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Comparison Among Structured First 
Order Algorithms in the Solution of 
the Euler Equations in Two-
Dimensions 
The present work studies upwind schemes applied to the solution of aeronautical and 
aerospace problems. The Harten, the Frink, Parikh and Pirzadeh, the Liou and Steffen and 
the Radespiel and Kroll algorithms, all first order accurate in space, are studied. The 
Euler equations in conservative form, employing a finite volume formulation and a 
structured spatial discretization, in the two-dimensional space, are solved. A time splitting 
method and a Runge-Kutta method of five stages are used to perform the time march of the 
numerical schemes. The steady state physical problems of the supersonic flow along a 
ramp and around a blunt body configuration are studied. All algorithms are accelerated to 
the steady state solution using a spatially variable time step. This technique has proved 
excellent gains in terms of convergence ratio as reported in Maciel. The results have 
demonstrated that the Liou and Steffen scheme has presented the most critical solutions, in 
both example-cases, in relation to the others schemes and a more accurate solution, in 
terms of the determination of the stagnation pressure in the blunt body case, than the 
Harten and the Radespiel and Kroll schemes. In the ramp problem, the Harten scheme 
predicts the best pressure distribution along the ramp wall in comparison with theoretical 
results. In the blunt body problem, the Liou and Steffen scheme presents the highest value 
of Cp at the configuration nose in relation to the other schemes. Values of cL and cD have 
been accurately predicted by all schemes, except by the Harten scheme. 
Keywords: Harten scheme, Frink, Parikh and Pirzadeh scheme, Liou and Steffen scheme, 
Radespiel and Kroll scheme, Euler equations 
 
 
 

Introduction 
1Conventional non-upwind algorithms have been used 

extensively to solve a wide variety of problems (Kutler, 1975, and 
Steger, 1978). Conventional algorithms are somewhat unreliable in 
the sense that for every different problem (and sometimes, every 
different case in the same class of problems) artificial dissipation 
terms must be specially tuned and judicially chosen for 
convergence. Also, complex problems with shocks and steep 
compression and expansion gradients may defy solution altogether. 

Upwind schemes are in general more robust but are also more 
involved in their derivation and application. Some upwind schemes 
that have been applied to the Euler equations are: Roe (1981), 
Harten (1983), Frink, Parikh and Pirzadeh (1991), Liou and Steffen 
(1993) and Radespiel and Kroll (1995). Some comments about these 
methods are reported below: 

Roe (1981) presented a work that emphasized that several 
numerical schemes to the solution of the hyperbolic conservation 
equations were based on exploring the information obtained in the 
solution of a sequence of Riemann problems. It was verified that in 
the existent schemes the major part of this information was 
degraded and that only certain solution aspects were solved. It was 
demonstrated that the information could be preserved by the 
construction of a matrix with a certain “U property”. After the 
construction of this matrix, its eigenvalues could be considered as 
wave velocities of the Riemann problem and the UL-UR projections 
over the matrix’s eigenvectors are the jumps which occur between 
intermediate stages. 

Harten (1983) developed a class of new finite difference 
schemes, explicit and with second order of spatial accuracy to 
calculation of weak solutions of the hyperbolic conservation laws. 
These schemes highly non-linear were obtained by the application 
of a first order non-oscillatory scheme to an appropriated modified 
flux function. The so derived second order schemes reached high 
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resolution, while preserved the robustness property of the original 
non-oscillatory scheme. 

Frink, Parikh and Pirzadeh (1991) proposed a new scheme, 
unstructured and upwind, to the solution of the Euler equations. 
They tested the precision and the utility of this scheme in the 
analysis of the inviscid flows around two airplane configurations: 
one of transport configuration, with turbines under the wings, and 
the other of high speed civil configuration. Tests were accomplished 
at subsonic and transonic Mach numbers with the transport airplane 
and at transonic and low supersonic Mach numbers with the civil 
airplane. 

