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Comparison Among Structured First
Order Algorithms in the Solution of
the Euler Equations in Two-
Dimensions

The present work studies upwind schemes appliethecsolution of aeronautical and
aerospace problems. The Harten, the Frink, Parikt Rirzadeh, the Liou and Steffen and
the Radespiel and Kroll algorithms, all first ordaccurate in space, are studied. The
Euler equations in conservative form, employingiratéd volume formulation and a
structured spatial discretization, in the two-dirsEmal space, are solved. A time splitting
method and a Runge-Kutta method of five stagessed to perform the time march of the
numerical schemes. The steady state physical prablef the supersonic flow along a
ramp and around a blunt body configuration are &dd All algorithms are accelerated to
the steady state solution using a spatially vagabtine step. This technique has proved
excellent gains in terms of convergence ratio gsoreed in Maciel. The results have
demonstrated that the Liou and Steffen schemeresemted the most critical solutions, in
both example-cases, in relation to the others selseand a more accurate solution, in
terms of the determination of the stagnation presso the blunt body case, than the
Harten and the Radespiel and Kroll schemes. Inrttmep problem, the Harten scheme
predicts the best pressure distribution along tamp wall in comparison with theoretical
results. In the blunt body problem, the Liou anefféh scheme presents the highest value

of Cp at the configuration nose in relation to thther schemes. Values gfand ¢ have
been accurately predicted by all schemes, excetitbidarten scheme.

Keywords. Harten scheme, Frink, Parikh and Pirzadeh scheni@,) and Steffen scheme,
Radespiel and Kroll scheme, Euler equations

Introduction

Conventional non-upwind algorithms have been
extensively to solve a wide variety of problems {{Ky 1975, and
Steger, 1978). Conventional algorithms are somewheatliable in
the sense that for every different problem (and etones, every
different case in the same class of problems)icdifdissipation
terms must be specially tuned and judicially chostr
convergence. Also, complex problems with shocks atekep
compression and expansion gradients may defy solafiogether.

Upwind schemes are in general more robust but lage raore
involved in their derivation and application. Soomvind schemes
that have been applied to the Euler equations Roe (1981),
Harten (1983), Frink, Parikh and Pirzadeh (19919uland Steffen
(1993) and Radespiel and Kroll (1995). Some comsahbut these
methods are reported below:

Roe (1981) presented a work that emphasized thatrae
numerical schemes to the solution of the hyperbaotinservation
equations were based on exploring the informatibtaioed in the
solution of a sequence of Riemann problems. It weaiied that in
the existent schemes the major part of this infdiona was
degraded and that only certain solution aspectge welved. It was
demonstrated that the information could be preserbg the
construction of a matrix with a certain “U propértyAfter the
construction of this matrix, its eigenvalues cobkl considered as
wave velocities of the Riemann problem and thelUd projections
over the matrix's eigenvectors are the jumps whichur between
intermediate stages.

Harten (1983) developed a class of new finite diifiee
schemes, explicit and with second order of spad@iuracy to
calculation of weak solutions of the hyperbolic servation laws.
These schemes highly non-linear were obtained byafiplication
of a first order non-oscillatory scheme to an appaied modified
flux function. The so derived second order schem@shed high
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resolution, while preserved the robustness propeftthe original
non-oscillatory scheme.
Frink, Parikh and Pirzadeh (1991) proposed a nemerse,

usednstructured and upwind, to the solution of theeEwdquations.

They tested the precision and the utility of theheme in the
analysis of the inviscid flows around two airplacenfigurations:
one of transport configuration, with turbines untlee wings, and
the other of high speed civil configuration. Testre accomplished
at subsonic and transonic Mach numbers with thespart airplane
and at transonic and low supersonic Mach numbetts thie civil
airplane.

Liou and Steffen (1993) proposed a new flux vedplitting
scheme. They declared that their scheme was simpt its
accuracy was equivalent and, in some cases, ltb@er the Roe
(1981) scheme accuracy in the solutions of therkarid the Navier-
Stokes equations. The scheme was robust and ceuveajutions
were obtained so fast as the Roe (1981) scheme. alitigors
proposed the approximated definition of an adveckitach number
at the cell face, using its neighbor cell valuea wssociated
characteristic velocities. This interface Mach nemivas so used to
determine the upwind extrapolation of the convectjuantities.

