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Identification of Material Properties 
using Full-Field and Non Contact 
Measurements 
In the present work, the Digital Image Correlation (DIC) measurement method is used to 
obtain the displacement field of specific regions of a cantilever beam under bending. These 
fields are used within an inverse analysis scheme in order to obtain the elasticity modulus 
of the beam material. The parameter estimation is performed by means of the minimization 
of an error function comprising of the difference between the displacement fields obtained 
from the experiment and from an appropriate mathematical model. The inverse problem is 
solved by means of the classical Levenberg-Marquardt nonlinear parameter estimation 
technique. The estimate obtained for the elasticity modulus is validated taking into account 
new experimental data obtained through modal analysis of another beam-like specimen 
which, in turn, is made of the same material as the original one. 
Keywords: full-field measurement, digital image correlation, inverse problem, parameter 
estimation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1The use of inverse problems in experimental mechanics has had 

an enormous increase in the last decade and its applications embrace 
different areas, such as heat transfer (Özişik and Orlande, 2000), 
structural dynamics (Stutz et al., 2005), acoustics (Leiderman et al., 
2007), to name just a few. There has always been a demand to 
seamlessly integrate experimental information with analytical or 
numerical models. Efforts for this integration have gained an 
important ally with the advent of experimental methods that are 
capable of generating full-field measurements. 

Optical methods, such as shearography, laser speckle 
interferometry and moiré can be employed to measure full-field 
surface displacement and strain (Burke et al., 2007; Pandurangan 
and Buckner, 2007; Cardenas-Garcıa and Preidikman, 2006). All of 
these methods have been combined with image processing and 
electronic systems and developed with commercial scientific 
instruments. However, some types of equipment based on these 
optical methods are still very expensive and require stable 
environment as well as laborious data reduction processes. On the 
other hand, the digital image correlation (DIC) measurement method 
(McGinnis et al., 2005; Corr et al., 2007; Wang et al., 2002; 
Lecompte et al., 2007) represents a different approach that is less 
demanding optically: incoherent light is sufficient; a vibration 
isolation table is not required and the optical components are 
eliminated. Recently, the use of DIC method to measure full-field 
surface displacement has increased considerably due to the 
development of high resolution Charge Coupled Device (CCD) 
cameras.  

The aim of the present work is to estimate the elasticity modulus 
of a cantilever beam-like specimen through an inverse analysis 
based on full-field displacement measurements obtained out of a 
simple experimental set-up. The inverse analysis scheme combines 
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the beam full-field displacement captured by the digital image 
correlation method and the Levenberg-Marquardt parameter 
estimation method to solve the associated inverse problem. The 
estimate obtained for the elasticity modulus is validated taking into 
account new experimental data obtained through modal analysis of 
another beam-like specimen, which, in turn, is made of the same 
material as the original one. 

Nomenclature 

b   = beam width, m 
fj   = j-th estimated natural frequency, Hz 

     Exp
jf   = j-th measured natural frequency, Hz 

f(x,y)  = pixel gray level at coordinates (x,y) 
g(x’,y’) = pixel gray level at coordinates (x’,y’) 
h  = beam height, m 
p  = vector of unknown parameters 
u  = displacement field along x-direction, m 
v  = displacement field along y-direction, m 
xs = x-coordinate of starting point, m 
yE(x,t) = experimental response 
y(p;x,t) = estimated response 
C(u,v) = correlation coefficient 
E  = elasticity modulus, Pa 
F  = applied force, N 
I  = beam cross-section moment of inertia, m4 
J  = sensitivity matrix 
L  = beam length, m 
Np  = number of unknown parameters 
Ns  = number of sensors 
Nt  = number of measured data 
S  = ordinary least squares norm 
Y  = vector containing the estimated response 
Y   = vector containing the measured response 
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Greek Symbols 

ε1, ε2, ε3 = user-prescribed tolerances  
µ = numerical damping parameter 
ρ = beam mass per unit length, kg/m 
∆f = relative error between measured and 

estimated natural frequencies 
ΓΓΓΓ    = Levenberg-Marquardt’s damping matrix 

Subscripts/Superscripts 

k  relative to iteration number 
s  relative to sensor number 
E, Exp relative to experiment 
 

Digital Image Correlation (DIC) Method 

The Digital Image Correlation (DIC) is an optical-numerical 
full-field surface displacement measurement method. It is based on 
a comparison between two images of the specimen coated by a 
random speckle pattern in the undeformed and in the deformed state. 
Its special merits encompass non-contact measurement, simple optic 
setup, no special preparation of specimens and no special 
illumination. 