Liou and Steffen (1993) proposed a new flux vector splitting 
scheme. They declared that their scheme was simple and its 
accuracy was equivalent and, in some cases, better than the Roe 
(1981) scheme accuracy in the solutions of the Euler and the Navier-
Stokes equations. The scheme was robust and converged solutions 
were obtained so fast as the Roe (1981) scheme. The authors 
proposed the approximated definition of an advection Mach number 
at the cell face, using its neighbor cell values via associated 
characteristic velocities. This interface Mach number was so used to 
determine the upwind extrapolation of the convective quantities. 

Radespiel and Kroll (1995) emphasized that the Liou and 
Steffen (1993) scheme had its merits of low computational 
complexity and low numerical diffusion as compared to other 
methods. They also mentioned that the original method had several 
deficiencies. The method yielded local pressure oscillations in the 
shock wave proximities, adverse mesh and flow alignment 
problems. In the Radespiel and Kroll (1995) work, a hybrid flux 
vector splitting scheme, which alternated between the Liou and 
Steffen (1993) scheme and the van Leer (1982) scheme, in the shock 
wave regions, is proposed, assuring that resolution of strength 
shocks was clear and sharply defined. 

In this work, the Harten (1983), the Frink, Parikh and Pirzadeh 
(1991), the Liou and Steffen (1993) and the Radespiel and Kroll 
(1995) schemes are implemented, on a finite volume context and 
using an upwind and structured spatial discretization, to solve the 
Euler equations in the two-dimensional space. The physical 
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problems of the supersonic flow along a ramp and around a blunt 
body configuration are studied. The implemented schemes are first 
order accurate in space. A spatially variable time step is used to 
accelerate the algorithms to the steady state solution. This technique 
has proved excellent gains in terms of convergence ratio as reported 
in Maciel (2005). The results have demonstrated that the Liou and 
Steffen (1993) scheme has yielded the most realistic solutions than 
the others schemes. More studies, with other example-cases, are 
predicted by the author, as future works, aiming to better highlight 
the algorithm characteristics. 

Nomenclature 

Latin Symbols 

a = speed of sound in fluid, m/s 
CFL = “Courant-Friedrichs-Lewy” number 
e = total energy of fluid per unity volume, J/m3 

eE , eF  = inviscid flux vectors (or Euler flux vectors) in x and y 

direction, respectively 
H = local enthalpy, J/Kg 
p = static pressure of fluid, N/m2 
Q = vector of conserved variables 
S = surface area, m2 
u, v = x and y components of the velocity vector q, m/s 
V = volume of a given computational cell, m3 
x, y = x and y spatial positions in the Cartesian coordinate 

system, respectively, m 

Greek Symbols 

αααα = attack angle, degrees, or projection vectors 
∆∆∆∆t = time step, s 
γγγγ = ratio of specific heats,  adopted  1.4  to atmospheric mean 
ψψψψ = entropy function 
ρρρρ = fluid density, kg/m3 

Subscripts 

e Euler 
i, j computational indexes 

Euler Equations 

The fluid movement is described by the Euler equations, which 
express the conservation of mass, of linear momentum and of 
energy to an inviscid, heat non-conductor and compressible mean, in 
the absence of external forces. In the conservative and integral 
forms, these equations can be represented by: 

 
( ) ( )[ ] 0=∫ ++∫∂∂ S yexeV dSnFnEQdVt , (1) 

 
with Q written to a Cartesian system, V is the cell volume, nx and ny 
are the components of the normal unity vector to the flux face, S is 
the flux area and Ee and Fe are the components of the convective 
flux vector. The vectors Q, Ee and Fe are represented by: 
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being ρ the fluid density; u and v the Cartesian components of the 
velocity vector in the x and y directions, respectively; e the total 
energy per unit volume of the fluid mean; and p is the static pressure 

of the fluid mean. 
The Euler equations are nondimensionalized in relation to the 

freestream density, ρ∞, and in relation to the freestream speed of 
sound, a∞, to the studied problems. The matrix system of the Euler 
equations is closed with the state equation of a perfect gas 

[ ])(5.0)1( 22 vuep +−−= ργ , assuming the ideal gas hypothesis 

and γ is the ratio of specific heats. The total enthalpy is determined 
by ( ) ρpeH += . 

