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In the present work, the Digital Image CorrelatifidlC) measurement method is used to
obtain the displacement field of specific regioha cantilever beam under bending. These
fields are used within an inverse analysis schem@rder to obtain the elasticity modulus
of the beam material. The parameter estimatiorei$ggmed by means of the minimization
of an error function comprising of the differencetlseen the displacement fields obtained
from the experiment and from an appropriate math@rabhmodel. The inverse problem is
solved by means of the classical Levenberg-Mardquaashlinear parameter estimation
technique. The estimate obtained for the elastioibglulus is validated taking into account
new experimental data obtained through modal anslg$é another beam-like specimen
which, in turn, is made of the same material asatiginal one.
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Introduction

The use of inverse problems in experimental mecisams had
an enormous increase in the last decade and iteafigns embrace
different areas, such as heat transfer §®znd Orlande, 2000),
structural dynamics (Stutz et al., 2005), acougtiesderman et al.,
2007), to name just a few. There has always beeensand to
seamlessly integrate experimental information wathmalytical or
numerical models. Efforts for this integration hagained an
important ally with the advent of experimental nuath that are
capable of generating full-field measurements.

Optical methods, such as shearography, laser
interferometry and moiré can be employed to measuiltefield
surface displacement and strain (Burke et al., 2@@hdurangan
and Buckner, 2007; Cardenas-Garcla and Preidik@@06). All of
these methods have been combined with image pingessid
electronic systems and developed with commerciaensic
instruments. However, some types of equipment basedhese
optical methods are still very expensive and regustable
environment as well as laborious data reductiorcgsses. On the
other hand, the digital image correlation (DIC) sweament method
(McGinnis et al., 2005; Corr et al., 2007; Wang att 2002;
Lecompte et al., 2007) represents a different aggrahat is less
demanding optically: incoherent light is sufficiera vibration
isolation table is not required and the optical ponents are
eliminated. Recently, the use of DIC method to meadull-field
surface displacement has increased considerably tduethe
development of high resolution Charge Coupled DeV€CD)
cameras.

The aim of the present work is to estimate thetieiagsmodulus
of a cantilever beam-like specimen through an iseeanalysis
based on full-field displacement measurements oéthiout of a
simple experimental set-up. The inverse analysierse combines
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the beam full-field displacement captured by theitdi image
correlation method and the Levenberg-Marquardt rpater
estimation method to solve the associated inversblgm. The
estimate obtained for the elasticity modulus isdated taking into
account new experimental data obtained through helysis of
another beam-like specimen, which, in turn, is matithe same
material as the original one.

Nomenclature

b = beam widthm

f; = j-th estimated natural frequendyiz
ijXp = j-th measured natural frequendyiz
f(x,y) = pixel gray level at coordinates (X,y)
a(x,y") = pixel gray level at coordinates (x',y’)
h = beam heightm

p = vector of unknown parameters

u = displacement field along x-directiom,

Y = displacement field along y-directiom,

Xs = x-coordinate of starting pointn
yE(x,1) = experimental response
y(p;x,t) = estimated response

C(u,v) = correlation coefficient

elasticity modulus®a

applied forceN

= beam cross-section moment of inertid,
sensitivity matrix

beam lengthm

number of unknown parameters

number of sensors

number of measured data

ordinary least squares norm

= vector containing the estimated response
= vector containing the measured response
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Greek Symbols

&, &, & = user-prescribed tolerances

U = numerical damping parameter

P = beam mass per unit length, kg/m

Of = relative error between measured and

estimated natural frequencies

r = Levenberg-Marquardt's damping matrix
Subscripts/Super scripts

k relative to iteration number

s relative to sensor number

E, Exp relative to experiment

Digital Image Correlation (DIC) Method

The Digital Image Correlation (DIC) is an opticalmerical
full-field surface displacement measurement methiots based on
a comparison between two images of the specimetedday a

random speckle pattern in the undeformed and inléi@rmed state.

Its special merits encompass non-contact measutesigple optic
setup, no special preparation of specimens and pecia
illumination.