Radespiel and Kroll (1995) emphasized that the Land
Steffen (1993) scheme had its merits of low contpral
complexity and low numerical diffusion as compared other
methods. They also mentioned that the original oethad several
deficiencies. The method yielded local pressurdllagons in the
shock wave proximities, adverse mesh and flow afigmt
problems. In the Radespiel and Kroll (1995) workhydorid flux
vector splitting scheme, which alternated betwelea ftiou and
Steffen (1993) scheme and the van Leer (1982) sehienthe shock
wave regions, is proposed, assuring that resolutbrstrength
shocks was clear and sharply defined.

In this work, the Harten (1983), the Frink, Pardid Pirzadeh
(1991), the Liou and Steffen (1993) and the Radtsmid Kroll
(1995) schemes are implemented, on a finite volgowext and
using an upwind and structured spatial discretiratio solve the
Euler equations in the two-dimensional space. Thysipal
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problems of the supersonic flow along a ramp amirad a blunt
body configuration are studied. The implementedesws are first
order accurate in space. A spatially variable tstep is used to
accelerate the algorithms to the steady stateisnluthis technique
has proved excellent gains in terms of convergeatie as reported
in Maciel (2005). The results have demonstrated ttha Liou and
Steffen (1993) scheme has yielded the most reakstiutions than
the others schemes. More studies, with other exairgdes, are
predicted by the author, as future works, aimingetter highlight
the algorithm characteristics.

Nomenclature

Latin Symbols

a =speed of sound in fluid, m/s

CFL = “Courant-Friedrichs-Lewy” number

e =total energy of fluid per unity volume, Jim

E., Fe =inviscid flux vectors (or Euler flux vectors) inand y

direction, respectively

= local enthalpy, J/Kg

static pressure of fluid, Nfm

vector of conserved variables

S =surface area, m

u, v=x and y components of the velocity vector g, m/s

V = volume of a given computational cell’ m

X,y= x and y spatial positions in the Cartesian coig
system, respectively, m

Greek Symbols

a = attack angle, degrees, or projection vectors

4t =time step, s

y =ratio of specific heats, adopted 1.4 to aphesic mean
¢ = entropy function

p = fluid density, kg/m

Subscripts

e Euler
i,j computational indexes

QT T

Euler Equations

The fluid movement is described by the Euler equti which
express the conservation of mass, of linear momenamd of
energy to an inviscid, heat non-conductor and cesgible mean, in
the absence of external forces. In the conservaive integral
forms, these equations can be represented by:

9/0tf, QdV + Js|(Ee)ny + (Fe)ny Jds =0, 1)
with Q written to a Cartesian system,s the cell volumen, andn,
are the components of the normal unity vector #fthx face,Sis

the flux area and, andF, are the components of the convective

flux vector. The vector®, E. andF.are represented by:

p o o
2
o pu?+p puv
Q= , Ee= and Fe= ; )
[ ] v ¢t +p
e (e+ plu (e+ p)v
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of the fluid mean.

The Euler equations are nondimensionalized in ioglato the
freestream densityp., and in relation to the freestream speed of
sound,a,, to the studied problems. The matrix system ofEoter
equations is closed with the state equation of &epe gas

p:(y—l)le—O.Sp(u2+v2)I, assuming the ideal gas hypothesis
and yis the ratio of specific heats. The total enthadkpgetermined
by H=(e+p)/p.

Harten (1983) Algorithm

The Harten (1983) algorithm, first order accuratespace, is
specific by the determination of the numerical fleector at(i+%2,))
interface. Its extension to th@gj+Y2) interface is straightforward,
without additional complications.

The right and left cell volumes, as well the inded volume,
necessary to coordinate change, following a finitelume
formulation, which is equivalent to a generalizegstem, are
defined by:

VR =Visyj, VL =V;j and Viy = 05(g +V, ), ©)
where ‘R’ and “L” represent right and left, respectively. The cell
volume is defined by:

+

\/|,J :Oq()q] _)Q+1,J)y|+1_1+1+()g+1.1 _X+LJ+1)y|.J +()(l+]_]+1_)§.])>/|+1,]
0-#(&,1 _)§+Lj+1))’i,j+1+()§+Lj+1_)§,j+1)yi,j +()§,j+1_>ﬁ,j)yi+1,j+1

(4)

The area components at interface are definedSy;y, = s'XS

and Sy =s'yS, where s'X and s'y are defined ass; =s,/S
. 05

and sy = sy/S, being S= (sf +s§) . Expressions t@, ands,

which represent th&, and S, components always adopted in the
positive orientation, are given in Tab. 1.