Harten (1983) Algorithm 

The Harten (1983) algorithm, first order accurate in space, is 
specific by the determination of the numerical flux vector at (i+½,j)  
interface. Its extension to the (i,j+½)  interface is straightforward, 
without additional complications. 

The right and left cell volumes, as well the interface volume, 
necessary to coordinate change, following a finite volume 
formulation, which is equivalent to a generalized system, are 
defined by: 

 

jiR VV ,1+= ,  jiL VV ,=   and  ( )LR VVV += 5.0int , (3) 

 
where “R” and “L” represent right and left, respectively. The cell 
volume is defined by: 
 

( ) ( ) ( ) +−+−+−= +++++++++ j,ij,ij,ij,ij,ij,ij,ij,ij,ij,i yxxyxxyxx.V 11111111150  

( ) ( ) ( ) 11111111150 +++++++++ −+−+− j,ij,ij,ij,ij,ij,ij,ij,ij,i yxxyxxyxx. . 

(4) 
 

The area components at interface are defined by: SsS xx
'

int_ =  

and SsS yy
'

int_ = , where '
xs  and '

ys  are defined as: Sss xx ='  

and Sss yy =' , being ( ) 5.022
yx ssS += . Expressions to sx and sy, 

which represent the Sx and Sy components always adopted in the 
positive orientation, are given in Tab. 1. 

 

Table 1. Normalized values of sx and sy. 

Surface sx sy 

i,j-1/2 ( )jiji yy ,,1 −− +  ( )jiji xx ,,1 −+  

i+1/2,j ( )jiji yy ,11,1 +++ −  ( )1,1,1 +++ − jiji xx  

i,j+1/2 ( )1,11, +++ − jiji yy  ( )1,1,1 +++ − jiji xx  

i-1/2,j ( )jiji yy ,1, −+  ( )jiji xx ,1, −− +  

 
 
The calculated properties at the flux interface are obtained either 

by arithmetical average or by Roe (1981) average. In this work, the 
arithmetical average was used. The speed of sound at the interface is 

determined by ( ) ( )[ ]2
int

2
intintint 5.01 vuHa +−−= γ , where Hint, uint 

and vint are the flux interface properties.  
The jumps of the conserved variable, necessary to the 

construction of the Harten (1983) dissipation function, are detailed 
in Maciel (2006). The α vectors to the (i+½,j)  interface are also 
found in Maciel (2006). The Harten (1983) dissipation function is 
constructed using the matrix: 
 

 



Comparison Among Structured First Order Algorithms in the … 

J. of the Braz. Soc. of Mech. Sci. & Eng.      Copyright  2007 by ABCM      October-December 2007, Vol. XXIX, No. 4 / 423 

 
 

( ) 



















++−+−−

+−
+−−

=+

intint
'

intint
'

intint
'

int
'2

int
2
intintint

'
intint

'
int

int
'

int
'

intint
'

int

int
'

int
'

intint
'

int
,2/1

5.0

1011

avhauhHuhvhvuavhauhH

ahvhvahv

ahuhuahu
R

yxyxyx

yxy

xyx
ji , (5) 

 

where '
xh  and '

yh  are metric terms also defined in Maciel (2006). 

The entropy condition, determined by the ψ function, is 
implemented according to Harten (1983): 
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with “ l” varying from 1 to 4 (two-dimensional space) and δf 
assuming values between 0.1 and 0.5, being 0.2 the recommended 
value by Harten (1983). 

The Harten (1983) dissipation function is constructed by the 
following matrix-vector product: 

 

{ } [ ]
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The convective numerical flux vector to the (i+½,j)  interface is 

described by: 
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with: 

 

( ))()()(
int 5.0 l

L
l

R
l EEE +=   and  ( ))()()(

int 5.0 l
L

l
R

l FFF += ; (9) 

 
The time integration is performed using a time splitting method, 

first order accurate in time, which separates the time integration in 
two steps, each one associated with a particular spatial direction. 
Details of this implementation are found in Maciel (2006). 

