaining threads are queued. In the 
second round, the processors deal with these final 8 threads. Only 
then, the next parcel of blocks is processed, which in this case 
means the third block. Notice that, in this problem, one of the 
processors is left inactive in the last two rounds of execution, which 
is an undesired waste of calculation resource. 

 

 
Figure 3. Reduced example of the two levels of para llelization with two 
streaming multiprocessors (SMs).  

 
 

 
Figure 4. Graphics card memory hierarchy (a) to the  level of each 
individual streaming processor and (b) to the level  of the card.  

 
In CUDA programming, a significant decision regards the way in 

which data of the problem will be divided in terms of thread blocks 
and grids. Klöckner et al. (2009) provided a metaprogramming 
application that allows the GPU program to set these parameters 
automatically. 

The memory architecture of the graphics hardware is rather 
complex. There are many types and levels of memories within the 
card (see Fig. 4). A Graphics Double Data Rate (GDDR) DRAM, 
which currently reaches up to 4 gigabytes, often referred to as global 
memory, is the most important of them (Kirk and Hwu, 2010). The 
global memory is a common choice to place a data that must be 
accessible by all the active threads. Threads from different blocks 
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cannot communicate, nor be synchronized. On the other hand, the 
threads belonging to a same block can access their block’s shared 
memory, which has a much smaller, device-dependent size, but that 
possesses a smaller latency than global memory’s. Moreover, 
threads possess private local memories and register space. 

The graphics card also has the constant and texture read-only 
cache memories, devoted to specific purposes in the graphics 
calculation (Kirk and Hwu, 2010; NVIDIA, 2008). Its specific 
properties, however, have been also explored for non-graphics 
purposes (Nguyen, 2007; Pharr and Fernando, 2005).  

Besides all these graphics hardware memories, a CUDA 
program also has to deal with the ordinary CPU RAM memory, as 
every classical low-medium level program does. 

The execution of GPU programs requires manipulation of data 
between all these types of memories. First, all the data of the problem 
are stored in the RAM memory of the CPU that hosts the graphics 
device. Next, the part of these data that must be available to the 
threads is transferred to the GPU’s global memory. The kernels can 
only be executed over data available in some of the GPU memories. 
The final results of their calculations are saved on the GPU’s global 
memory. Finally, these data are transferred back to the CPU’s 
memory so that they can be post-processed. Because these data 
transferring consume some processor clock cycles, any comparison of 
performance between CPU and GPU must take into account the time 
spent by GPU and CPU to perform these memory manipulations. 

The following section reports how the GPGPU programming 
paradigm was approached in the present implementation of the BEM. 

Implementation on the GPU 

In Section 2, a classical serial algorithm of the implementation 
of BEM was summarized. The part of that algorithm regarding the 
calculation of the matrices H and G, i.e., the calculation of the 
influence coefficients Hij and Gij (Eq. (12)), is one of the simplest 
cases to be coded in a parallel algorithm, if the formulation of 
discontinuous elements is adopted. 

The present implementation is applied to two-dimensional 
potential problems, discretized by constant boundary elements. The 
required input data are: the coordinates (xi, yi) of the vertices of the 
N elements; the incidence of the elements; the type (u or q) and the 
value of the boundary conditions, and the coordinates (xp, yp) of the 
internal points. 

The matrices H and G are allocated as vectors of size N2 and 
passed as argument to the kernel that will perform the calculations 
of their terms Hij and Gij. The data of the problem, such as the 
coordinates of the nodes and the incidence of the elements are 
passed as arguments as well. 

A number of threads is chosen to perform the calculations. In 
the present implementation, these threads are distributed among 
two-dimensional thread blocks of 22 × 22 threads. The number 22 is 
chosen because 22 × 22 is the largest dimension a square block can 
have within the maximum number of threads per block that can be 
dealt by the graphics card (23 × 23 > 512) (CUDA, 2010). The size 
of a two-dimensional grid is calculated automatically by the 
program so as to contain as many blocks as needed to accommodate 
the N2 terms of H and G. 