Table 1. Normalized values of s, and sy.

Surface S S

i,j-1/2 - (yi+1j - yi,j) (Xi+lj - Xi,j)
i+1/2,] Viet, j+1  Yis, i) (Xi+1j _Xi+li+l)
ij+1/2 (Yi,j+1 - Yi+1j+l) (xi+lj+l - Xiyi+l)
i-1/2,j (yi,j+1-yi,j) ‘(Xi,j+1‘xi,j)

The calculated properties at the flux interfaceabtined either
by arithmetical average or by Roe (1981) averagehis work, the
arithmetical average was used. The speed of southe &nterface is

determined byaj,; :\/ (y—l)[H int 0.5(uif1t +viﬁt )] , whereH;n, Uint

andv,, are the flux interface properties.

The jumps of the conserved variable, necessary e t
construction of the Harten (1983) dissipation fiomtt are detailed
in Maciel (2006). Thex vectors to thegi+%2,j) interface are also

being p the fluid densityu andv the Cartesian components of thefqund in Maciel (2006). The Harten (1983) dissipatfunction is

velocity vector in thex andy directions, respectivelye the total

energy per unit volume of the fluid mean; gnig the static pressure
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1 1 0 1
R _ Uint ~M@ynt Uint _hy Uint +Py@ynt ®)
izl Vint ~ yaint Vint hy Vint +hy@nt ’
Hint ~h, xUint&int ~ yVintaint 0. ui%t +Vi%t) thint_hinnt Hint+hxuintaint+hyvintaint
where h'x and h'y are metric terms also defined in Maciel (2006). 1 r 0
The entropy condition, determined by th¢ function, is - Ve u 4 M-nU
implemented according to Harten (1983): |AF1| =|0] [40‘~—2j v +
a‘) 52 .52 N-nyAJ
|Z(|, if |ZI|2 Jf 2 _UA.H'VA/—UAU
= 2, 52 = =7 - _
= + andy, =4t =2,; (6
W) =405\Z¢ + J5 - it |z <5 | 1=Z; (6) 1
~ ~ + Da. u+na
and |AF3'4| =|U ta|(%} oz (12)
with “I” varying from 1 to 4 (two-dimensional space) awd 2a -
assuming values between 0.1 and 0.5, being 0.2ett@mmended | h+Ua

value by Harten (1983).
The Harten (1983) dissipation function is considcby the
following matrix-vector product:

{DHarten}i+1/2,j :[R]i+1/2,j{_w%[. } :
b )i+1r2)

The convective numerical flux vector to tfi@s,)) interface is
described by:

()

I I (
F|(+:)L/21 ( |(nt)h + F )hy)‘/mt + 05DI(-I;rten’ 8
with:
N = 05( O+ E")) and Fl) = 0.5(F|g) + FL(')); 9)

The time integration is performed using a timettiply method,
first order accurate in time, which separates e tintegration in
two steps, each one associated with a particulatisdpdirection.
Details of this implementation are found in Mag2006).

Frink, Parikh and Pirzadeh (1991) Algorithm

In this scheme, first order accurate in spacentimaerical flux
vector is calculated using the Roe (1981) fluxatiéhce splitting
method. The flux which crosses edgchv,j) cell face is calculated
using the Roe formula:

Fovzy =Y2[F(@Q)+F@r) - |Al0r - Q)] 10)

i+1/2,]
The A matrix is determined by the evaluation Af=0F/0Q,

with the flow properties obtained by Roe (1981) rage. The
dissipation function of the Roe numerical flux \@cformula, can
be rewritten in terms of three flux components heane associated
with a distinct eigenvalue:
Depp :|AF1| +|AF3| +|AF4|, (11)

where:
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with U =un,+vn, and AU =ndu+ny 4v. The convective
numerical flux vector at th@+%5,j) interface is defined as:

20

0]
i+1/2,j ~ ( S

|nt

0] 0]
%i+1/2,j  Fint Syie1/2,j )+ 05DgppSivyizj - (13)

The time integration is performed using an expliainBe-Kutta

method of five stages, second order accurate, defimegeneral
form as:

Ql(O) = Ql(n)

k) _
Q" =Q9 -ay Ati,j/vi,j
Q|(n+1) Ql(k)

cRi?)

withk=1,....5;a1 = 1/4,a, = 1/6,a5 = 3/8,a, = 1/2 andas = 1; and
C is the discrete approximation of the flux integsdlich contains
the contributions from the flux vectors at each ifaies.