Frink, Parikh and Pirzadeh (1991) Algorithm 

In this scheme, first order accurate in space, the numerical flux 
vector is calculated using the Roe (1981) flux difference splitting 
method. The flux which crosses each (i+½,j)  cell face is calculated 
using the Roe formula: 
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The A
~

 matrix is determined by the evaluation of QFA ∂∂= , 

with the flow properties obtained by Roe (1981) average. The 
dissipation function of the Roe numerical flux vector formula, can 
be rewritten in terms of three flux components, each one associated 
with a distinct eigenvalue: 
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with yx nvnuU ~~~ +=  and vnunU yx ∆∆∆ += . The convective 

numerical flux vector at the (i+½,j)  interface is defined as: 
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The time integration is performed using an explicit Runge-Kutta 

method of five stages, second order accurate, defined in general 
form as: 
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with k = 1,...,5; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 1/2 and α5 = 1; and 
C is the discrete approximation of the flux integral which contains 
the contributions from the flux vectors at each interface. 

Liou nd Steffen (1993) Algorithm 

The approximation of the integral Equation (1) to a rectangular 
finite volume yields an ordinary differential equation system with 
respect to time: 

 

jijiji RdtdQV ,,, −= , (15) 

 
with Ri,j representing the neat flux (residual) of conservation of 
mass, of linear momentum and of energy in the Vi,j volume. The 
residual is calculated as: 

 

2/1,2/1,,2/1,2/1, −+−+ −+−= jijijijiji RRRRR , (16) 

 

with c
jiji RR ,2/1,2/1 ++ = , where “c” is related to the flow convective 

contribution. 
The discrete convective flux calculated by the AUSM 

(“Advection Upstream Splitting Method”) scheme can be 
interpreted as a sum of the Mach number weighted average of the 
left (L) and the right (R) states of the (i+½,j)  cell face, between 
volumes (i,j)  and (i+1,j) , and a dissipative scalar term, as shown in 
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Liou and Steffen (1993). Hence, 
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The “a” quantity represents the speed of sound, defined as 

ργpa = . Mi+½,j defines the advective Mach number at the 

(i+½,j)  face of the (i,j)  cell, which is calculated according to Liou 
and Steffen (1993) as: 

 
m
R

p
Lji MMM +=+ ,2/1 , (18) 

 
where the Mp/m separated Mach numbers are defined by Van Leer 
(1982) and can also be found in Maciel (2007). ML and MR represent 
the Mach numbers associated with the left and right states, 
respectively. The advection Mach number is defined by: 
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The pressure at (i+½,j)  face of the (i,j)  cell is calculated by a 

similar way: 
 

m
R

p
Lji ppp +=+ ,2/1 , (20) 

 
with pp/m indicating the pressure separation defined according to 
Van Leer (1982) and also found in Maciel (2007). 

The definition of the φ dissipative term determines the particular 
formulation of the convective fluxes. The choice below corresponds 
to the Liou and Steffen (1993) scheme, according to Radespiel and 
Kroll (1995): 

 

ji
LS

jiji M ,2/1,2/1,2/1 +++ == φφ .  (21) 

 
The time integration is performed by the time splitting method 

detailed in Maciel (2006). This scheme is first order accurate in 
space. 

Radespiel and Kroll (1995) Algorithm 

The Radespiel and Kroll (1995) scheme is described by the Eqs. 
(15) to (20). The next step is the determination of the φ dissipative 
term. A hybrid scheme is proposed by Radespiel and Kroll (1995), 
which combines the Van Leer (1982) scheme and the Liou and 
Steffen (1993) (AUSM) scheme. Hence, 
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where δ~  is a small parameter, 0 <δ~ ≤ 0.5, and ω is a constant, 0 ≤ 

ω ≤ 1. In this work, the values used to δ~  and ω were: 0.2 and 0.5, 
respectively. The time integration follows the method described in 
Maciel (2006). This scheme is first order accurate in space. 