Figure 5 illustrates the sizes of grids and blocks for a reduced 
example. In this example, matrices H and G will have dimensions of 
N × N = 6 × 6. The thread blocks were defined as containing 4 × 4 
threads. From Fig. 5, it is observed that the grid will then be 
calculated to contain 2 × 2 blocks, in a total of 8 × 8 = 64 threads. 
Even so, only 6 × 6 = 36 out of the 64 threads will perform the 
calculations of Hij and Gij. The darkened cells in Fig. 5 represent the 
terms that will perform some calculation, while the blank cells 
represent the threads that were created, but left inactive. 

 

 
Figure 5. Reduced example of a grid of thread block s. 

 
Two 22 × 22 sub-matrices (of H and G) are allocated at each 

thread block’s shared memory. The calculation of Hij and Gij 
performed by these threads are initially stored in these sub-matrices. 
In parallel execution, instead of two chain loops, each thread of the 
whole grid will have its own index i-j. Based on this index, the 
threads will be able to univocally determine, from the data of the 
problem (node coordinates, element incidence, etc.) the parameters 
needed to perform the numerical integration of their respective Hij 
and Gij. In this paper, four-node Gaussian Quadrature is adopted to 
perform this integration. The four terms loop referring to the 
Gaussian Quadrature is performed sequentially by each thread. 

After all the block’s threads have ended their calculations, these 
data can be finally copied back to the vectors that contained H and 
G, allocated on the GPU’s global memory. Actually, in the present 
implementation a more direct, saving-time strategy is adopted. 
When transferring its terms Hij and Gij from the shared memory to 
the global memory, each thread i-j copies them directly to the right 
place of the matrices A and B, according to the boundary conditions 
(see transition between Eqs. (12) and (13)). In this same step, vector 
b’  (see Eq. (13)) is also assembled from u and q (see Eq. (12)) 
according to the boundary conditions. 

In the calculation of the matrices S and D from Eq. (16), a 
similar procedure is employed. The same size of thread blocks is 
used. The difference is that as the number of internal points might 
be different from the number of elements, the matrices might 
present more or less rows than columns, and therefore the grids will 
also have more or less thread blocks in their “vertical” direction. 

In order to apply Eq. (16), it is also necessary that the vector x, 
which comes from the solution of Eq. (14), and b’  be unmixed to 
form the final solution u and q at the boundary of the problem. To 
accomplish this switching task, one-dimensional 22 × 1 thread 
blocks are created. A one-dimensional grid is automatically 
calculated by the program to contain as many thread blocks as 
necessary to fit entirely the vectors u and q, which have dimensions 
of N × 1. This dimensioning is analogous to what was described in 
Fig. 5. Now, each thread of the grid has its index i and is responsible 
for switching the terms xi and b’

i to either ui or qi, depending on the 
boundary conditions. 

The remaining calculations, such as the multiplication of 
matrices by vectors and the solution of the linear system expressed 
by Eq. (14) are performed in serial execution by the CPU. There are 
initiatives to implement methods for solution of dense non-
symmetric linear systems in GPGPU, but the present available 
implementations are still immature or ill-documented. Therefore, the 
present implementation characterizes a CPU-GPU complementary 
approach. 

The aforementioned algorithm was implemented in an NVidia 
GeForce GTX 280 graphics card hosted by a regular AMD dual-
core CPU. Single precision floating-point arithmetic was used 
throughout the present implementation. The final code was applied 
to solve an elementary potential problem by the BEM, and the 
results are reported in the next section. 
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Numerical Results 

The present implementation was used to solve the thermal 
problem depicted in Fig. 6. The problem refers to a square plate 
with an edge of unitary length. Each edge is discretized by N/4 
equal elements. As boundary conditions, all the elements of the left 
border have zero temperature (u = 0), all the elements of the right 
border have unit temperature (u = 1), and the remaining borders are 
insulated (q = 0). This problem has a closed-form analytical solution 
given by u(x) = x, according to the given system of coordinates (see 
Fig. 6). 

