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An Unstructured Grid Implementation
of High-Order Spectral Finite Volume
Schemes

The present work implements the spectral finite volume scheme in a cell centered finite
volume context for unstructured meshes. The 2-D Euler equations are considered to rep-
resent the flows of interest. The spatial discretization scheme is developed to achieve high
resolution and computational efficiency for flow problems governed by hyperbolic conser-
vation laws, including flow discontinuities. Such discontinuities are mainly shock waves
in the aerodynamic studies of interest in the present paper. The entire reconstruction pro-
cess is described in detail for the 2% to 4" order schemes. Roe’s flux difference splitting
method is used as the numerical Riemann solver. Several applications are performed in
order to assess the method capability compared to data available in the literature. The
results obtained with the present method are also compared to those of essentially non-
oscillatory and weighted essentially non-oscillatory high-order schemes. There is a good
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Introduction

Over the past several years, the Computational Aerodynamics
Laboratory of Instituto de Aerondutica e Espaco (IAE) has been
developing CFD solvers for two and three dimensional systems
(Scalabrin, 2002, Basso, Antunes, and Azevedo, 2003). One re-
search area of the development effort is aimed at the implementation
of high-order methods suitable for problems of interest to the Insti-
tute, i.e., external high-speed aerodynamics. Some upwind schemes
such as the van Leer flux vector splitting scheme (van Leer, 1982),
the Liou AUSM™ flux vector splitting scheme (Liou, 1996) and the
Roe flux difference splitting scheme (Roe, 1981) were implemented
and tested for second-order accuracy with a MUSCL reconstruction
(Anderson, Thomas, and van Leer, 1986). However, the nominally
second-order schemes presented results with an order of accuracy
smaller than the expected in the solutions for unstructured grids.
Aside from this fact, it is well known that total variation diminishing
(TVD) schemes have their order of accuracy reduced to first order in
the presence of shocks due to the effect of limiters.

This observation has motivated the group to study and to im-
plement essentially non-oscillatory (ENO) and weighted essentially
non-oscillatory (WENO) schemes in the past (Wolf and Azevedo,
2006).However as the intrinsic reconstruction model of these
schemes relies on gathering neighboring cells for polynomial recon-
structions for each cell at each time step, both were found to be very
demanding on computer resources for resolution orders greater than
three, in 2-D, or anything greater than 2"¢ order, in 3-D. This fact
motivated the consideration of the spectral finite volume method,
as proposed by Wang and co-workers (Wang, 2002, Wang and Liu,
2002, 2004, Wang, Liu, and Zhang, 2004, Liu, Vinokur, and Wang,
2006, Sun, Wang, and Liu, 2006), as a more efficient alternative.
Such method is expected to perform better than ENO and WENO
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agreement with the comparison data and efficiency improvements have been observed.
Keywords: spectral finite volume, high-order discretization, 2-D euler equations, un-

schemes, compared to the overall cost of the simulation, since it dif-
fers on the reconstruction model applied and it is currently extended
up to 4*"-order accuracy in the present work.

The SFV method is a numerical scheme developed recently for
hyperbolic conservation laws on unstructured meshes. The method
derives from the Godunov finite volume scheme which has become
the state of the art for numerical solutions of hyperbolic conserva-
tion laws. It was developed as an alternative to k-exact high-order
schemes and discontinuous Galerkin methods (Cockburn and Shu,
1989) and its purpose is to allow the implementation of a simpler
and more efficient scheme. The discontinuous Galerkin and SFV
methods share some similarities in the sense that both use the same
piecewise discontinuous polynomials and Riemann solvers at ele-
ment boundaries to provide solution coupling and numerical dissi-
pation for stability. Both methods are conservative at element level
and suitable for problems with discontinuities. The methods differ
on how the necessary variables for polynomial reconstruction are
chosen and updated. The SFV method has advantages in this re-
construction process. It is compact, extensible and more efficient
in terms of memory usage and processing time than k-exact finite
volume methods, such as ENO and WENO schemes, since the re-
construction stencil is always known and non-singular. This occurs
because each element of the mesh, called a Spectral Volume, or SV,
is partitioned in a geometrically similar manner into a subset of cells
named Control Volumes (CVs). This allows the use of the same
polynomial reconstruction for every SV. Afterwards, an approximate
Riemann solver is used to compute the fluxes at the SV boundaries,
whereas analytical flux formulas are used for flux computation on
the boundaries inside the SV. Moreover, each control volume solu-
tion is updated independently of the other CVs. The cell averages
in these sub-cells are the degrees-of-freedom (DOFs) used to recon-
struct a high-order polynomial distribution inside each SV.

