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Numerical simulation of engineering problems haached such a large scale that the use
of a parallel computing approach is required to ahbtsolutions within a reasonable time.
Recent efforts have been made to implement thege &tale computational tasks on
general-purpose programmable graphics hardware (BRg The Graphics Processing
Unit (GPU) is specially well-suited to address piehs that can be formulated in form of
data-parallel computations with high arithmetic ensity. This work addresses the
implementation of the direct version of the Bound&lement Method (DBEM) on a
complementary GPU-CPU system. In this article, tamselements were used for the
solution of 2D potential problems. A serial implertagion of the BEM was rewritten
under the SIMT (Single Instruction Multiple Thregdyallel programming paradigm. The
code was developed on an NVidiaCUDA programming environment. The efficiency of
the implemented strategies is investigated by msgha representative 2D potential
problem. The paper reviews in detail the classBEM formulation in order to be able to
address the possible parallelization steps in thenerical implementation. The article
reports the performance of the GPU-CPU system coetb#o the classical CPU-based
system for an increasing number of boundary elesnent

Keywords:boundary element method, graphics hardware, higitigpmance computing,
GPU-CPU systems
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Introduction

General Purpose Graphics Processing Units (GPGRE h
been largely investigated in the last years forhigh performance
computing of Finite Difference Methods, ParticlesBd Methods,
Lattice-Boltzmann Method, Finite Element Method aislo to the
Boundary Element Method (Owens et al., 2007). Lewel,
graphics-dedicated APIs (Application Programminigifaces) such
as Cg, OpenGL (Schreiner et al., 2005) and Dirgdties, 2004)
were employed by Takahashi (2006) and Oishi andhivosra
(2008) for their implementation of the Boundary raént Method
and Finite Element Method on the GPU.

A new technology of graphic devices was introduicgdhe end
of 2006, the architecture of which allows them w®rform non-
graphic data processing. A new API called CUDA (Qate
Unified Device Architecture) was launched by NVidia
Corporation for this new generation of GPUs (CUD2]10).
CUDA allows the programmer to code the GPGPU inghédr level
paradigm, compared to the former graphics-dedicAfeld such as
OpenGL and DirectX (Owens et al., 2007; CUDA, 2010)

Graphics hardware is a very efficient parallel catation
device. They resemble non-graphic many-core clsistérordinary
CPUs, but possessing unusually high-bandwidth mesiand fast
floating-point operations. These features makeRe) an attractive
alternative for the implementation of expensive patational tasks.

Methods of discretization, such as the Boundarymiele
Method (BEM), whose parallel formulations have athg been
explored for CPU clusters (Beer, Smith and Duen26f8), are
good examples of such expensive computational tasks

In the process of solution of a problem by the BEdyeral
non-recursive numerical calculations have to bdopered, which
are good candidates to parallelization on graphaslware. Many
numerical integrations have to be done, a densadisystem has to
be built and solved, and some rectangular and squatrix-vector
multiplications have to be performed.

This work addresses the implementation of the Bamnd
Element Method for two-dimensional potential probse on
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graphics hardware within the CUDA programming eoriment.

The final dense, non-symmetric system of algebegjoations is
solved in serial execution on the CPU, which chmrées the
present code as a complementary GPU-CPU implenamtathe

paper begins recalling the classical formulationd aserial

implementation of the method. Next, the new tecbhgplof GPGPU
is described in some details. The structure of & G visible from
the CUDA programming environment, is briefly sumined in

order to formulate the possible strategies for g ianplementation
on the graphics card. It is described why the GHRUC
implementation is more efficient than its CPU-onbunterpart and
how the coding of non-graphical algorithms is teelatThe fourth
section shows how the BEM implementation was appred in

order to comply with the GPGPU philosophy. Finathg presented
implementation is used to solve a simple, but r=gamative
potential problem with closed-form solution. Itsripemance is
compared with an ordinary CPU serial code for aoregasing
number of boundary elements.