The basic principle of the DIC method is to seafch the
maximum correlation between small zones (subwindlogfsthe
specimen in the undeformed and deformed statedluagated in
Fig. 1. From a given image-matching rule, the dispment field at
different positions in the analysis region can lenputed. The
simplest image-matching procedure is the crosstaion, which
provides the in-plane displacement fieldéx,y) and v(xy) by
matching different zones of the two images.

i<

f(xy) y| i f(xy)

fffffffff

Subwindow Y

X' X X

Underformed state Derformed state

Figure 1. Schematic diagram of the deformation relation.

A commonly used correlation coefficient is definasl follows
(Dally and Riley, 2005):

Zm‘,Zm‘,[f(x_yj)—f'][g(x;.y',-)—gl

i=1 j=1

C(uv) = 1)
M3 [roe v =12 (DY [oo. v -a)?
i=1 j=1 i=1 j=1
where
x’:x+uo+a—udx+ﬂdy
0X ay @
"=y+y +ﬂdx+ﬂd
y=y+vo ax dy Yy
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f(x, y) is the pixel gray level value (ranging from 0285) at the
coordinates(x, y) for the undeformed or original imagg(x’, y') is
the pixel gray level value at the coordina(exs y') for deformed or

target image;f and g are the average gray values for images and,

finally, u andv are, respectively, the displacement components for
the subwindow centers in tixeandy directions.

The CCD camera uses a small rectangular piece ligbrsi
which has been segmented into an H x V array a¥iddal light
sensitive cells, also known as pixel. Each pixetest a certain gray
scale value ranging from 0 to 255, in accordandé ttie intensity
of the light reflected by the surface of specim€@oncerning the
specimen preparation, the aim is to create a rargfmeokle pattern
on the specimen surface. Each speckle has a urshape and
intensity and serves as an ideal target. The snthkegrains are, the
higher the spatial resolution. The measured resuiltsdepend on
the CCD pixel resolution, the speckle size, and h€ software
considered.

Parameter Estimation

In order to fully characterize a mechanical system required
to estimate a set of unknown parameters whichepeesentative to
its dynamics. Therefore, for the sake of simplicithie general
vectorp, defined by Eqg. (3), contains the information canming all
the unknown parameters for the system under iryegsdn, i.e.,

P ={Py, P2 Py} (3)

whereN, corresponds to the number of unknown parameterthel
inverse problem formulation, one considers that tet of
parametersp is unknown and that there is available a set of
experimental data concerning the response of te&sy denoted
by the symboly5(x,t), to a certain excitation/stimulus. The basic
idea is to find out the set of parametershat best correlates the
response y(p;x,t), which is obtained from an appropriate
mathematical model for the system under study, witie
experimental responsgf(x,t). Hence, the idea is to define an
objective functionSin order to quantify the difference between the
two responsesyf(x,t) and y(p;x,t). Now, if one assumes the
hypothesis that the measurement errors have zeem,nmnstant
variance, Gaussian distribution, and that theyaalditive and non-
correlated, the error functiddthat provides the minimum variance
estimates is the ordinary least squares norm defaee follows
(Ozisik and Orlande, 2000; Beck and Arnold, 1977):

so)=[V -] [7-v] )

where Y and Y are, respectively, the vectors containing the
measured and estimated responses of the systerayaufined as
follows:

J 5)

VT (T VT vT
EENARZIAN

t

YT ={Y1T,Y2T,...,YL‘} (6)

The symbol(-)T appearing on Egs. (4)-(6) indicates the transpése o
(-). The symboN; appearing in Egs. (5) and (6) corresponds to the

total number of measured data. The column vect_ﬁrs and Y;
contain, respectively, the experimental and esghabformation.
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They are organized such that theith components[Vj ]s and
[ijs represent, respectively, tjegh measurement and theh

estimate corresponding to te¢h sensos=1, 2, ...,Ns (Ns denotes
the total number of sensors). It should be emphdsilzath and

Y; can be displacements, accelerations, strainsratdtequencies,
just to cite a few examples.