Spatially Variable Time Step 

The basic idea of this procedure consists in keeping constant the 
CFL number in all computational domain, allowing, hence, the use 
of appropriated time steps to each specific mesh region during the 
convergence process. Details of the present implementation can be 
found in Maciel (2002) and in Maciel (2006). 

Initial and Boundary Conditions 

Initial Condition 

Values of freestream flow are adopted for all properties as initial 
condition, in the whole calculation domain, to the physical problems 
studied in this work (Jameson and Mavriplis, 1986, Maciel, 2002, 
and Maciel, 2006). 

Boundary Conditions 

The boundary conditions are basically of three types: solid wall, 
entrance and exit. These conditions are implemented in special cells 
named ghost cells.  

(a) Wall condition: This condition imposes the flow tangency at 
the solid wall. This condition is satisfied considering the wall 
tangent velocity component of the ghost volume as equals to the 
respective velocity component of its real neighbor cell. At the same 
way, the wall normal velocity component of the ghost cell is 
equaled in value, but with opposite signal, to the respective velocity 
component of the real neighbor cell. 

The pressure gradient normal to the wall is assumed be equal to 
zero, following an inviscid formulation. The same hypothesis is 
applied to the temperature gradient normal to the wall. The ghost 
volume density and pressure are extrapolated from the respective 
values of the real neighbor volume (zero order extrapolation), with 
these two conditions. The total energy is obtained by the state 
equation of a perfect gas. 

(b) Entrance condition: 
(b.1) Subsonic flow: Three properties are specified and one is 

extrapolated, based on analysis of information propagation along 
characteristic directions in the calculation domain (Maciel, 2002). 
The pressure was the extrapolated variable from the real neighbor 
volume, to the studied problems. Density and velocity components 
had their values determined by the freestream flow properties.  

(b.2) Supersonic flow: All variables are fixed with freestream 
flow values, at the entrance boundary. 
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(c) Exit condition: 
(c.1) Subsonic flow: Three properties are extrapolated and one is 

specified, based on analysis of information propagation along 
characteristic directions in the calculation domain (Maciel, 2002). In 
this case, the ghost volume’s pressure is specified by its initial 
value. Density and velocity components are extrapolated. 

(c.2) Supersonic flow: All variables are extrapolated from the 
interior domain. 

Results 

Tests were performed in a CELERON-1.2GHz and 128 Mbytes 
of RAM memory microcomputer. Converged results occurred to 4 
orders of reduction of the maximum residual value. The value used 
to γ was 1.4. A zero attack angle was adopted for all problems 
studied in this work. 

Ramp Physical Problem 

An algebraic mesh of 61x100 points was used to this problem. 
This mesh is composed of 5,940 rectangular volumes and 6,100 
nodes on a finite volume context. The ramp configuration and the 
respective employed mesh are shown in Figs. 1 and 2. It was 
adopted a freestream Mach number of 2.0 as initial condition, 
characterizing a supersonic flow. 

 

 
Figure 1. Ramp configuration. 

 

 
Figure 2. Ramp mesh. 

Figures 3 to 6 show the density field obtained by the Harten 
(1983), the Frink, Parikh and Pirzadeh (1991), the Liou and Steffen 
(1993) and the Radespiel and Kroll (1995) schemes, respectively. 
The density field generated by the Liou and Steffen (1993) scheme 
is the densest at the shock region in relation to the others tested 
schemes. 

 

 
Figure 3. Density field (H/83). 

 
Figure 4. Density field (FPP/91). 

 

 
Figure 5. Density field (LS/93). 
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Figure 6. Density field (RK/95). 

 

 
Figure 7. Pressure field (H/83). 

 

 
Figure 8. Pressure field (FPP/91). 

 
 
 
 
 

 
Figure 9. Pressure field (LS/93). 