The basic principle of the DIC method is to search for the 
maximum correlation between small zones (subwindows) of the 
specimen in the undeformed and deformed states, as illustrated in 
Fig. 1. From a given image-matching rule, the displacement field at 
different positions in the analysis region can be computed. The 
simplest image-matching procedure is the cross-correlation, which 
provides the in-plane displacement fields u(x,y) and v(x,y) by 
matching different zones of the two images. 

 

 
 

Figure 1. Schematic diagram of the deformation relation. 

 
 
A commonly used correlation coefficient is defined as follows 

(Dally and Riley, 2005): 
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( )yxf ,  is the pixel gray level value (ranging from 0 to 255) at the 

coordinates ( )yx,  for the undeformed or original image; ( )yxg ′′,  is 

the pixel gray level value at the coordinates ( )yx ′′,  for deformed or 

target image; f and g  are the average gray values for images and, 
finally, u  and v  are, respectively, the displacement components for 
the subwindow centers in the x and y directions.  

The CCD camera uses a small rectangular piece of silicon, 
which has been segmented into an H × V array of individual light 
sensitive cells, also known as pixel. Each pixel stores a certain gray 
scale value ranging from 0 to 255, in accordance with the intensity 
of the light reflected by the surface of specimen. Concerning the 
specimen preparation, the aim is to create a random speckle pattern 
on the specimen surface. Each speckle has a unique shape and 
intensity and serves as an ideal target. The smaller the grains are, the 
higher the spatial resolution. The measured results will depend on 
the CCD pixel resolution, the speckle size, and the DIC software 
considered. 

Parameter Estimation 

In order to fully characterize a mechanical system it is required 
to estimate a set of unknown parameters which are representative to 
its dynamics. Therefore, for the sake of simplicity, the general 
vector p, defined by Eq. (3), contains the information concerning all 
the unknown parameters for the system under investigation, i.e., 
 

      T
Np

ppp },,,{ 21 K=p                                                                (3) 

 
where Np corresponds to the number of unknown parameters. In the 
inverse problem formulation, one considers that the set of 
parameters p is unknown and that there is available a set of 
experimental data concerning the response of the system, denoted 
by the symbol yE(x,t), to a certain excitation/stimulus. The basic 
idea is to find out the set of parameters p that best correlates the 
response y(p;x,t), which is obtained from an appropriate 
mathematical model for the system under study, with the 
experimental response yE(x,t). Hence, the idea is to define an 
objective function S in order to quantify the difference between the 
two responses yE(x,t) and y(p;x,t). Now, if one assumes the 
hypothesis that the measurement errors have zero mean, constant 
variance, Gaussian distribution, and that they are additive and non-
correlated, the error function S that provides the minimum variance 
estimates is the ordinary least squares norm defined as follows 
(Özişik and Orlande, 2000; Beck and Arnold, 1977): 
 

      [ ] [ ]YYYY −−= T
pS )(                                                             (4) 

 

where Y  and Y are, respectively, the vectors containing the 
measured and estimated responses of the system, and are defined as 
follows: 
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The symbol ( )T• appearing on Eqs. (4)-(6) indicates the transpose of 

( )• . The symbol Nt appearing in Eqs. (5) and (6) corresponds to the 

total number of measured data. The column vectors jY  and Yj 

contain, respectively, the experimental and estimated information. 
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They are organized such that their s-th components [ ]
sjY  and 

[ ]
sjY  represent, respectively, the j-th measurement and the j-th 

estimate corresponding to the s-th sensor s = 1, 2, …, Ns (Ns denotes 

the total number of sensors). It should be emphasized that jY  and 

Yj can be displacements, accelerations, strains, natural frequencies, 
just to cite a few examples.  
 