The inverse problem consists in determining theofglarameterp
which minimizes the objective function, viz.,
minpgp S(p) @)

where every constraint associated to the inverseblgm is
represented by the solution $&tThe inverse problem defined by
Eq. (7) will be solved, in the present article otingh the Levenberg-
Marquardt parameter estimation method, which isb-known and
powerful iterative method for solving nonlinear deasquares
problems of parameter estimation (§lziand Orlande, 2000; Beck

and Arnold, 1977). The iterative procedure of thevénberg-
Marquardt method is given by

pk*t =pk {(J")TJK +ﬂ"F"}_1(J")T [v-vi]

where 1 is a stabilization parameteF; is a diagonal matrix; the
superscriptk denotes the iteration number; ahds the sensitivity
matrix, defined as follows:

(8)

aY;
‘Jij :ﬁ1

i=1,2, ..NexNandj =1, 2, ... N 9)

The purpose of the terpk I in Eq. (8) is to reduce the oscillations

or instabilities due to the ill-conditioning assateid to the inverse
problem. The decrease of these instabilities oillagons can be
achieved by adopting a matrigr® of which components are
relatively large as compared to the components hef matrix

(Jk)TJk (Ozisik and Orlande, 2000). The parametéris chosen

such thatS(p*?) < Sp*) remains valid at every iteration. The
stopping criteria adopted for the iteration process the ones
suggested by Dennis and Schnabel {®znd Orlande, 2000), as
follows:

Skt <g (10)
e T [V -y k)] <, )
ot -p¥| <& (12)

where &, & and & are user-prescribed tolerances and| ||
corresponds to the Euclidean norm. Different versiof the
Levenberg-Marquardt iterative procedure can be doun the
literature, depending on the choice for the diaggomatrix I and on
the form chosen for the variation of the parameteOzisik and
Orlande, 2000). For the present work it has bears@h the matrix
[, as follows:
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(13)

r :dia{(Jk)TJk}

Experimental Set-Up

The experimental arrangement for the measuremetiteofull-
field displacement through the DIC method invohaedixed-free
cantilever beam, a loading device, a CCD camera
perpendicularly to the specimen and a computeshawn in Fig. 2.
The cantilever beam was covered with painted spsclkdandom
black and white pattern). The CCD camera (Sony X&{9310)
used to record the speckle image of the speciméareband after
the load application has a resolution of 1%76024 pixels. In this
experimental configuration one pixel of the CCD eam
corresponds to an area approximately equal to %.8%5 pm on
the specimen.

Figure 2. Experimental arrangement of DIC method.

Figure 3 depicts a simple sketch of the experimesétup
illustrated in Fig. 2. A cantilevered beam-like sipgen is subjected
to a concentrated lodelapplied at the free end, as shown in Fig. 3

: Random painted speckles

Ve eeeead

Figure 3. Sketch of the experimental set-up.
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The experimental set-up shown in Fig. 2 is useshéasure the
displacement field of a specific region of the beamnceforth
referred to as the analysis region. The sym@ah Fig. 3, denotes
the x-coordinate of the starting point of the analysigion. Such
measured data are used as input data to the Lagpharquardt
iterative procedure in order to estimate the belastieity modulus.

The transverse displacement fiefg,t) for the elastic cantilever
beam shown in Fig. 3 is governed by the followingrtial
differential equation and boundary-conditions:

2 2 2
PRATCHIN {EI 32v(x,t)

=0, O<x<L,t>0
at? ax? ax? }

v(O,t):Oand %(O,t)z Oatx=0,t>0

0°v B 9 92v _ B
El 67(L,t)—0and H{El ax—z}(L,t)— Fatx=L,t>0

(14)

where p, E and | denote, respectively, the specific mass, th

elasticity modulus and the beam cross-section moroinertia.
The displacement field measured by the DIC metlodised to

estimate the elasticity modulUs, assumed here as an unknown §D_2\..- T

parameter in Eq. (14). For the experimental seshgwn in Figures
(2) and (3) it will be considered only static fosc@ence, the inertia
term appearing on the left-hand side of the difiée¢ equation (14)
is disregarded in the present analysis.