The numerical solver is implemented for the Euler equations in
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two dimensions in a cell centered finite volume context on triangular
meshes, with a three-stage TVD Runge-Kutta scheme for time inte-
gration. Initially, the paper presents the theoretical formulation of
the SFV method for the Euler equations. The reconstruction process
of the high-order polynomial is described and some quality aspects
of this process are discussed. Afterwards, the flux limiting formula-
tion is presented, followed by the numerical results and conclusions.

Nomenclature

c Speed of sound
C  Convective operator
e Total energy per unit of volume
E, F' Flux vectors in the (x,y) Cartesian directions, respectively
Gaussian point
Mesh characteristic size
Total enthalpy
Mach number
Free stream Mach number
Unit normal vector to the surface, positive outward
Number of faces
Pressure
Vector of conserved properties
Surface of the control volume
Time
Velocity components in the (X,y) directions, respectively
End point of the edge
Gaussian weight
Ratio of specific heats
Edge of the control volume
Density
ubscript
i-th spectral volume
J j-th control volume
nb  nb-th neighbor of the j-th control volume
Superscript
n n-th iteration

3
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Theoretical Formulation
Governing Equations

In the present work, the 2-D Euler equations are solved in their
integral form as

Q/de+/(v-13)dvzo, (1)
ot |, v

where P = Ei + F 7. The application of the divergence theorem to
Eq. (1) yields

Q/Qdm/(*.ﬁ)dszo. @)
ot Jy s
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The vector of conserved variables, (), and the convective flux vec-
tors, E/ and V, are given by

P gu pU
. puU . pus +p puv
Q= P E= PUV pv? +p
e (e+p)u (e +p)v
3)
The system is closed by the equation of state for a perfect gas
L5 2
p=(y=1) |e—gpu” +v7)|, )

where the ratio of specific heats, v, is set as 1.4 for all computations
in this work. The flux Jacobian matrix in the n = (ng, n,) direction
can be written as

OF oF
B=n,— —. 5
n 90 + 1y 30 5)
The B matrix has four real eigenvalues Ay = Ay = vy, A3 =
vp + ¢, Ay = v, — ¢, and a complete set of right eigenvectors

(r1,72,73,74), Where v, = un, + vn, and c is the speed of sound.
Let R be the matrix composed of these right eigenvectors, then the
Jacobian matrix, B, can be diagonalized as

R™'BR=A, (6)
where A is the diagonal matrix containing the eigenvalues:
A:diag(vn,vn,vn+c,vn _C)' (7)

In the finite volume context, Eq. (2) can be rewritten for the i-th
control volume as

0Q; 1 S
Y __Vi/si(P 7)dS ,

where @; is the cell averaged value of () at time ¢ in the ¢-th control
volume, V.

®)

Spatial Discretization

The spatial discretization process determines a k-th order dis-
crete approximation to the integral in the right-hand side of Eq. (8).
In order to solve it numerically, the computational domain, (2, with
proper initial and boundary conditions, is discretized into /N non-
overlapping triangles, the spectral volumes (SVs) such that

N
o=Js.
=1

One should observe that the spectral volumes could be composed
of any type of polygon, given that it is possible to decompose its
bounding edges into a finite number of line segments I' ., such that

Sl-:UFK.

®)

10)
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In the present paper, however, the authors assume that the computa-
tional mesh is always composed of triangular elements. Hence, al-
though the theoretical formulation is presented for the general case,
the actual SV partition schemes are only implemented for triangular
grids.