The inverse problem consists in determining the set of parameters p 
which minimizes the objective function, viz., 
 
      )(min pp SP∈  (7) 

 
where every constraint associated to the inverse problem is 
represented by the solution set P. The inverse problem defined by 
Eq. (7) will be solved, in the present article, through the Levenberg-
Marquardt parameter estimation method, which is a well-known and 
powerful iterative method for solving nonlinear least squares 
problems of parameter estimation (Özişik and Orlande, 2000; Beck 
and Arnold, 1977). The iterative procedure of the Levenberg-
Marquardt method is given by  
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where µ is a stabilization parameter; ΓΓΓΓ is a diagonal matrix; the 
superscript k denotes the iteration number; and J is the sensitivity 
matrix, defined as follows: 
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The purpose of the term µk ΓΓΓΓk in Eq. (8) is to reduce the oscillations 
or instabilities due to the ill-conditioning associated to the inverse 
problem. The decrease of these instabilities or oscillations can be 
achieved by adopting a matrix µkΓΓΓΓk of which components are 
relatively large as compared to the components of the matrix 

( ) kTk JJ  (Özişik and Orlande, 2000). The parameter µk is chosen 
such that S(pk+1) < S(pk) remains valid at every iteration. The 
stopping criteria adopted for the iteration process are the ones 
suggested by Dennis and Schnabel (Özişik and Orlande, 2000), as 
follows: 
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where ε1, ε2 and ε3 are user-prescribed tolerances and ||•|| 
corresponds to the Euclidean norm. Different versions of the 
Levenberg-Marquardt iterative procedure can be found in the 
literature, depending on the choice for the diagonal matrix ΓΓΓΓ and on 
the form chosen for the variation of the parameter µ (Özişik and 
Orlande, 2000). For the present work it has been chosen the matrix 
ΓΓΓΓ, as follows: 
 

      ( ) 




= kTkk JJΓ diag  (13) 

Experimental Set-Up 

The experimental arrangement for the measurement of the full-
field displacement through the DIC method involves a fixed-free 
cantilever beam, a loading device, a CCD camera set 
perpendicularly to the specimen and a computer, as shown in Fig. 2. 
The cantilever beam was covered with painted speckles (random 
black and white pattern). The CCD camera (Sony XCD-SX910) 
used to record the speckle image of the specimen before and after 
the load application has a resolution of 1376 × 1024 pixels. In this 
experimental configuration one pixel of the CCD camera 
corresponds to an area approximately equal to 4.65 × 4.65 µm2 on 
the specimen. 

 
 

 
 

Figure 2. Experimental arrangement of DIC method. 

 
 
Figure 3 depicts a simple sketch of the experimental set-up 

illustrated in Fig. 2. A cantilevered beam-like specimen is subjected 
to a concentrated load F applied at the free end, as shown in Fig. 3. 

 
 

 
Figure 3. Sketch of the experimental set-up. 
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The experimental set-up shown in Fig. 2 is used to measure the 
displacement field of a specific region of the beam, henceforth 
referred to as the analysis region. The symbol xs, in Fig. 3, denotes 
the x-coordinate of the starting point of the analysis region. Such 
measured data are used as input data to the Levenberg-Marquardt 
iterative procedure in order to estimate the beam elasticity modulus. 

The transverse displacement field v(x,t) for the elastic cantilever 
beam shown in Fig. 3 is governed by the following partial 
differential equation and boundary-conditions: 
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where ρ, E and I denote, respectively, the specific mass, the 
elasticity modulus and the beam cross-section moment of inertia. 
The displacement field measured by the DIC method is used to 
estimate the elasticity modulus E, assumed here as an unknown 
parameter in Eq. (14). For the experimental set-up shown in Figures 
(2) and (3) it will be considered only static forces; hence, the inertia 
term appearing on the left-hand side of the differential equation (14) 
is disregarded in the present analysis. 