Results

In this section some results concerning the pammestimation
as well as model validation are presented. Two blderspecimens
were extracted from a unique aluminum beam. Tha fine was
used for parameter estimation and the second orseused for
model validation.

Estimation

For the estimation processes, a rectangular cextme beam
was manufactured. Its dimensions, cross-section enorof inertia
and magnitude of the applied force are indicatedable 1. Two
images of the beam in the same analysis regiomcissd with
different loads of 0 N and 10.15 N, are used ireotd compute the
full-field displacement by means of the DIC methédDIC-based
algorithm has been developed at “Laboratério déd@ptéo Linear
& Aplicada da Universidade Federal Fluminense”. urég 4
illustrates the texture pattern of the underfornf@dand deformed
(b) coating specimen surface.

Figure 5 shows the measured full-field displacemety)

Luiz C. S. Nunes et al.

Figure 4. Pattern of the coating specimen: (a) undeformed (F = 0 N), and
(b) deformed (F = 10.15 N).

Displacement vi(nir)

S
gado

mna3 gt

B

01

a0
30

y(mm) : = 10 x(mm)

Figure 5. Transverse displacement field, v(x,y), for the applied load F =
10.15 N.

During the estimation processes, the boundary-vaigblem
given by Eq. (14) (also known as the direct or fmavproblem in the
inverse problem terminology) is solved through fimite element
method (Reddy, 2006). The error functié given by Eq. (4)
comprises the difference between the measuredcadapient field and
the one derived from the finite element solutioakifig for granted
that the geometry of the specimen and the apptiad &re measured
accurately, the primary interest is to estimateefasticity modulu€
appearing in Eqg. (14). Nevertheless, after soma dequisition, one
can conclude that there is some level of unceytainhcerning the
coordinatexs of the starting point of the analysis region. Henia

along thex-axis, when the cantilever beam is subjected t0 thgyer 1o overcome the aforementioned shortcoming, iector of

applied load- = 10.15 N.

Table 1. Dimensions, cross-section moment of inertia and magnitude of
the applied force for the cantilever beam shown in Fig. 2.

Material: Aluminum  Symbol  Units Value
Moment of inertia [ m*  6.23 x 10"
Length L m 0.101
Height h m 5.4 x 10°
Width b m 4.75 x 10
Applied force F N 10.15

170 / Vol. XXXI, No. 3, July-September 2009

unknown parameterp contains two components: (i) the elasticity
modulusE, parameterized &= p, x 10° (Pa), and (ii) the coordinate
Xs parameterized ag = p, (m).

The addition of a second parameter to be estimagtdrally
raises a question about the feasibility of estingag; andp, at the
same time. Hence, it is required some sensitivitlyses. Local
sensitivity analyses for different reference parmmevectors are
shown in Fig. 6. This figure depicts the ratio betw the sensitivity
coefficientsov/op; and ovidp,. According to Fig. 6, for the chosen
sets of parameter vectors, one may conclude tleat is no linear
dependence between these sensitivity coefficigmésefore, the two
parameters may be estimated simultaneously.
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0.000

-0.001

= —103 DD
p,=30 and p,=10 O
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0.00 0.02 0.04 0.06 0.08 0.10
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Figure 6. Ratio of the sensitivity coefficients dv/dp,; and dv/dp, for different
reference parameters.

The estimation process considered four differeitiginguesses:
() p© = {30, 10%7, (i) p© = {80, 1037, (i) p© = {30, 103",
and (iv)p® = {80, 103 ". It was also considered two different finite
element meshes, with 50 and 100 finite elementsh®rsolution of
the associated direct problem. All of the estimagigrovided the

same vector of estimated parametgrs {67.70 ,1.91><1O_2}T .
Figure 7 depicts the residuB(p) along thex-coordinate. The

Validation

In order to validate the estimated parameter aedadsociated
mathematical model described in the previous sectib was
considered a different set of experimental data afua different
experimental set-up. It was prepared another béamspecimen,
which is made of the same material as the one aedlyn the
previous section. This new specimen possessesdliffdimensions
from the first specimen, as shown in Fig. 8, andas subjected to a
classical modal analysis test. The measured datanelol from this
new experiment were used for validating the paramegtimated in
previous section. They were also used to estimage elasticity
modulus of the beam-like specimen shown in Figl't& estimation
performed in this section was also done by the hbesy-
Marquardt technique.