Nomenclature

A
B

matrix containing mixed influence terms
matrix containing mixed influence terms
b’ vector of boundary conditions

D  =influence matrix of the internal points
G  =influence matrix

H  =influence matrix

h = interpolation function

n = normal vector
q

q

R

S

u

u

X

= normal flux

= vector of flux quantities

= distance from the source point to the collomatpoint
influence matrix of the internal points

potential quantity

= vector of potential quantities

= position; vector of unkown quantities

Xo = collocation point
Greek Symbols
Q  =domain

October-December 2011, Vol. XXXIII, No. 4 / 475



I'  =boundary

) = Dirac’s delta

Subscripts

b = bounded

o  =unbounded

bu = boundary with prescribed Dirichlet boundarynclitions
bg = boundary with prescribed Neumann boundary d@rss
e  =respective to the element

The Boundary Element Method

BEM is part of the group of numerical methods whiectolve
some discretization. As it is well-known, the s@utof problems
by BEM can be divided into the following main steps

(@) the transformation of the differential equatiamo a
boundary integral equation by a reciprocity relatar by a vector
identity;

(b) the discretization of the domain boundary Bnetnts;

(c) the calculation of the matrices of influenceeffizients by
means of integration over the boundary elements;

(d) the incorporation of boundary conditions innterof nodal
values;

(e) the numerical solution of a fully populatededicaic system
of equations, furnishing as a result all unknownriztary data;

(f) the determination of the solution within thendain of the
problem by integration procedures weighted by teniolary data.

Formulation of BEM for potential problems

Labaki et al.

This particular auxiliary solutioo*(x, X) is calledfundamental
solution and plays a fundamental role in the formulationtloé
Boundary Element Method. A reciprocity relation maye
established between these two solutions by apply@rgen’s
Second Identity, leading to (Kane, 1994):

J(u*(x,xo)[lzu(x)— u(x)l]zd(x,xo)) ®Q

- [ )2 ot

b

ou’ (X, %,) 3)

on

Jdl‘h(x)

In Eq. (3), the normal flux, or the derivative bEtsolution u*g,
Xo) With respect to the boundary normalis also present:

AU’ (X, X,)

oan @

=0 (X, %)
Using the properties of the Dirac’s Delta, and nakihe source
point x, to the boundaryl,, an integral equation, known as

Somigliana identity, may be established relating thoundary
values,u(x) andq(x), x 0 ', of the actual problem (Kane, 1994):

ou(x)

_ AU (X, %,)
on

oan

COOUX) = | ux)

b

(u*(x,xo) J a (5)

The integration free term &) is obtained as the result from a

Consider a domairQ, shown in Fig. la, enclosed by alimiting analysis when the collocation point approaches the
boundaryly= 'y, O I'yg, in which the behavior of a scalar quantityboundary ', (Kane, 1994). It depends fundamentally on the

u(x) is described by the Laplace homogeneous equdipn(1).
D%u(x)=0 (1)

On the portion of the boundary indicated Bg, Dirichlet
boundary conditions u(xdrr,)=u are prescribed. On the

complementary boundarf,q, Neumann boundary conditions are

given, du(xOlM,g)/dn = g. The quantityn indicates the unit vector
normal to the boundary.

Consider also two distinct solutions of the Laplaperator. The
first u(x) is the actual solution of the problem being sdiv&he

geometry of the boundary,. Equation (5) forms the basis of the
classical BEM formulation for potential problemgdaih is an exact
Boundary Integral Equation in which line integraisust be
evaluated along the bounddry. For the 2D Laplace operator given
in Eq. (2), the fundamental solutionu¥(x,xo) = —In(R)/2t, with R
being the distance from the field poito the collocation poinko,

R =Ix-xo|, (Kane, 1994).

Serial implementation of BEM using constant elemeist

The formulation of the BEM consists in the disazation of the
exact boundary integral expression given by Eg. £A&&fording to

second solutioru*(x, xo) is an auxiliary state that describes thehis method, the boundafy, is discretized in boundary elemeiits

solution of the Laplace operator at potfior an unbounded domain
Q., shown in Fig. 1b, presenting a Dirac’s Delta seuapplied at
pointxo:

DZU*(Xv Xo) = _5()(0) (2)
-7 3(%o)
4
: “h
Xo «X
VAU (xXo)=-B(X,)
a) actual bounded domain  Qy b) auxiliary unbounded domain Q.