The boundary integral from Eq. (8) can be further discretized
into the convective operator form

/Si(f’-ﬁ)dS: ;i/m(ﬁ.ﬁ)ds’

where K is the number of faces of S; and A, represents the r — th
face of the SV. Given the fact that 7 is constant for each line seg-
ment, the integration on the right side of Eq. (11) can be performed
numerically with a £ — th order accurate Gaussian quadrature for-
mula

C(Qs) (11)

K J
/ (Bi)dS =3 tng P(Qirg, rg)) 7in Ar + O(A, 5.
Ar r=1qg=1

(12)

where (2,4, Yrq) and w,, are, respectively, the Gaussian points and
the weights on the r-th face of S; and J = integer((k + 1)/2) is
the number of quadrature points required on the r — th face. For the
second-order schemes, one Gaussian point is used in the integration.
Given the coordinates of the end points of the element face, z; and
22, one can obtain the Gaussian point as the middle point of the
segment connecting the two end points, G; = %(21 + z5). For this
case, the weight is w; = 1. For the third and fourth order schemes,
two Gaussian points are necessary along each line segment. Their
values are given by

x/§+1z
2v3

V3+1
+(1—ﬁ)22
V341 _x/§+1)
72\/§ zZ2 2\/§ 21,

1

and the respective weights, wy and wo, are set as wi = wz = 3.

Using the method described above, one can compute values of
Q; for instant ¢ for each SV. From these averaged values, recon-
struct polynomials that represent the conserved variables, p, pu, pv
and e; due to the discontinuity of the reconstructed values of the
conserved variables over SV boundaries, one must use a numerical
flux function to approximate the flux values on the cell boundaries.

The above procedures follow exactly the standard finite volume
method. For a given order of spatial accuracy, k, for Eq. (11), using
the SFV method, each S; element must have at least

k(k+1)

2
degrees of freedom (DOFs). This corresponds to the number of con-
trol volumes that .S; shall be partitioned into. If one denotes by C; ;
the j-th control volume of S;, the cell-averaged conservative vari-
able, @, at time ¢, for C; ; is computed as

1
Vij Jo

G and (13)

Go +(1

(14)

q; ;(t) q(z,y, t)dzdy, (15)

(2%
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where V; ; is the volume, or area in the 2-D case, of C; ;. Once the
cell-averaged conservative variables, or DOFs, are available for all
CV s within S;, a polynomial, p;(x,y) € P*~!, with degree k — 1,
can be reconstructed to approximate the ¢(z,y) function inside S;,
ie.,

pi(xay) = Q(JJ’Z/) + O(hkil)v (a:,y) € Sia

where h represents the maximum edge length of all C'V's within .S;.
The polynomial reconstruction process is discussed in details in the
following section. For now, it is enough to say that this high-order
reconstruction is used to update the cell-averaged state variables at
the next time step for all the C'V's within the computational domain.
Note that this polynomial approximation is valid within S; and some
numerical flux coupling is necessary across SV boundaries.

Integrating Eq. (8) in C; ;, one can obtain the integral form for
the CV averaged mean state variable

(16)

K
;/Affw)dszm

where f represents the £ and F' fluxes, K is the number of faces
of C; j and A, represents the r — th face of the CV. The numerical
integration can be performed with a k£ — th order accurate Gaussian
quadrature formulation, similarly to the one for the SV elements in
Eq. (12).

As stated previously, the flux integration across SV boundaries
involves two discontinuous states, to the left and to the right of the
face. This flux computation can be carried out using an exact or
approximate Riemann solver, or a flux splitting procedure, which
can be written in the form

dt Vi

A7)

f(q(xrqa yrq)) 'ﬁr ~ fRiemann(QL(qu» yrq)a qR(quv yrq)a ﬁr)a
(18)

where ¢ is the conservative variable vector obtained by the p; poly-
nomial applied at the (2,4, yrq) coordinates and ¢, is the same vec-
tor obtained with the p,,; polynomial in the same coordinates of the
face. Note that the nb subscript represents the element to the right
of the face, while the ¢ subscript the CV to its left. As the numerical
flux integration in the present paper is based on one of the forms of a
Riemann solver, this is the mechanism which introduces the upwind
and artificial dissipation effects into the method, making it stable and
accurate. In this work, the authors have used the Roe flux difference
splitting method (Roe, 1981) to compute the numerical flux, i.e.,

fRiemmm = froe(LILa qR, ﬁ)