V22 2

- -
-

475

200 200

999

residue R(@ )is defined as the difference between the measurétpure 8. Sketch of the free-free beam (dimensions in mm) used for modal

analysis tests.

displacemenlvE(x )and the one computed from the finite element

modelv(p; x). The residue shown in Fig. 7 has a random signature,

which corroborates the adequacy of the mathematicalel (Beck
and Arnold, 1977). Nevertheless, in order to dédigivalidate the
estimation procedure and the associated matheratiodel, it is

necessary to consider an experimental data seteiiff from the one
used for the estimation processes (Roache, 1998).

A sketch of the experimental set-up for the secbedm-like
specimen is shown in Fig. 8. The beam was susperimed
lightweight elastic cords and it was instrumentedthwa
piezoelectric accelerometer located at one of ntdse The model
of the accelerometer is PCB 353M197 and its massgisal to
9.71 g. The beam was excited with an impact hamandrits first
five natural frequencies were measured. The medsuaedural
frequencies aref; = 23.25 Hz;f, = 64.65 Hz;f; = 127.5 Hz;

4 f, = 212 Hz; ands = 317 Hz.
] . Two error functions were considered for the estiomabf the
/O o) a beam-like elasticity modulus shown in Fig. 8. Tistimates for the
2.0 beam-like specimen shown in Fig. 8 are in good exgemt with the
£ B o, one previously obtained. These estimates are prsén Table 2.
@ . 0
2 Q 0O
=~ 04 \ Table 2. Estimates obtained for the elasticity modulus.
=
R b Error FunctionS Beam-like specimen E (Gpa)
m> " O 5 £
o D (i (p) - £;59)? Figure 8 68.7
6! 1= ,
5 Exp
-4 T T T fj(p)_'fj .
0.02 0.04 0.06 0.08 0.10 Z T B Figure 8 68.3
= ]
x (m)
25
v —vE(y. 12 .
Figure 7. Residue R(p;x) =vE(x)—v(;3;x) along the x-coordinate. Z(V(p, XJ) v (XJ ) Figures 2 and 3 67.7

j=1
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Figure 9 summarizes the validation data by demctthe
relative error between the measuré(i’f"p, and the estimated; ,

Luiz C. S. Nunes et al.

classical
technique.
As an example, we estimate the elasticity modulfisao

Levenberg-Marquardt nonlinear parametstimation

natural frequencies= 1, 2, ..., 5. The estimated natural frequenciegluminum beam-like specimen. The estimated paranad the

are computed from the finite-element solution @& Houndary-value
problem given by Eq. (14), using the estimatedtieiag modulus
indicated in Table 2.

1.2
-+%- E=69.0 GPa
--- E=68.3 GPa
* ---®- E=68.7 GPa
. .-0-- E=67.7GPa
0.
?0.8—. * -
S ; :
N ) 0
oo ] 0]
= B
' 044 AL
b AL W
- K
o R
. L
00 T T T T 1
1 2 3 4 5

Mode number

Figure 9. Validation graph.

In Fig. 9, the variationAf; = fje"p—fj .j =12,..,5, was
computed for four different values of the beamtitég modulusE.

The first oneE = 69 GPa is the one commonly found in theqjixed

reference books for aluminum materigl= 68.3 GPa an& = 68.7
GPa are the estimates obtained for the beam-likeisien, shown
in Fig. (8), through the minimization of the fitsto error functions,

shown in Table (2); and, finallyE = 67.7 GPa is the estimate

obtained for the beam-like specimen, shown in F{@3$.and (3),
through the minimization of the last error functi@mown in Table

associated mathematical model were validated takitay account
measured data extracted from an experimental setemppletely
different from the one used for the estimation ps=c

The main contribution of this work is to providel@wv-cost
alternative path for the estimation of elastic pagters based on
digital image methods.
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