Liou nd Steffen (1993) Algorithm

The approximation of the integral Equation (1) teeatangular
finite volume yields an ordinary differential equati system with
respect to time:

Vi dQ j/dt=-Rj, (15)
with R;; representing the neat flux (residual) of conservatbn
mass, of linear momentum and of energy in ¥hevolume. The
residual is calculated as:

R “Ri_12j tRij+u2 (16)

-Rij-y2,

=Rii12)]

With Riyq/p ) = Ric+1/2,j , Wwhere “c” is related to the flow convective

contribution.

The discrete convective flux calculated by the AUSM
(“Advection Upstream Splitting Method”) scheme can be
interpreted as a sum of the Mach number weightedageeof the
left (L) and the right (R) states of tHerYz,j) cell face, between
volumes(i,j) and(i+1,j), and a dissipative scalar term, as shown in

October-December 2007, Vol. XXIX, No. 4 / 423



Liou and Steffen (1993). Hence,

J2:} 22}
1 /au /au
=M . + -
2 i+1/2j cav cav 0
AH] - [aH ] Sip
Ru12) =S40/ + , (A7)
i+1/2j P A Syp
1 || mu| | mu 0 Jiyzj
2¢?+1/2,J av o
peHy | aaH
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|Mi+1/2,j|v if |Mi+1/2,j|2l'
1 .
A2 = |Mi+1/2,j|+E(MR_1)2' if 0<Misypj <L (23)
1 .
|Mi+1/2,j|+E(ML +1P, if ~1<Mjp; <0,
|Mi+1/2,j|v if |Mi+1/2,j|>5
#3125 =] (M +52 (24)
5 i < _ —
%, if |Mi+l/2,j|55

where & is a small parameter, 0&< 0.5, andwis a constant, &

The "a” quantity represents the speed of sound, defined 35. 1 | this work, the values used & andwwere: 0.2 and 0.5,
a=4Jp/p . Mis,; defines the advective Mach number at theespectively. The time integration follows the nmthdescribed in

(i+v2,)) face of the(i,j) cell, which is calculated according to Liou Maciel (2006). This scheme is first order accunatspace.

and Steffen (1993) as:

Mt =MP + MR, (18)

Spatially Variable Time Step

The basic idea of this procedure consists in keppamstant the
CFL number in all computational domain, allowingnke, the use

where theM”™" separated Mach numbers are defined by Van Legf appropriated time steps to each specific megfomeduring the

(1982) and can also be found in Maciel (200d).andMg represent

convergence process. Details of the present impltatien can be

the Mach numbers associated with the left and rightesta found in Maciel (2002) and in Maciel (2006).

respectively. The advection Mach number is defingd b

M :i(SXquSYV)_

(19)
| a

The pressure di+%,)) face of the(i,j) cell is calculated by a

similar way:

(20)

— AP m
Pi+1/2,j =P + PR

with pP™ indicating the pressure separation defined accortting

Van Leer (1982) and also found in Maciel (2007).

The definition of thep dissipative term determines the particular

formulation of the convective fluxes. The choicedvekorresponds
to the Liou and Steffen (1993) scheme, accordinBadespiel and
Kroll (1995):

_ LS _
A+1/2,j = B+1/2,] -|Mi+1/2,j|- (21)
The time integration is performed by the time splgtimethod
detailed in Maciel (2006). This scheme is first ordecusate in
space.

Radespiel and Kroll (1995) Algorithm

The Radespiel and Kroll (1995) scheme is describetid¥gs.
(15) to (20). The next step is the determinationhefd dissipative
term. A hybrid scheme is proposed by Radespiel and Kt8b5),
which combines the Van Leer (1982) scheme and the kiod
Steffen (1993) (AUSM) scheme. Hence,

Aevzj = (- w)ﬂ\ililz,j + Mﬁlﬁ/z,j , (22)

with:
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Initial and Boundary Conditions

Initial Condition

Values of freestream flow are adopted for all préips as initial
condition, in the whole calculation domain, to tite/sical problems
studied in this work (Jameson and Mauvriplis, 198®ciel, 2002,
and Maciel, 2006).