% [f(qr) + flar) = |B| (gr —qr)], (19)

where |§| is Roe’s dissipation matrix computed from

|B| = R|A| R (20)
Here, K’ is the diagonal matrix composed of the absolute values of
the eigenvalues of the Jacobian matrix, as defined in Eq. (7), evalu-
ated using the Roe averages (Roe, 1981).
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Finally, one ends up with the semi-discrete SFV scheme for up-
dating the DOFs at control volumes, which can be written as

K J
LSS
r=1g9=1
l(xrqv y’r’q)7 QT((E’NN qu)7 ﬁ”‘)AT]

where the right hand side of Eq. (21) is the equivalent convective
operator, C'(g;. j), for the j-th control volume of S;. It is worth men-
tioning that some faces of the CVs, resulting from the partition of the
SVs, lie inside the SV element in the region where the polynomial is
continuous. For such faces, there is no need to compute the numer-
ical flux as described above. Instead, one uses analytical formulas
for the flux computation, i.e., without numerical dissipation.

dg;

74]_

'fRiemann ( (21)

Temporal Discretization

The temporal discretization is concerned with solving a system
of ordinary differential equations. In the present work, the authors
use a third-order, TVD Runge-Kutta scheme (Shu, 1987). Rewriting
Eq. (21) in a concise ODE form, one obtains

dg 1

= — 22
7 VWC (q) (22)
where
51,1 C'(qu)
aN,m C(qN,m)
and
K J
C(Qz,] Z Z Wyq*
r=1q=1
fRoe(QL x'rq;yrq) QR(frqurq) nr)A7]~ (24)

Hence, the time marching scheme can be written as

v = 7+ AC(g"),
7@ = g +as [0+ AtC(Y)]
7" = s +a4[ ) 4+ AtC(¢® )],

where the n and n + 1 superscripts denote, respectively, the values
of the properties at the beginning and at the end of the n-th time
step. The « coefficients are a; = 3/4, ag = 1/4, ag = 1/3 and
ay = 2 / 3.

Spectral Finite Volume Reconstruction

General Formulation

The evaluation of the conserved variables at the quadrature
points is necessary in order to perform the flux integration over the
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mesh element faces. These evaluations can be achieved by recon-
structing conserved variables in terms of some base functions using
the DOFs within a SV. The present work has carried out such recon-
structions using polynomial base functions, although one can choose
any linearly independent set of functions. Let P, denote the space
of m-th degree polynomials in two dimensions. Then, the minimum
dimension of the approximation space that allows P, to be complete
is

(m+1)(m + 2)

2

In order to reconstruct q in P,,, it is necessary to partition the SV
into N, non-overlapping CVs, such that

N’VTI,
Si = U Ci,j~
Jj=1

The reconstruction problem, for a given continuous function in .S;
and a suitable partition, can be stated as finding p,, € P, such that

/Cv Pm(,y)dS = /CJ q(x,y)dsS.

¥

Ny, = (25)

(26)

27)

With a complete polynomial basis, e;(x,y) € P, it is possible to
satisfy Eq. (27). Hence, p,, can be expressed as
N

Z apép (.’,U, y)7
=1

Pm = (28)
where e is the base function vector, [e1, - - - , en], and a is the recon-

struction coefficient vector, [a1,- - ,a N]T. The substitution of Eq.
(28) into Eq. (27) yields

N.
1 m
a e\x, dS— 'RE
‘7i7j lE - l\/;. . l( y) q \J

i3

(29)

If g denotes the [q; 1, ,q; ny)” column vector, Eq. (29) can be

rewritten in matrix form as
Sa =17, (30

where the S reconstruction matrix is given by

%11 'fCi,l 61(1', y)dS % fciyl GN('JZ, y)ds

e1(x,y)dS (z,y)dS

€29

ﬁ fCi,N ﬁ fCi,N €N

and, then, the reconstruction coefficients, a, can be obtained as
a=S717, (32)

provided that S is non-singular. Substituting Eq. (32) into Eq.
(27), pm 1is, then, expressed in terms of shape functions L =