Figure 1. Definitions for BEM.
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M,=2I,, each one having normal vectars pointing outward the
domain. The solution over the boundary elemenésssimed to vary
according to some pre-defined interpolation furrctigx):

UE)=RuR00; at)=X ant) (6)
Introducing equations (6) into Eq. (5) results:
COaul6) =23 je U (% %) h(X,) ()

+22u :j A (X %) N (x)AT(x,) )

Consider the simple two-dimensional case in whidte t
boundary is divided into N elements over which Wadues ofu(x)
andq(x) are assumed to be constant. Then on theejementu(x) =
v andq(x) = ¢, x O, and the free term is &) = 0.5 (Kane,
1994). Under these assumptions, Eq. (7) may beenréts:
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w3

j=1

0.5 +ZN:

j=1

[ J o0 x, )ar

T

|

[J_u“(x % )chDq (®)

u” =DIg - SO (16)

In Eq. (16),u® is a vector of dimension M 1 containing the

The indexi from Eq. (8) denotes an arbitrary element on whiclsolution ofu(x) at the internal points, and andq are the original

the fundamental solution is applied. The resultghef integrals in
Eq. (8) are called influence coefficients and aseally defined as:

[’ (x.x)drs i#
rj

Hi = 9)
[a’(x.x,)dr +0.5; i= ]
rj

and

Gl = j w(x,x;)dr (10)

ri

With the definitions (9) and (10), Eq. (8) may betien as:

N . N .. .

Y HIUW=)d g (11)

j=1 j=1

If the indexi runs through all the N boundary elements {, N),
Eq. (11) becomes a system of algebraic equatioes diy:

HU=G{Q (12)

In Eqg. (12),H andG are matrices with dimensions>\N, andu
andq are vectors N 1. In a well-posed problem, each elemehas
either a known Dirichlet boundary condition (b€)(xOl,,) and an
unknown Neumann baf (xOry,), or vice-versa. Hence, every
problem will have N known variables and N unknowbBguation (12)
has to be rearranged in order to introduce thecpbesli boundary
conditions:

AR =Bb (13)

In Eq. (13), matrice®\ andB are formed by a combination of

vectors Nx 1 obtained from the solution of Eq. (1&.andD are
rectangular matrices with dimensionsXWN. )

In the serial implementation, the term$&hd @ of Eq. (14) are
calculated in a sequence of two loops. The iteratepresents the
collocation of the source-point on different elentserThe iteratoj
varies representing the element over which thegmten is
performed. Depending on the method of integratidopéed, an
additional inner loop, responsible for the numéringegration, will
have to be carried out for each p&j. For example, for the
integration by Gaussian Quadrature, an additiaag k over the Iy
integration nodes will be necessary.

In a very simple programming scheme, once the oeH and
G are numerically determined, the transition betwggs. (12) and
(13) is performed. A loop of N terms fills the vexgx andb’ with
data fromu andq according to the prescribed boundary conditions.
In this loop, the columns &k andB are created, with data frokh
andG. Next, the linear system of Eq. (14) is solved.

To determine the solution at internal points, a m@uble loop
inp (=1, M) andi (i = 1, N) determines the new rectangular
matricesD and S. The multiplication of these matrices by already
known vectorsu andq results in the solution af® for the internal
points.

In this section, the Boundary Element Method fa study of
potential problems was described. The main stegs \adry simple
and classical serial implementation were reviewethe
parallelization strategies described in the text address the steps
of this simple serial implementation. Next, the hteclogy of
computation on graphics hardware will be presented.

Parallel Computing on Graphics Hardware

Ordinary CPUs must deal with many distinct jobsahkhinclude
recursive, adaptive, and interdependent problenmtsesd tasks
demand a large amount of the computation resotiodes dedicated
to communication of data and control (Kirk and H&0,10). On the
other hand, graphics calculations require littlentoal and

columns of H and G according to the problem’s boundarycommunication, cqmpared to the volume of calculei¢Kirk ar)d
conditions, i.e., according to which valuesuobr q are known in a Hwu, 2010). That is the motivation for the devel@mof graphics
given element. The vectoix contains the unknowns of the problemhardware (GPU), since its beginning, as data-paraibmputing
and the vectob’ contains the prescribed boundary conditions. The€vices. GPUs are specially designed to tacklelpmebthat can be
matrix B and the vectob’ are multiplied to obtain the following Organized as data-parallel computations with higtithmetic

final system of algebraic equations:

AR =b (14)

Equation (14) is solved to determine the unknowmsthe
problem at the prescribed boundary. Oocandd are determined

intensity (NVIDIA, 2008).