 

 
Figure 10. Pressure field (RK/95). 

 
However, the region of maximum density (white region) 

generated by the Radespiel and Kroll (1995) scheme is extended in a 
bigger region than the other schemes. 

Figures 7 to 10 exhibit the pressure fields generated by the 
Harten (1983), the Frink, Parikh and Pirzadeh (1991), the Liou and 
Steffen (1993) and the Radespiel and Kroll (1995) schemes, 
respectively. The pressure field generated by the Liou and Steffen 
(1993) scheme is the most severe in relation to the others schemes. 
The white region is longer in the solution generated by the 
Radespiel and Kroll (1995) scheme, indicating that the Radespiel 
and Kroll (1995) pressure solution is critical in a bigger domain 
region than the pressure solutions of the other schemes. 

Figures 11 to 14 show the solutions obtained by the Harten 
(1983), the Frink, Parikh and Pirzadeh (1991), the Liou and Steffen 
(1993) and the Radespiel and Kroll (1995) algorithms to the Mach 
number field. The Mach number field generated by the Radespiel 
and Kroll (1995) scheme is the most intense in relation to the other 
schemes. 
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Figure 11. Mach number field (H/83). 

 
Figure 12. Mach number field (FPP/91). 

 

 
Figure 13. Mach number field (LS/93). 

 

 
Figure 14. Mach number field (RK/95). 

 
Figure 15 exhibits the wall pressure distribution obtained by the 

Harten (1983), the Frink, Parikh and Pirzadeh (1991), the Liou and 
Steffen (1993) and the Radespiel and Kroll (1995) schemes. They 
are compared with the oblique shock wave and Prandtl-Meyer 
expansion wave theories. As can be observed, the Harten (1983) 
solution presents the best pressure distribution in relation to the 
other solutions. 

 

 
Figure 15. Wall pressure distributions. 

 
Moreover, in the solutions generated by the Frink, Parikh and 

Pirzadeh (1991) and the Radespiel and Kroll (1995) schemes, there 
is a small pressure peak in the shock region which constitutes an 
error. The shock detected by the Liou and Steffen (1993) scheme 
presents a pressure peak which is 5.6% bigger than the maximum 
pressure value obtained by the Harten (1983) scheme. On the other 
hand, the Harten (1983) pressure solution is well defined in the 
constant pressure region, without any peak. The expansion fan is 
well characterized in all solutions, except in the Liou and Steffen 
(1993) solution, where it seems an expansion shock, due to its more 
linear behavior at the ramp end. 

It is possible to conclude to this example that the Liou and 
Steffen (1993) scheme has presented the most critical solutions than 
the others schemes, although the pressure distribution along the 
ramp obtained by the Harten (1983) solution is the best one. 
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Blunt Body Physical Problem 

An algebraic mesh of 103x100 points was used, which is 
composed of 10,098 rectangular cells and 10,300 nodes, on a finite 
volume context. The far field was positioned at 20.0 times the blunt 
body’s nose curvature ratio. Figures 16 and 17 show the blunt body 
configuration and the employed mesh. The initial condition adopted 
a freestream Mach number equals to 5.0; however, the Frink, Parikh 
and Pirzadeh (1991) scheme only simulated this problem with a 
freestream Mach number equals to 2.0. Both initial conditions 
characterize supersonic flows. 

 
Figure 16. Blunt body configuration. 

 
Figure 17. Blunt body mesh. 

 

Figures 18 to 21 exhibit the density field obtained by the Harten 
(1983), the Frink, Parikh and Pirzadeh (1991), the Liou and Steffen 
(1993) and the Radespiel and Kroll (1995) schemes, respectively. 
The density field generated by the Liou and Steffen (1993) scheme 
is the densest in relation to the other schemes. The density field 
generated by the Frink, Parikh and Pirzadeh (1991) scheme is the 
lowest one in relation to the solutions of the other schemes because 
it simulates a less critical initial condition. 

 
Figure 18. Density field (H/83). 