[L1,---,Ly]|,defined as L = eS~1, such that one could write
an
pmfZL 2,9)3;; = L. (33)
ABCM



An Unstructured Grid Implementation of High-Order Spectral Finite Volume Schemes

Table 1. Polynomial base functions.

reconstruction order e
linear [lzy]
quadratic [1xya®xyy?]
cubic [1zya?ayy? a3 2y xy? y3 ]

Equation (33) gives the value of the conserved state variable, g, at
any point within the SV and its boundaries, including the quadrature
points, (4, Yrq). The above equation can be interpreted as an inter-
polation of a property at a point using a set of cell averaged values,
and the respective weights which are set equal to the corresponding
cardinal base value evaluated at that point.

Once the polynomial base functions, e;, are chosen, the L shape
functions are uniquely defined by the partition of the spectral vol-
ume. The shape and partition of the SV can be arbitrary, as long
as the S matrix is non-singular. The major advantage of the SFV
method is that the reconstruction process does not need to be carried
out for every mesh element .S;. Once the SV partition is defined, the
same partition can be applied to all mesh elements and it results in
the same reconstruction matrix. That is, the shape functions at cor-
responding flux integration points over different SVs have the same
values. One can compute these coefficients as a pre-processing step
and they do not change along the simulation. This single reconstruc-
tion is carried out only once for a standard element, for instance an
equilateral triangle, and it can be read by the numerical solver as in-
put. This is a major difference when compared to k-exact methods
such as ENO and WENO schemes, for which every mesh element
has a different reconstruction process at every time step. Clearly,
the SFV is more efficient in this step. Recently, several partitions
for both 2-D and 3-D SFV reconstructions were studied and refined
(Wang, Liu, and Zhang, 2004, Chen, 2005). For the present work,
the partition schemes are presented in the following sections. More-
over, the polynomial base functions for the linear, quadratic and cu-
bic reconstructions are listed in Table 1.

Partition Quality

There are many possible different partition schemes for the SFV
method reconstructions. The problem is to find one that produces
the smoother interpolation of the conserved variables, so that it im-
proves the method’s convergence and stability aspects. Until re-
cently a parameter named Lebesque constant (Chen and Babuska,
1995) was computed for a given partition and its quality or smooth-
ness was determined by its value. The lower this value the better the
partition. More detailed description of this parameter can be found
in (Wang, 2002, Wang and Liu, 2004, Wang, Liu, and Zhang, 2004).

The linear partition is defined in the following section and it can
be easily defined. For the quadratic partition, the authors have first
used the one presented by Sun and co-workers (Sun, Wang, and Liu,
2006) as shown in Fig. 1 named SV3W in this work. It was tested
with different simulations and yielded good results. To verify its
convergence aspect we tried a simple test. A blunt body with zero
angle of attack with M., = 0.4 was simulated with a mesh of 1014
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Figure 1. SV3W quadratic partition.

triangles and CF'L. = 0.3, as shown in Fig. 2(a). This partition
scheme was able to reach machine zero and a solution, but it was
noted an instability during the convergence history as shown in Fig.
3. Once the density residual dropped close to -10 it begun to rise
and peaked at -7. We were interested to see if this partition scheme
would cause the simulation to diverge and so it was simulated up to
1 million iterations and it reached machine zero and produced the
result shown in Fig. 2(b) for pressure distribution. This fact brought
to our attention the need to investigate other partitions. Indeed this
effect was much more noticeable in the cubic reconstruction. The
authors first considered the cubic partition scheme proposed by Sun
and co-workers (Sun, Wang, and Liu, 2006), named here partition
SV4W, shown in Fig. 4. It was unable to produce results for this test
case and diverged the simulation as can be seen in the convergence
history, Fig. 5.

The quality of the partition is not totally related to a small
value of the Lebesgue constant. There are other parameters that
can influence its quality as discussed by van Abeele and Lacor
(van den Abeele and Lacor, 2007). They showed that the third and
fourth order partition schemes shown above can become unstable
for a given mesh, C'F'L number and simulation parameters. Also,
they proposed improved partitions for these schemes, and these are
present in the following sections.