 

 
Figure 6. Two-dimensional square plate of unitary e dge.  

 
Figure 7 shows the time consumed by the CPU and the GPU to 

build the matrices H and G of Eq. (12) with the number of elements 
N ranging from 4 to 10,000. In the GPU, this time corresponds to 
the time spent by the specific kernel that calculates these matrices. 
Notice that, in the present implementation, the threads in this kernel 
determine H and G and save the results of their calculations directly 
into the matrices A and B according to the boundary conditions (see 
Section 4 and Eqs. (12) and (13)). Therefore, the time spent on 
switching H and G into A and B is also included in these 
measurements. In the CPU, this time corresponds to the time spent 
by the specific function, written in serial C code, that determines H 
and G and switch their columns into A and B. 
 

 
Figure 7. Time spent by the GPU and the CPU to calc ulate H and G and 
store the results directly in A and B.  

 
At the beginning of the graphic, it can be observed that there is a 

number of elements under which the use of CPU is more 
advantageous than the GPU. The reason to that is that, in order to 
execute the kernel that calculates H and G on the GPU, a few 
allocations and copies of memory are needed, which are not 
necessary in the CPU. This allocation time is rather short and 
depends little on the number of elements N, so the increase of N 
causes it to dissolve in the total execution time of the kernel. 

Beyond this point, the superiority of performance of the GPU is 
observed. In the final experiment, in which a problem of 10,000 
elements was considered, the GPU obtained the matrices H and G in 
a time 56.8 times shorter than the CPU. 

The present study also compared the time consumed to map the 
vectors x and b’  into the vectors u and q (see transition between Eqs. 
(12) and (13)) so that the solution of up at the internal points could be 
determined by Eq. (16). The comparison is shown by Fig. 8. 
 

 

Figure 8. Time spent by the GPU and the CPU to dist ribute the vectors u 
and q among x and b’. 

 
It is again observed that there is a certain number of elements, 

upon which the use of GPU is worth. The reason is the same: there is 
some memory handling required before any calculation can 
commence. Because the calculation of the distribution of vectors and 
transposition of columns of matrices is much simpler than the 
calculation of the matrices H and G, this problem has smaller 
arithmetic intensity than the prior. For this reason, the use of GPU is 
advantageous only from a larger number of elements (for N > 3800 
elements) than in that previous investigation (for N > 10 elements). 

The performance of GPU versus CPU in the calculation of 
internal points was also investigated. A mesh of M equally-spaced 
internal points was spread inside the domain of the same problem of 
Fig. 6. Figure 9 shows the distribution of the internal points when M = 
9 internal points and N = 16 boundary elements. 
 

 

Figure 9. Distribution of internal points inside th e domain of the square plate.  

 
Figure 10 reports the time spent by the GPU and the CPU to 

calculate the matrices S and D from Eq. (16) as the number of 
internal points increase. The number of internal points (M) varies 
along with the number of boundary elements (N) according to the 
rule N = M/2. It is observed a superiority of the GPU in numerical 
efficiency in this calculation. In the final experiment, in which M = 
14,400 internal points and N = 7,200 boundary elements were 
considered, the GPU obtained the matrices S and D in a time 15.16 
times shorter than the CPU. 
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Figure 10. Time spent by the GPU and the CPU to cal culate S and D.  

 
The calculation times reported in Fig. 10 are the ones necessary 

to determine the values at internal points, after the whole boundary 
value problem has been solved, that is, the solution of the linear 
system (15) and the mapping of vectors x and b’  to u and q have 
been completed. 

Finally, a complete problem was solved. The time spent in the 
solution is shown in Fig. 11 for varying number of elements N. The 
experiment was carried out for values of N between 4 and 6,160 
elements. These times include the time to determine the influence 
matrices H and G, to exchange their columns into A and B and to 
map the vectors u and q into x and b’  according to the boundary 
conditions, and to determine the matrices S and D of internal points. 
The number of internal points (M) varies along with the number of 
boundary elements (N) according to the rule N = M/2. 
 