 
Figure 19. Density field (FPP/91). 

 
Figure 20. Density field (LS/93) 

 

 
Figure 21. Density field (RK/93). 

 
Figures 22 to 25 show the pressure fields generated by the 

Harten (1983), the Frink, Parikh and Pirzadeh (1991), the Liou and 
Steffen (1993) and the Radespiel and Kroll (1995) schemes, 
respectively. The pressure field generated by the Liou and Steffen 
(1993) scheme is again the most strength in relation to the others 
schemes. It is interesting to note that the Liou and Steffen (1993) 
scheme simulated a pressure peak approximately 434% more severe 
than the pressure peak simulated by the Frink, Parikh and Pirzadeh 
(1991) scheme. So, the Liou and Steffen (1993) scheme can support 
a critical pressure peak 434% more severe than the Frink, Parikh 
and Pirzadeh (1991) scheme can support. 
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Figure 22. Pressure field (H/83). 

 
Figure 23. Pressure field (FPP/91). 

 

 
Figure 24. Pressure field (LS/93). 

 

 
Figure 25. Pressure field (RK/95). 

 
Figures 26 to 29 exhibit the Mach number fields generated by 

the Harten (1983), the Frink, Parikh and Pirzadeh (1991), the Liou 
and Steffen (1993) and the Radespiel and Kroll (1995) algorithms, 
respectively. The Mach number field generated by the Harten (1983) 
and by the Liou and Steffen (1993) schemes are more intense than 
those generated by the Frink, Parikh and Pirzadeh (1991) and the 
Radespiel and Kroll (1995) schemes. 

 

 
Figure 26. Mach number field (H/83). 

 

 
Figure 27. Mach number field (FPP/91). 
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Figure 28. Mach number field (LS/93). 

 

 
Figure 29. Mach number field (RK/95). 

 
Figure 30 presents the -Cp distributions generated by the Harten 

(1983), the Frink, Parikh and Pirzadeh (1991), the Liou and Steffen 
(1993) and the Radespiel and Kroll (1995) schemes. The Liou and 
Steffen (1993) solution presents the biggest value of Cp at the 
configuration nose in relation to the solutions of the other schemes. 
It is possible to note that the Liou and Steffen  (1993)  solution  
detects  a  Cp peak of 1.58, while the Cp peak obtained by the 
Harten (1983) solution, the lowest value of Cp, is equals to 1.52, 
which represents a difference of about 4.0% in relation to Harten 
(1983) solution. 

The aerodynamic coefficients of lift and drag to this problem for 
each scheme are shown in Tab. 2. The zero values exhibited in this 
table are accurate until fourteen digits after the comma. It is possible 
to conclude that to this symmetrical blunt body configuration and to 
a zero attack angle, the value of cL equals to zero correspond to the 
expected solution. Hence, this coefficient was well calculated by all 
schemes, except the Harten (1983) scheme. 

 

Table 2. Aerodynamic coefficients of lift and drag. 

Algorithm cL cD 
Harten (1983) -1.054x10-4 -8.982x10-6 

Frink, Parikh and Pirzadeh (1991) 0.0 0.0 
Liou and Steffen (1993) 0.0 0.0 

Radespiel and Kroll (1995) 0.0 0.0 
 
 

 
Figure 30. -Cp distributions. 

 
Another possibility to quantitative comparison of the schemes is 

the determination of the stagnation pressure ahead of the 
configuration. Anderson (1984) presents a table of normal shock 
wave properties in its B Appendix. This table permits the 
determination of some shock wave properties as function of the 
freestream Mach number. In front of the blunt body configuration 
studied in this work, the shock wave presents a normal shock 
behavior, which permits the determination of the stagnation 
pressure, behind the shock wave, from the tables encountered in 
Anderson (1984). So it is possible to determine the ratio ∞prpr0  

from Anderson (1984), where pr0 is the stagnation pressure in front 
of the configuration and pr∞ is the freestream pressure (equals to 1/γ 
to the present nondimensionalization). 