Linear Reconstruction

For the linear SFV method reconstruction, m = 1, one needs to
partition a SV in three sub-elements, as in Egs. (14) and (25) and use
the base vector as defined in Table 1. The partition scheme is given
for a standard element, a right triangle for instance, in the sense of
the partition nodes that compose the CVs in terms of barycentric
coordinates of the SV element nodes. Hence, it is not necessary to
perform a mesh element mapping to the standard shape, thus sav-
ing memory. The partition for this case is uniquely defined and its
coordinates are given in Table 2, according to the nodes orientation
of the standard element, as shown in Fig. 6, and the connectivity
information in Table 3, relating the nodes that compose the bound-
ing faces of the CVs. The structured aspect of the CVs within the
SVs is used to determine neighborhood information and generate
the global connectivity data. The original ghost elements necessary
for boundary treatment that would be created for the SV simulation
are not necessary. Instead, ghost elements must be created for the

Special Issue 2010, Vol. XXXII, No. 5/423
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Figure 3. Convergence history for SV3W partition test on the blunt
body test case.
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Figure 4. SV4AW cubic partition.
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Figure 5. Convergence history for SV4W partition test on blunt body
test case.

CV mesh. The reader should observe that the authors implemented
the SFV method for a cell-centered data structure. The high-order
polynomial distribution is used to obtain the properties at the ghost
boundary face where the desired boundary conditions are imposed.

The code has an edge-based data structure such that it computes
the convective operator for the faces instead of computing it for the
volume. This approach saves a significant amount of time over tra-
ditional implementations. For each CV element face, a database is
created relating the face start and end node indices, its neighbors
(left and right), whether it is an internal or external face, that is, if it
lies inside a given SV or on its boundaries, and how many quadrature
points it has. This information, edge., = {n1,n2, 1, nb, type, qdr},
is obtained once connectivity and neighboring information is avail-
able. The linear partition is presented in Fig. 7. It yields a total
of 7 points, 9 faces (6 are external faces and 3 internal ones), 9
quadrature points and it has a Lebesgue constant value of 2.866.
The linear polynomial for the SFV method depends only on the base
functions and the partition shape. The integrals of the reconstruc-
tion matrix in Eq. (31) are obtained analytically (Liu and Vinokur,
1998) for fundamental shapes. The shape functions, in the sense
of Eq. (33), are calculated and stored in memory for the quadrature
points, (4, Yrq), Of the standard element. Such shape functions
have the exact same value for the quadratures points of any other SV
of the mesh, provided they all have the same partition. There is one
quadrature point located at the middle of every CV face.

Quadratic Reconstruction

For the quadratic reconstruction, m = 2, one needs to partition a
SV in six sub-elements and use the base vector as defined in Table 1.
The partition scheme is also given in this work for a right triangle.
The nodes of the partition are obtained in terms of barycentric co-
ordinates of the SV element nodes in the same manner as the linear
partition. The coordinates are given in Table 4, following the node
orientation in Fig. 6. Moreover, the connectivity information of the
CVs is given in Table 5. The structured aspect of the CVs within the
SVs is used to determine neighborhood information and generate the

ABCM
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Table 2. Linear partition: barycentric coordinate of the vertices.

node index nodel node2 node3

1 1 0 0
2 172 172 0
3 0 1 0
4 0 172 172
5 0 0 1
6 172 0 172
7 1/3 1/3 1/3

Table 3. Linear partition: control volumes connectivity.

CV nf nl n2 n3 nd

1 4 6 1 2 7
2 4 2 3 4 7
3 4 4 5 6 7

1 2

Figure 6. Standard spectral element.

Figure 7. Linear partition for the SFV method.

Table 4. Quadratic partition: barycentric coordinate of the vertices.

nodeindex nodel node2 node?3
1 1 0 0

2 0.909  0.091 0

3 0.091  0.909 0

4 0 1 0

5 0 0.909  0.091
6 0 0.091  0.909
7 0 0 1

8 0.091 0 0.909
9 0.909 0 0.091
10 0.820  0.091 0.091
11 0.091  0.820 0.091
12 1/3 1/3 1/3
13 0.091 0.091 0.820

Table 5. Quadratic partition: control volumes connectivity.