Results 

In this section some results concerning the parameter estimation 
as well as model validation are presented. Two beam-like specimens 
were extracted from a unique aluminum beam. The first one was 
used for parameter estimation and the second one was used for 
model validation. 
 
Estimation 

For the estimation processes, a rectangular cross-section beam 
was manufactured. Its dimensions, cross-section moment of inertia 
and magnitude of the applied force are indicated in Table 1. Two 
images of the beam in the same analysis region, associated with 
different loads of 0 N and 10.15 N, are used in order to compute the 
full-field displacement by means of the DIC method. A DIC-based 
algorithm has been developed at “Laboratório de Óptica Não Linear 
& Aplicada da Universidade Federal Fluminense”. Figure 4 
illustrates the texture pattern of the underformed (a) and deformed 
(b) coating specimen surface. 

Figure 5 shows the measured full-field displacement v(x,y) 
along the x-axis, when the cantilever beam is subjected to the 
applied load F = 10.15 N. 
 
 

Table 1. Dimensions, cross-section moment of inertia and magnitude of 
the applied force for the cantilever beam shown in Fig. 2. 

 

Material: Aluminum Symbol Units Value 

Moment of inertia I m4 6.23 × 10-11 
Length L m 0.101 
Height h m 5.4 × 10-3 
Width b m 4.75 × 10-3 

Applied force F N 10.15 
 
 

 

 

(a) 

 

(b) 

Figure 4. Pattern of the coating specimen: (a) undeformed (F = 0 N), and 
(b) deformed (F = 10.15 N). 

 
 
 
 

 

Figure 5. Transverse displacement field, v x,y( ), for the applied load F = 
10.15 N. 

 
 
 
During the estimation processes, the boundary-value problem 

given by Eq. (14) (also known as the direct or forward problem in the 
inverse problem terminology) is solved through the finite element 
method (Reddy, 2006). The error function S given by Eq. (4) 
comprises the difference between the measured displacement field and 
the one derived from the finite element solution. Taking for granted 
that the geometry of the specimen and the applied load are measured 
accurately, the primary interest is to estimate the elasticity modulus E 
appearing in Eq. (14). Nevertheless, after some data acquisition, one 
can conclude that there is some level of uncertainty concerning the 
coordinate xs of the starting point of the analysis region. Hence, in 
order to overcome the aforementioned shortcoming, the vector of 
unknown parameters p contains two components: (i) the elasticity 
modulus E, parameterized as E = p1 × 109 (Pa), and (ii) the coordinate 
xs parameterized as xs = p2 (m). 

The addition of a second parameter to be estimated naturally 
raises a question about the feasibility of estimating p1 and p2 at the 
same time. Hence, it is required some sensitivity analyses. Local 
sensitivity analyses for different reference parameter vectors are 
shown in Fig. 6. This figure depicts the ratio between the sensitivity 
coefficients ∂v/∂p1 and ∂v/∂p2. According to Fig. 6, for the chosen 
sets of parameter vectors, one may conclude that there is no linear 
dependence between these sensitivity coefficients; therefore, the two 
parameters may be estimated simultaneously. 
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Figure 6. Ratio of the sensitivity coefficients ∂v/∂p1 and ∂v/∂p2 for different 
reference parameters. 

 
 
The estimation process considered four different initial guesses: 

(i) p(0) = {30, 10-3} T, (ii) p(0) = {80, 10-3} T, (iii) p(0) = {30, 10-2} T, 
and (iv) p(0) = {80, 10-2} T. It was also considered two different finite 
element meshes, with 50 and 100 finite elements for the solution of 
the associated direct problem. All of the estimations provided the 

same vector of estimated parameters T}1091.1,70.67{ˆ 2−×=p . 

Figure 7 depicts the residue  )ˆ(pR along the x-coordinate. The 

residue  )ˆ(pR is defined as the difference between the measured 

displacement )(xvE  and the one computed from the finite element 

model );ˆ( xv p . The residue shown in Fig. 7 has a random signature, 
which corroborates the adequacy of the mathematical model (Beck 
and Arnold, 1977). Nevertheless, in order to definitely validate the 
estimation procedure and the associated mathematical model, it is 
necessary to consider an experimental data set different from the one 
used for the estimation processes (Roache, 1998). 