Hence, to this problem, M∞ = 5.0 corresponds to ∞prpr0 = 

32.65 and remembering that pr∞  = 0.714, it is possible to conclude 
that pr0 = 23.31. Table 3 presents the stagnation pressure obtained 
by each scheme and the respective percentage errors. The Liou and 
Steffen (1993) scheme presents the best solution. 

 

Table 3. Stagnation pressure and percentage errors. 

Algorithm pr0 Error (%) 
Harten (1983) 18.56 25.6 

Liou and Steffen (1993) 19.29 20.8 
Radespiel and Kroll (1995) 18.83 23.8 

 
 
It is possible to conclude that the Liou and Steffen (1993) 

scheme, a flux vector splitting scheme, presents the most critical 
solutions, in both example-cases, in relation to the other schemes 
and a more accurate solution, in terms of the determination of the 
stagnation pressure in the blunt body case, than the Harten (1983) 
and the Radespiel and Kroll (1995) schemes. 

Numerical Data of the Simulations and Computational Costs 

Table 4 exhibits the numerical data of the simulations with the 
respective computational cost of the algorithms. The most expensive 
scheme is the Frink, Parikh and Pirzadeh (1991) one, being 4,641% 
more expensive than the Liou and Steffen (1993) scheme, the 
cheapest. 
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Table 4. Numerical data of the simulations and computational costs. 

 Ramp Blunt Body  
Algorithm CFL Iterations CFL Iterations Cost(1) 

Harten (1983) 0.9 996 0.9 757 0.0000301 
Frink, Parikh and Pirzadeh (1991) 1.6 548 1.2 1,001(2) 0.0001612 

Liou and Steffen (1993) 0.9 1,021 0.9 1,168 0.0000034 
Radespiel and Kroll (1995) 0.9 996 0.9 1,049 0.0000258 

(1): Measured in seconds/per cell/per iteration.  
(2): The scheme simulated this problem with less severe initial conditions. 

Conclusions 

The present work aimed a comparative study among the 
structured upwind schemes of Harten (1983), of Frink, Parikh and 
Pirzadeh (1991), of Liou and Steffen (1993) and of Radespiel and 
Kroll (1995), applied to aeronautical and aerospace problems. The 
schemes are first order accurate in space, being the Harten (1983) 
scheme a TVD flux difference splitting method, the Frink, Parikh 
and Pirzadeh (1991) scheme a flux difference splitting method, the 
Liou and Steffen (1993) and the Radespiel and Kroll (1995) 
schemes flux vector splitting methods. All schemes were applied to 
the solution of the physical problems of the supersonic flows along a 
ramp and around a blunt body configuration, with zero attack angle. 
All algorithms are accelerated to the steady state solution using a 
spatially variable time step. This technique has proved excellent 
gains in terms of convergence ratio as reported in Maciel (2005). 

The results have demonstrated that the Liou and Steffen (1993) 
scheme has presented the most critical solutions, in both example-
cases, in relation to the other schemes and a more accurate solution, 
in terms of the determination of the stagnation pressure in blunt 
body case, than the Harten (1983) and the Radespiel and Kroll 
(1995) schemes. The Harten (1983) scheme has presented the best 
pressure distribution along the ramp wall in relation to the other 
schemes. In the blunt body problem, the Liou and Steffen (1993) 
scheme presents the highest value of Cp at the configuration nose in 
relation to the others schemes. Values of cL and cD have been 
accurately predicted by all schemes, except by the Harten (1983) 
scheme. The Liou and Steffen (1993) scheme predicts the most 
accurate value of the stagnation pressure in front of the 
configuration in relation to the other schemes. In terms of 
computational cost, the cheapest scheme is the Liou and Steffen 
(1993) scheme, being about 4,641% less expensive than the Frink, 
Parikh and Pirzadeh (1991) scheme, the most expensive. 

More studies, with other example-cases, will be performed by 
this author aiming to better detect the characteristics of the 
algorithms presented in this work. 
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