A typical GPU is organized as an array of highlyettded
streaming processors (SPs), distributed among msinga
multiprocessors (SMs). The GPU NVidiaGeForce GTX 280 is
a representative of this new architecture of devidtecontains 240
calculation units (SPs), distributed among 30 S&&= (Fig. 2). This

for every element, Eq. (7) can be applied to determine thedrchitecture of cooperative many-cored computingsiia similar to

quantitiesu andq for any internal poink, of indexp. Now that the
pointx, belongs to the domain of the problexg{Qy), the value of
the constant Gg) = 1 (Kane, 1994). Thus, Eq. (7) becomes:

N N
uP :2 DPig —les?i d
i= i=

For the indexp varying from 1 to M, in which M is the total
number of internal points within the domain, Egs)(becomes the
following matrix equation:

(15)
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the one found in some clusters of CPUs, but ibiffioed in a single
hardware device. In this typical graphics card, tiegority of the
chip’s area is devoted to calculation units andrespondingly, a
smaller area of the chip is dedicated to contrdl @mory tasks.
More recently, GPUs have been redesigned to perfioom

graphics calculations. Because of their charatieref many-core
computing, the programming of these General-Purposgrammable
Graphics Processing Units (GPGPUSs) follows a simgitruction-
multiple thread programming paradigm (SIMT). GPGPbave
already been applied to solve numerical problemsaflarge variety
of applications. In many cases a superior compuutatiperformance
has been obtained by these cards, when companejutar CPUs

October-December 2011, Vol. XXXIIl, No. 4 / 477



(Ryoo et al., 2008; Rasmusson et al., 2008; Stenteh al., 2008;
Stantchev et al., 2009; Mesquita et al., 2009).

N

W22

per SM

architecture of each
of its individual stream
multiprocessors (SM)

chip's internal ("global")
RAM memory

30 SM of 8 streaming processors each

Figure 2. Typical architecture of a graphics card w ith 240 streaming

processors organized in 30 streaming multiprocessor S.

The developments of GPGPU also induced the devedopof
new APIs (Application Programming Interfaces). CUDZomputer
Unified Device Architecture) is an APl developed bividial
which allows graphics cards to be programmed tdopar non-
graphics tasks (CUDA, 2009). CUDA is essentiallyeatension of
the C programming language with function extensiofts is
multiplatform and it can be compiled for any of thew NVidia's
GPGPU architectures (NVIDIA, 2008).

The concepts of thread, thread block and grid dmeet
abstractions often referred to in the CUDA prograngrparadigm.
A thread is each of the many components responfiblexecuting
a given instruction (the kernel) over a single dMaltiple threads
work in parallel executing the same kernel on a cktdata,
according to the SIMT paradigm. Threads are dividedhread
blocks, each of which is run by each SM of the GHUreads
within a block are able to share data through th¥sSshared
memory, and they can be synchronized at a certaint pf their
execution. Thread blocks are grouped in grids, Wwisipread them
among all the SMs of the GPU.

A thread block can be organized as a one-, twothoee-
dimensional array of threads, and CUDA offers \ada with
which the index of every thread inside its block dse recovered.
Analogously, the grids may be one-, two- or threeehsional
arrays of blocks. The thread blocks within the griday also be
identified by means of indices.

GPUs also present another level of parallelizatieech thread
block, in turn, admits the execution of a limitashmber of threads at
a time. This number is called warp and for the gmégase it is of
32 threads. If the number of threads in a blodkigger than a warp,
the device will automatically queue the remainilgeads to be
executed as soon as a processor is available.