 

Figure 11. Times of execution to solve a complete p roblem.  

 
Some parts of the GPU-CPU complementary code are 

executed in the CPU, such as the solution of the final system of 
equations (see Eq. (14)) and the matrix-vector multiplications 
necessary to obtain b = B⋅b’  (see Eqs. (13) and (14)) and later to 
obtain up according to Eq. (16). Because these times are the same 
in the GPU-CPU code as in the pure CPU code, they are not 
included in the results shown in Fig. 11. However, these results do 
include the time spent by the pair CPU-GPU with communication 
of data. They include the time spent to transfer the necessary data 
of the problem from the CPU’s RAM to the GPU’s global memory 
prior to the calculations, such as the vectors containing the 
coordinates of the nodes of the mesh and the boundary conditions. 
They also include the time spent to transfer back the results of the 
calculations from the GPU’s memory. 

In previous results, some memory operations were also 
involved. However, those memory operations referred only to 
memory passing between different GPU memories, mainly the data 
transfer from the GPU’s global memory to the SMs’ shared 
memory. No memory operation between CPU and GPU was 
involved. Because now all the memory operations required by the 
complete program are taken into account, it is observed that the 
solution of a complete BEM problem has reduced arithmetic 
intensity when compared, for example, to the calculation of H and 
G alone. For this reason, the use of GPU is more advantageous from 
a larger number of elements (for N > 27 elements) than what was 
observed in Fig. 7 (for N > 10 elements). 

Even so, an overall superior performance of the GPU over the 
CPU is observed. In the final experiment, in which N = 6,160 
elements and M = 12,321 internal points were considered, the 
graphics hardware solved the problem – both the solution at the 
boundary and at the internal points – in a time 15.75 times shorter 
than the CPU. 

The RAM (global) memory of 1 GB available in the present 
graphics card (NVidia GeForce GTX 280) poses a limit to the 
number of elements that can be used. The major occupancy of 
memory is given by the two square matrices H and G of N × N 
terms, and by the two rectangular matrices D and S of M × N terms. 
Every term of these four matrices contains one floating-point 
variable of 8 bytes. Part of the memory allocated is implicitly and 
dynamically freed, so it is not possible to determine a priori what the 
limits of N and M are, but the program warns, in execution time, 
when the limit of memory has been reached. For the present 
implementation, the limits are N = 6,160 elements and M = 12,321 
internal points, if the rule N = M/2 is to be followed. It is important 
to notice, however, that the model GeForce GTX 280 is yet thought 
to perform graphics calculations, for which the memory of 1 GB is 
enough for most situations. There are other architectures such as 
NVidia’s Tesla, which are specially designed for non-graphics 
calculations (CUDA, 2010). These special GPUs possess up to 4 GB 
of RAM memory. Furthermore, a different saving-memory approach 
could be thought for the present implementation, if a larger number 
of elements were necessary. 

Concluding Remarks 

This paper has described the implementation of the Boundary 
Element Method for two-dimensional potential problems on 
graphics processing devices. The classical serial implementation 
was rewritten under the SIMT parallel programming paradigm. 

The paper reports the performances of GPU and CPU on dealing 
with three important steps of BEM: a) the calculation of the influence 
matrices used for the solution of the boundary values, b) the 
calculation of influence coefficients to determine the values at internal 
points, and c) the rearrangement of vectors according to the prescribed 
boundary conditions. It was observed that the point from which the 
GPU outperforms the CPU is function of the arithmetic intensity of 
each problem. In all the cases, however, the graphics hardware has 
shown to be more numerically efficient than the CPU with increasing 
number of elements and internal points. For the largest number of 
boundary elements the GPU implementations were able to outperform 
the CPU ones by more than one order of magnitude. 

The present implementation shows that graphics cards represent 
a promising strategy to accelerate the numerical efficiency of the 
Boundary Element Method. 
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