Boundary Conditions

The boundary conditions are basically of three syjselid wall,
entrance and exit. These conditions are implementegecial cells
named ghost cells.

(a) Wall condition: This condition imposes the fleangency at
the solid wall. This condition is satisfied congidg the wall
tangent velocity component of the ghost volume @saks to the
respective velocity component of its real neightelf. At the same
way, the wall normal velocity component of the ghasll is
equaled in value, but with opposite signal, toréspective velocity
component of the real neighbor cell.

The pressure gradient normal to the wall is assuneedqual to
zero, following an inviscid formulation. The samgpbthesis is
applied to the temperature gradient normal to tladl.\Whe ghost
volume density and pressure are extrapolated fiwanréspective
values of the real neighbor volume (zero orderapdtation), with
these two conditions. The total energy is obtaitdthe state
equation of a perfect gas.

(b) Entrance condition:

(b.1) Subsonic flow: Three properties are specified one is
extrapolated, based on analysis of information agagion along
characteristic directions in the calculation dom@ifaciel, 2002).
The pressure was the extrapolated variable fronrdhéneighbor
volume, to the studied problems. Density and vgjocomponents
had their values determined by the freestream flowperties.

(b.2) Supersonic flow: All variables are fixed wiffeestream
flow values, at the entrance boundary.

ABCM
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(c) Exit condition: Figures 3 to 6 show the density field obtained g Harten

(c.1) Subsonic flow: Three properties are extragoland one is (1983), the Frink, Parikh and Pirzadeh (1991),ltloel and Steffen
specified, based on analysis of information profiagaalong (1993) and the Radespiel and Kroll (1995) schemespectively.
characteristic directions in the calculation dom@faciel, 2002). In  The density field generated by the Liou and Ste{fe9093) scheme
this case, the ghost volume’s pressure is spechigdts initial is the densest at the shock region in relationhto dthers tested
value. Density and velocity components are extiaedl schemes.

(c.2) Supersonic flow: All variables are extrapethtfrom the
interior domain.

Results

Tests were performed in a CELERON-1.2GHz and 12§tkth
of RAM memory microcomputer. Converged results ol to 4
orders of reduction of the maximum residual valliee value used
to y was 1.4. A zero attack angle was adopted for alblems
studied in this work.

Ramp Physical Problem

An algebraic mesh of 61x100 points was used to pghiblem.
This mesh is composed of 5,940 rectangular voluares 6,100
nodes on a finite volume context. The ramp configon and the
respective employed mesh are shown in Figs. 1 antt @as
adopted a freestream Mach number of 2.0 as indtaidition,
characterizing a supersonic flow.

4 030
015
00

LN ]

0.345m

L L

vln ] s 03 035 040

|l
e

7 20”

0.15m 0.12m 0.15m

Figure 1. Ramp configuration.
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Figure 5. Density field (LS/93).

o 0xs
X

Figure 2. Ramp mesh.
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Figure 8. Pressure field (FPP/91).
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Figure 9. Pressure field (LS/93).
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Figure 10. Pressure field (RK/95).

However, the region of maximum density (white regio
generated by the Radespiel and Kroll (1995) schieregtended in a
bigger region than the other schemes.

Figures 7 to 10 exhibit the pressure fields geeerdiy the
Harten (1983), the Frink, Parikh and Pirzadeh (398t Liou and
Steffen (1993) and the Radespiel and Kroll (1996hemes,
respectively. The pressure field generated by tioe land Steffen
(1993) scheme is the most severe in relation tmthers schemes.
The white region is longer in the solution genetatey the
Radespiel and Kroll (1995) scheme, indicating ttiet Radespiel
and Kroll (1995) pressure solution is critical inbagger domain
region than the pressure solutions of the othegraels.

Figures 11 to 14 show the solutions obtained by Hiagten
(1983), the Frink, Parikh and Pirzadeh (1991),lttoe: and Steffen
(1993) and the Radespiel and Kroll (1995) algorihim the Mach
number field. The Mach number field generated by Radespiel
and Kroll (1995) scheme is the most intense intieiato the other
schemes.
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Figure 11. Mach number field (H/83).
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Figure 12. Mach number field (FPP/91).
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Figure 13. Mach number field (LS/93).
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Figure 14. Mach number field (RK/95).