Figure 3 depicts a reduced example of executioa GPU. In
this example a card with only 2 processors is assurfor
illustration purposes. It is assumed that the wsige is of 16
threads. The present example was formulated asioamy 3 blocks
with 20 threads in each. In Fig. 3, blank cellsresent the data of
the blocks that were not processed yet. Hatchdd mgpresent the
data being processed in the present round of emecwnd shaded
cells represent the data already processed. Infitsteround of
execution, the first two thread blocks are assigtedthe two
processors of the card. The third block is quelreside each of the
blocks (1) and (2), only 16 of their 20 threads gmecessed
simultaneously by each processor, because in taimgle the warp

478 [/ Vol. XXXIll, No. 4, October-December 2011
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has 16 threads. The four remaining threads are egueln the
second round, the processors deal with these 8irthreads. Only
then, the next parcel of blocks is processed, wihiiclhis case
means the third block. Notice that, in this probleome of the
processors is left inactive in the last two rounfisxecution, which
is an undesired waste of calculation resource.

1st ROUND 3rd ROUND

thread blocks

@) o

D007

(1 2

/does not’
‘.compute

< SM >
/does not,
".compute

GAHUL)

AN
AN

N
N\

AN

NNN

NN

2nd ROUND 4th
SM ™ SM @)

e

Figure 3. Reduced example of the two levels of para
streaming multiprocessors (SMs).

(3) 2

llelization with two

streaming processor (SP)

o ﬁ 7 0
register @ @ e @

thread 1 thread 2 thread N

(b)
CPU (HOST)
GPU (DEVICE)

‘ SM's shared memory ‘

| constants cache ‘

[ texture cache |

[ device ("global’) RAM |

R

| host RAM |

Figure 4. Graphics card memory hierarchy (a) to the level of each
individual streaming processor and (b) to the level of the card.

In CUDA programming, a significant decision regatias way in
which data of the problem will be divided in terwmfsthread blocks
and grids. Klockner et al. (2009) provided a meigpmming
application that allows the GPU program to set éhparameters
automatically.

The memory architecture of the graphics hardwareather
complex. There are many types and levels of memavi¢hin the
card (see Fig. 4). A Graphics Double Data Rate (RDDRAM,
which currently reaches up to 4 gigabytes, oftéerred to as global
memory, is the most important of them (Kirk and KH\2010). The
global memory is a common choice to place a dath thust be
accessible by all the active threads. Threads fudferent blocks

ABCM
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cannot communicate, nor be synchronized. On therdtand, the
threads belonging to a same block can access hitmik’'s shared
memory, which has a much smaller, device-depensleat but that
possesses a smaller latency than global memory'stedier,
threads possess private local memories and regishee.

The graphics card also has the constant and texéaconly
cache memories, devoted to specific purposes in gtaphics
calculation (Kirk and Hwu, 2010; NVIDIA, 2008). ltspecific
properties, however, have been also explored far-graphics
purposes (Nguyen, 2007; Pharr and Fernando, 2005).

Besides all these graphics hardware memories, a ACUD

program also has to deal with the ordinary CPU RA¥mory, as
every classical low-medium level program does.

The execution of GPU programs requires manipulatibmiata
between all these types of memories. First, alléie of the problem
are stored in the RAM memory of the CPU that hdsés graphics
device. Next, the part of these data that must Vzladble to the
threads is transferred to the GPU’s global mem®he kernels can
only be executed over data available in some of@R&) memories.
The final results of their calculations are savedtitee GPU's global
memory. Finally, these data are transferred backh& CPU'’s
memory so that they can be post-processed. Bedhaese data
transferring consume some processor clock cyagscamparison of
performance between CPU and GPU must take intauattbe time
spent by GPU and CPU to perform these memory miatipos.

The following section reports how the GPGPU progreang
paradigm was approached in the present implementatithe BEM.

Implementation on the GPU

In Section 2, a classical serial algorithm of thelementation
of BEM was summarized. The part of that algorittegarding the
calculation of the matricesl and G, i.e., the calculation of the

block

block

grid

Figure 5. Reduced example of a grid of thread block  s.