 
 

 
 

Figure 7. Residue );ˆ()();ˆ( xpxxp vEvR −= along the x-coordinate. 

 
 

 

Validation 
In order to validate the estimated parameter and the associated 

mathematical model described in the previous section, it was 
considered a different set of experimental data out of a different 
experimental set-up. It was prepared another beam-like specimen, 
which is made of the same material as the one analyzed in the 
previous section. This new specimen possesses different dimensions 
from the first specimen, as shown in Fig. 8, and it was subjected to a 
classical modal analysis test. The measured data obtained from this 
new experiment were used for validating the parameter estimated in 
previous section. They were also used to estimate the elasticity 
modulus of the beam-like specimen shown in Fig. 8. The estimation 
performed in this section was also done by the Levenberg-
Marquardt technique. 

 

Figure 8. Sketch of the free-free beam (dimensions in mm) used for modal 
analysis tests. 

 
 
A sketch of the experimental set-up for the second beam-like 

specimen is shown in Fig. 8. The beam was suspended by 
lightweight elastic cords and it was instrumented with a 
piezoelectric accelerometer located at one of its ends. The model 
of the accelerometer is PCB 353M197 and its mass is equal to 
9.71 g. The beam was excited with an impact hammer and its first 
five natural frequencies were measured. The measured natural 
frequencies are: f1 = 23.25 Hz; f2 = 64.65 Hz; f3 = 127.5 Hz; 
f4 = 212 Hz; and f5 = 317 Hz.  

Two error functions were considered for the estimation of the 
beam-like elasticity modulus shown in Fig. 8. The estimates for the 
beam-like specimen shown in Fig. 8 are in good agreement with the 
one previously obtained. These estimates are presented in Table 2. 

 
 

Table 2. Estimates obtained for the elasticity modulus. 
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Figure 9 summarizes the validation data by depicting the 

relative error between the measured exp
jf , and the estimated jf , 

natural frequencies j = 1, 2, …, 5. The estimated natural frequencies 
are computed from the finite-element solution of the boundary-value 
problem given by Eq. (14), using the estimated elasticity modulus 
indicated in Table 2. 
 
 

 
 

Figure 9. Validation graph. 
 
 

In Fig. 9, the variation jjj fff −=∆ exp , j = 1,2,…,5, was 

computed for four different values of the beam elasticity modulus E. 
The first one E = 69 GPa is the one commonly found in the 
reference books for aluminum material; E = 68.3 GPa and E = 68.7 
GPa are the estimates obtained for the beam-like specimen, shown 
in Fig. (8), through the minimization of the first two error functions, 
shown in Table (2); and, finally, E = 67.7 GPa is the estimate 
obtained for the beam-like specimen, shown in Figs. (2) and (3), 
through the minimization of the last error function, shown in Table 
(2). The relative errors in the first five natural frequencies associated 
to the estimate E = 67.7 GPa are less than 1%, which corroborates 
the estimation obtained in the estimation subsection. As it has been 
previously mentioned, this validation procedure considered a 
different experimental set-up and a different beam-like specimen 
from the one used in the estimation subsection. 

Concluding Remarks 

In the present work, the Digital Image Correlation (DIC) 
measurement method is used to obtain the displacement field of 
specific regions of a cantilever beam under bending. These fields are 
used within an inverse analysis scheme in order to obtain 
constitutive parameters for beam-like specimens. The parameter 
estimation is performed by means of the minimization of an error 
function comprising of the difference between the displacement 
fields obtained from the experiment and from an appropriate 
mathematical model. The inverse problem is solved by means of the 

classical Levenberg-Marquardt nonlinear parameter estimation 
technique. 

As an example, we estimate the elasticity modulus of an 
aluminum beam-like specimen. The estimated parameter and the 
associated mathematical model were validated taking into account 
measured data extracted from an experimental set-up completely 
different from the one used for the estimation process. 

The main contribution of this work is to provide a low-cost 
alternative path for the estimation of elastic parameters based on 
digital image methods. 
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