Figure 15 exhibits the wall pressure distributidstained by the
Harten (1983), the Frink, Parikh and Pirzadeh ()98t Liou and
Steffen (1993) and the Radespiel and Kroll (199%)emes. They
are compared with the oblique shock wave and Plrdheler
expansion wave theories. As can be observed, thtetH41983)
solution presents the best pressure distributiomelation to the
other solutions.

k3]
e
h
4
'g 12
o
[m i
= 1%
=9
15 Pirzadeh (1991)
993)
14 (1995)
12
o
10 1 1 1
0. 030 035 0.40

Figure 15. Wall pressure distributions.

Moreover, in the solutions generated by the Frip&rikh and
Pirzadeh (1991) and the Radespiel and Kroll (1%@Bemes, there
is a small pressure peak in the shock region whatmstitutes an
error. The shock detected by the Liou and Steffe398) scheme
presents a pressure peak which is 5.6% bigger tthamaximum
pressure value obtained by the Harten (1983) sch@mehe other
hand, the Harten (1983) pressure solution is wefindd in the
constant pressure region, without any peak. Thamsipn fan is
well characterized in all solutions, except in tieu and Steffen
(1993) solution, where it seems an expansion shigto its more
linear behavior at the ramp end.

It is possible to conclude to this example that theu and
Steffen (1993) scheme has presented the mostatisidutions than
the others schemes, although the pressure distiibationg the
ramp obtained by the Harten (1983) solution isttést one.
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Blunt Body Physical Problem

An algebraic mesh of 103x100 points was used, whgh
composed of 10,098 rectangular cells and 10,30@s)azh a finite
volume context. The far field was positioned at02imes the blunt
body’s nose curvature ratio. Figures 16 and 17 sth@blunt body
configuration and the employed mesh. The initialdibon adopted
a freestream Mach number equals to 5.0; however-timk, Parikh
and Pirzadeh (1991) scheme only simulated this lpnotwith a
freestream Mach number equals to 2.0. Both initi@hditions
characterize supersonic flows.

M~
1=5.0m

Figure 16. Blunt body configuration.

(1]

41

a1

-2

-410

1] 410

X

EX1] K] -4 [ 1]

Figure 17. Blunt body mesh.

Figures 18 to 21 exhibit the density field obtaitgathe Harten
(1983), the Frink, Parikh and Pirzadeh (1991),ltieer and Steffen
(1993) and the Radespiel and Kroll (1995) schemespectively.
The density field generated by the Liou and Ste{fe993) scheme
is the densest in relation to the other schemes. dénsity field
generated by the Frink, Parikh and Pirzadeh (1%$@hgme is the
lowest one in relation to the solutions of the othehemes because
it simulates a less critical initial condition.

0

-4.0

-0 X1}
x

Figure 18. Density field (H/83).
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Figure 19. Density field (FPP/91).
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Figure 20. Density field (LS/93)
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Figure 21. Density field (RK/93).

Figures 22 to 25 show the pressure fields generbtedhe
Harten (1983), the Frink, Parikh and Pirzadeh (398t Liou and
Steffen (1993) and the Radespiel and Kroll (1996hemes,
respectively. The pressure field generated by tioe land Steffen
(1993) scheme is again the most strength in relaitothe others
schemes. It is interesting to note that the Liod &teffen (1993)
scheme simulated a pressure peak approximately 4348 severe
than the pressure peak simulated by the FrinkkPand Pirzadeh
(1991) scheme. So, the Liou and Steffen (1993)rmehean support
a critical pressure peak 434% more severe tharFtimk, Parikh
and Pirzadeh (1991) scheme can support.
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Figure 22. Pressure field (H/83).
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Figure 23. Pressure field (FPP/91).
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Figure 24. Pressure field (LS/93).
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Figure 25. Pressure field (RK/95).