Two 22 x 22 sub-matrices (of H and G) are allocated at each
thread block’'s shared memory. The calculation df &hd d
performed by these threads are initially storethegse sub-matrices.
In parallel execution, instead of two chain loogach thread of the
whole grid will have its own index-j. Based on this index, the
threads will be able to univocally determine, frone data of the
problem (node coordinates, element incidence, #te.)parameters
needed to perform the numerical integration ofrthespective M
and @. In this paper, four-node Gaussian Quadraturelépizd to
perform this integration. The four terms loop refeg to the
Gaussian Quadrature is performed sequentially bly #aead.

After all the block’s threads have ended their gittons, these
data can be finally copied back to the vectors toatainedH and
G, allocated on the GPU'’s global memory. Actually the present
implementation a more direct, saving-time stratégyadopted.
When transferring its terms'Hand d from the shared memory to
the global memory, each threagl copies them directly to the right
place of the matrice& andB, according to the boundary conditions
(see transition between Egs. (12) and (13)). ls $hime step, vector
b’ (see Eq. (13)) is also assembled framand g (see Eq. (12))

influence coefficients Hand & (Eq. (12)), is one of the simplest according to the boundary conditions.

cases to be coded in a parallel algorithm, if tbemulation of
discontinuous elements is adopted.

The present implementation is applied to two-dincamsl
potential problems, discretized by constant boupnééements. The
required input data are: the coordinatgs ) of the vertices of the
N elements; the incidence of the elements; the ¢yp® q) and the
value of the boundary conditions, and the coore® &, y,) of the
internal points.

The matricesH andG are allocated as vectors of sizé &hd
passed as argument to the kernel that will perfidvencalculations

In the calculation of the matriceS and D from Eq. (16), a
similar procedure is employed. The same size ddatthrblocks is
used. The difference is that as the number of natepoints might
be different from the number of elements, the roafi might
present more or less rows than columns, and theréfe grids will
also have more or less thread blocks in their feaftdirection.

In order to apply Eg. (16), it is also necessagt the vectok,
which comes from the solution of Eq. (14), dsidbe unmixed to
form the final solutioru andq at the boundary of the problem. To
accomplish this switching task, one-dimensional 221 thread

of their terms M and d. The data of the problem, such as theblocks are created. A one-dimensional grid is aatially

coordinates of the nodes and the incidence of tements are
passed as arguments as well.

A number of threads is chosen to perform the catwris. In
the present implementation, these threads areildistd among

calculated by the program to contain as many thigladks as
necessary to fit entirely the vectarsandq, which have dimensions
of N x 1. This dimensioning is analogous to what was rilesa in
Fig. 5. Now, each thread of the grid has its indard is responsible

two-dimensional thread blocks of 222 threads. The number 22 is for switching the termsg; andb to eithery; or g;, depending on the
chosen because 2222 is the largest dimension a square block caboundary conditions.

have within the maximum number of threads per blitek can be

The remaining calculations, such as the multipiicatof

dealt by the graphics card (233 > 512) (CUDA, 2010). The size matrices by vectors and the solution of the liretem expressed

of a two-dimensional grid is calculated automaticaby the
program so as to contain as many blocks as needsctbmmodate
the N’ terms ofH andG.

Figure 5 illustrates the sizes of grids and bloftksa reduced
example. In this example, matridcdsandG will have dimensions of
N x N = 6x 6. The thread blocks were defined as containimg44
threads. From Fig. 5, it is observed that the guitl then be
calculated to contain 2 2 blocks, in a total of & 8 = 64 threads.

by Eq. (14) are performed in serial execution by @PU. There are
initiatives to implement methods for solution of nde non-
symmetric linear systems in GPGPU, but the preseslable
implementations are still immature or ill-documeht&herefore, the
present implementation characterizes a CPU-GPU lmmgntary
approach.
The aforementioned algorithm was implemented itN&idiall

GeForce GTX 280 graphics card hosted by a reguMbAdual-

Even so, only 6¢< 6 = 36 out of the 64 threads will perform thecore CPU. Single precision floating-point arithroetvas used
calculations of fiand @. The darkened cells in Fig. 5 represent théhroughout the present implementation. The finalecoas applied

terms that will perform some calculation, while th&ank cells
represent the threads that were created, buniadtive.

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright
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to solve an elementary potential problem by the BEMd the
results are reported in the next section.