26 to 29 exhibit the Mach number fieldsegated by

the Harten (1983), the Frink, Parikh and Pirzaded9{), the Liou

and Steffen

(1993) and the Radespiel and Kroll $)38gorithms,

respectively. The Mach number field generated leyHharten (1983)

and by the

Liou and Steffen (1993) schemes are fintease than

those generated by the Frink, Parikh and Pirzad®81) and the
Radespiel and Kroll (1995) schemes.
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Figure 26. Mach number field (H/83).
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Figure 27. Mach number field (FPP/91).
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Figure 28. Mach number field (LS/93).
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Figure 29. Mach number field (RK/95).

Figure 30 presents the -Cp distributions generagetthe Harten
(1983), the Frink, Parikh and Pirzadeh (1991),ltioes and Steffen
(1993) and the Radespiel and Kroll (1995) scherfils. Liou and
Steffen (1993) solution presents the biggest valtie€Cp at the
configuration nose in relation to the solutiongiué other schemes.
It is possible to note that the Liou and Steffet993) solution
detects a Cp peak of 1.58, while the Cp peakimbdaby the
Harten (1983) solution, the lowest value of Cpedaials to 1.52,
which represents a difference of about 4.0% inticiato Harten
(1983) solution.

The aerodynamic coefficients of lift and drag t&s throblem for
each scheme are shown in Tab. 2. The zero valdebiid in this
table are accurate until fourteen digits afteragbmma. It is possible
to conclude that to this symmetrical blunt bodyfiairation and to
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Figure 30. -Cp distributions.
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Another possibility to quantitative comparison loé tschemes is
the determination of the stagnation pressure ahe&dthe
configuration. Anderson (1984) presents a tablexafnal shock
wave properties in its B Appendix. This table pesmihe
determination of some shock wave properties astifummf the
freestream Mach number. In front of the blunt badyfiguration
studied in this work, the shock wave presents amabrshock
behavior, which permits the determination of thegsation
pressure, behind the shock wave, from the tableswrered in
Anderson (1984). So it is possible to determinergi® pry/ pr.,

from Anderson (1984), whemr, is the stagnation pressure in front
of the configuration angr,, is the freestream pressure (equals Yo 1/
to the present nondimensionalization).

Hence, to this problen,, = 5.0 corresponds try/ pr,, =
32.65 and remembering that,, = 0.714, it is possible to conclude
that pro = 23.31. Table 3 presents the stagnation presshteened

by each scheme and the respective percentage.eftmd.iou and
Steffen (1993) scheme presents the best solution.

Table 3. Stagnation pressure and percentage errors.

Algorithm pro Error (%)

Harten (1983) 18.56 25.6

Liou and Steffen (1993) 19.29 20.8
Radespiel and Kroll (1995) 18.83 23.8

It is possible to conclude that the Liou and Stef{fd993)
scheme, a flux vector splitting scheme, presengsmtiost critical
solutions, in both example-cases, in relation ® dther schemes
and a more accurate solution, in terms of the detetion of the
stagnation pressure in the blunt body case, tharHtrten (1983)
and the Radespiel and Kroll (1995) schemes.

a zero attack angle, the value pfeqjuals to zero correspond to the

expected solution. Hence, this coefficient was waltulated by all
schemes, except the Harten (1983) scheme.

Table 2. Aerodynamic coefficients of lift and drag.

Algorithm a Co
Harten (1983) -1.054x10 -8.982x10°
Frink, Parikh and Pirzadeh (1991 0.0 0.0
Liou and Steffen (1993) 0.0 0.0
Radespiel and Kroll (1995) 0.0 0.0
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Numerical Data of the Simulations and Computational Costs

Table 4 exhibits the numerical data of the simatadiwith the
respective computational cost of the algorithmse Wiost expensive
scheme is the Frink, Parikh and Pirzadeh (1991) beiag 4,641%
more expensive than the Liou and Steffen (1993)emseh the
cheapest.
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Table 4. Numerical data of the simulations and computational costs.

Ramp Blunt Body
Algorithm CFL Iterations| CFL| lterationg CH3t
Harten (1983) 0.9 996 0.9 757 0.00003p1
Frink, Parikh and Pirzadeh (1991]) 1.4 548 1[2 1®041 0.0001612
Liou and Steffen (1993) 0.9 1,021 0. 1,169 0.08640p
Radespiel and Kroll (1995) 0.9 996 0.9 1,044 0.26380

(1): Measured in seconds/per cell/per iteration.

(2): The scheme simulated this problem with lesgeinitial conditions.

Conclusions
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