October-December 2011, Vol. XXXIII, No. 4 / 479



Numerical Results

The present implementation was used to solve tleemtal
problem depicted in Fig. 6. The problem refers teqaare plate
with an edge of unitary length. Each edge is diszad by N/4
equal elements. As boundary conditions, all thenelgs of the left

Labaki et al.

Beyond this point, the superiority of performané¢ehe GPU is
observed. In the final experiment, in which a peoblof 10,000
elements was considered, the GPU obtained theamatH and G in
a time 56.8 times shorter than the CPU.

The present study also compared the time consumethp the
vectorsx andb’ into the vectorsl andq (see transition between Egs.

border have zero temperatureX 0), all the elements of the right (12) and (13)) so that the solutionuffat the internal points could be
border have unit temperature £ 1), and the remaining borders aregetermined by Eq. (16). The comparison is showfigy8.

insulated ¢ = 0). This problem has a closed-form analyticalisoh

given byu(x) = x, according to the given system of coordinates (see

Fig. 6).

Figure 6. Two-dimensional square plate of unitary e dge.

Figure 7 shows the time consumed by the CPU an&id to

build the matrice$d andG of Eq. (12) with the number of elements

N ranging from 4 to 10,000. In the GPU, this time@responds to
the time spent by the specific kernel that caladahese matrices.
Notice that, in the present implementation, theals in this kernel

1

10 T T T P
——GPU
—e—CPU y
@
E
£
£ 107}
-}
[
172
Qo
8
w
10° ° o
10° 10" 10 10° 10
N elements

Figure 8. Time spent by the GPU and the CPU to dist  ribute the vectors u

and g among x and b’.

It is again observed that there is a certain nunabezlements,
upon which the use of GPU is worth. The reasohéssame: there is

determineH andG and save the results of their calculations diyect S°me memory handling required before any calculatican

into the matriceg\ andB according to the boundary conditions (se:

Section 4 and Eqgs. (12) and (13)). Therefore, the tspent on
switching H and G into A and B is also included in these
measurements. In the CPU, this time correspondsetdime spent
by the specific function, written in serial C codleat determinesi
andG and switch their columns in#d andB.
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Figure 7. Time spent by the GPU and the CPU to calc ulate H and G and

store the results directly in A and B.

At the beginning of the graphic, it can be obsenved there is a

gFommence. Because the calculation of the distohubf vectors and

transposition of columns of matrices is much simplean the
calculation of the matrice$d and G, this problem has smaller
arithmetic intensity than the prior. For this reasthe use of GPU is
advantageous only from a larger number of elem@atsN > 3800
elements) than in that previous investigation ffor 10 elements).

The performance of GPU versus CPU in the calculatd
internal points was also investigated. A mesh ofetially-spaced
internal points was spread inside the domain ofstrae problem of
Fig. 6. Figure 9 shows the distribution of the ing points when M =
9 internal points and N = 16 boundary elements.

yA

Figure 9. Distribution of internal points inside th e domain of the square plate.

Figure 10 reports the time spent by the GPU andQR¥& to
calculate the matriceS and D from Eqg. (16) as the number of

number of elements under which the use of CPU isremojnternal points increase. The number of internahso(M) varies

advantageous than the GPU. The reason to thaaisithorder to
execute the kernel that calculates H and G on tR&),Ga few
allocations and copies of memory are needed, wilsich not
necessary in the CPU. This allocation time is natbleort and
depends little on the number of elements N, soirtbesase of N
causes it to dissolve in the total execution tirhthe kernel.
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along with the number of boundary elements (N) etiog to the
rule N = M/2. It is observed a superiority of th®\& in numerical
efficiency in this calculation. In the final expernt, in which M =
14,400 internal points and N = 7,200 boundary elgmavere
considered, the GPU obtained the matri8endD in a time 15.16
times shorter than the CPU.
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Figure 10. Time spent by the GPU and the CPU to cal culate S and D.

The calculation times reported in Fig. 10 are thesonecessary
to determine the values at internal points, atterwhole boundary
value problem has been solved, that is, the salutibthe linear
system (15) and the mapping of vectarandb’ to u andq have
been completed.

Finally, a complete problem was solved. The timenspn the
solution is shown in Fig. 11 for varying numberebéments N. The
experiment was carried out for values of N betwdeand 6,160
elements. These times include the time to deterrtieeinfluence
matricesH andG, to exchange their columns infoandB and to
map the vectorsi andq into x andb’ according to the boundary
conditions, and to determine the matriSesndD of internal points.
The number of internal points (M) varies along witle number of
boundary elements (N) according to the rule N =.M/2
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Figure 11. Times of execution to solve a complete p  roblem.

Some parts of the GPU-CPU complementary code
executed in the CPU, such as the solution of thal fsystem of
equations (see Eq. (14)) and the matrix-vector iplidations

In previous results, some memory operations wergo al
involved. However, those memory operations refermdy to
memory passing between different GPU memories, Iindie data
transfer from the GPU’s global memory to the SMsiared

memory. No memory operation between CPU and GPU was

involved. Because now all the memory operationsiired by the
complete program are taken into account, it is oiesk that the
solution of a complete BEM problem has reducedhargtic
intensity when compared, for example, to the cakboh of H and
G alone. For this reason, the use of GPU is morardgeous from
a larger number of elements (for N > 27 elemeritahtwhat was
observed in Fig. 7 (for N > 10 elements).

Even so, an overall superior performance of the @REer the
CPU is observed. In the final experiment, in whidh= 6,160
elements and M 12,321 internal points were camsid the
graphics hardware solved the problem — both thatisal at the
boundary and at the internal points — in a tim&/35imes shorter
than the CPU.

The RAM (global) memory of 1 GB available in theepent
graphics card (NVidida GeForce GTX 280) poses a limit to the
number of elements that can be used. The majorpacmy of
memory is given by the two square matri¢ésandG of N x N
terms, and by the two rectangular matribeandS of M x N terms.
Every term of these four matrices contains one tifigapoint
variable of 8 bytes. Part of the memory allocatednplicitly and
dynamically freed, so it is not possible to deterena priori what the
limits of N and M are, but the program warns, ire@xtion time,
when the limit of memory has been reached. For phesent
implementation, the limits are N = 6,160 elememtd M = 12,321
internal points, if the rule N = M/2 is to be foled. It is important
to notice, however, that the model GeForce GTX 88@et thought
to perform graphics calculations, for which the roeynof 1 GB is
enough for most situations. There are other arcthites such as
NVidia's Tesla, which are specially designed fornygraphics
calculations (CUDA, 2010). These special GPUs gssap to 4 GB
of RAM memory. Furthermore, a different saving-meynapproach
could be thought for the present implementatiom, iirger number
of elements were necessary.

Concluding Remarks

This paper has described the implementation ofBbendary
Element Method for two-dimensional potential probée on
graphics processing devices. The classical semglementation
was rewritten under the SIMT parallel programmigaaligm.

The paper reports the performances of GPU and GPtkaling
with three important steps of BEM: a) the calcolatof the influence
matrices used for the solution of the boundary eslub) the
calculation of influence coefficients to determthe values at internal
%ints, and c) the rearrangement of vectors aaugtdi the prescribed

undary conditions. It was observed that the plorh which the
GPU outperforms the CPU is function of the aritimeitensity of
each problem. In all the cases, however, the graphmirdware has

necessary to obtaib = Bb' (see Egs. (13) and (14)) and later toghqgwn to be more numerically efficient than the GRith increasing

obtainuP according to Eq. (16). Because these times arsdhee
in the GPU-CPU code as in the pure CPU code, theynat
included in the results shown in Fig. 11. Howevkese results do
include the time spent by the pair CPU-GPU with oamication
of data. They include the time spent to transferrkcessary data
of the problem from the CPU’s RAM to the GPU’s ghblmemory
prior to the calculations, such as the vectors aoirig the
coordinates of the nodes of the mesh and the boyrudeaditions.
They also include the time spent to transfer baekresults of the
calculations from the GPU’s memory.
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number of elements and internal points. For thgelstr number of
boundary elements the GPU implementations weretaldatperform
the CPU ones by more than one order of magnitude.

The present implementation shows that graphicsscagpresent
a promising strategy to accelerate the numericidieficy of the
Boundary Element Method.
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