CV nf nl n2 n3 nd4d nS

1 4 1 2 10 9 -
2 4 3 4 5 11 -
3 4 6 7 8 13 -
4 5 2 3 11 12 10
5 5 5 6 13 12 11
6 5 8 9 10 12 13

connectivity table. The ghost creation process and edge-based data
structure are the same as for the linear reconstruction case. The par-
tition used in this work is the one proposed by van Abeele and Lacor
(van den Abeele and Lacor, 2007) named SV3A here, shown in Fig.
8. It has a total of 13 points, 18 faces (9 external faces and 9 internal
ones), 36 quadrature points and it has a Lebesgue constant value of
3.075. The shape functions, in the sense of Eq. (33), are obtained
as in the linear partition. The reader should note that, in this case,
the base functions have six terms that shall be integrated. Again,
these terms are exactly obtained (Liu and Vinokur, 1998) and kept
in memory.

Figure 8. SV3A quadratic partition scheme.
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Table 6. Cubic partition: barycentric coordinate of the vertices.

nodeindex nodel node2 node3
1 0 0

—_—

2 0.9220 0.0780 0

3 0.5000 0.5000 0

4 0.0780 0.9220 0

5 0 1 0

6 0 0.9220 0.0780
7 0 0.5000 0.5000
8 0 0.0780 0.9220
9 0 0 1

10 0.0780 0 0.9220
11 0.5000 0 0.5000
12 0.9220 0 0.0780
13 0.8960 0.0520 0.0520
14 04610 0.4610 0.0780
15 0.0520 0.8960 0.0520
16 0.6490 0.1755 0.1755
17 0.1755 0.6490 0.1755
18 0.4610 0.0780 0.4610
19 0.0780 0.4610 0.4610
20 0.1755 0.1755 0.6490
21 0.0520 0.0520 0.8960

Cubic Reconstruction

For the cubic reconstruction, m = 3, one needs to partition the
SV in ten sub-elements and to use the base vector as defined in
Table 1. The barycentric coordinates are given in Table 6 follow-
ing the node orientation in Fig. 6. The connectivity information of
the CVs is given in Table 7. The ghost creation process and edge-
based data structure is the same as for the linear and quadratic recon-
struction cases. As a matter of fact, the same algorithm utilized to
perform these tasks can be applied to higher order reconstructions.
The partition used in this work is the improved one cubic partition
(van den Abeele and Lacor, 2007) named SV4A, presented in Fig. 9
and has a total of 21 points, 30 faces (12 are external faces and 18
are internal ones) 60 quadrature points and it has a Lebesgue con-
stant value of 4.2446 against 3.4448 of the SV4W partition. Note
that for this case, the smaller Lebesgue constant was not favorable
to the scheme. The shape functions, in the sense of Eq. (33), are ob-
tained as in the linear partition in a pre-processing step. The simple
test case was applied to this partition scheme to check if it indeed
was more stable that the SV4W partition. It produced a solution and
reached machine zero convergence as can be seen in Fig. 10.

Limiter Formulation

For the Euler equations, it is necessary to limit some recon-
structed properties in order to maintain stability and convergence
of the simulation if it contains discontinuities. Although the use
of the conserved properties would be the natural choice, the litera-
ture (van Leer, 1979, Bigarella, 2007) shows that it lacks robustness,
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Table 7. Cubic partition: control volumes connectivity.

Max norm of density residue, log10

Figure 10.

CV nf nl n2 n3 n4d n5 nb
1 4 1 2 13 12 - -
2 4 4 5 6 15 - -
3 4 8 9 10 17 - -
4 4 2 3 14 13 - -
5 4 3 4 15 14 - -
6 4 6 7 16 15 - -
7 4 7 8 17 16 - -
8 4 10 11 18 17 - -
9 4 11 12 13 18 - -
10 6 13 14 15 16 17 18

Figure 9. SV4A cubic partition scheme.

| W

[] 200000 400000 600000 800000 1E+D8
Iterations

SV4A convergence history for the blunt body test case.
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since it allows for negative values of pressure in the domain after the
limited reconstruction operation. The limiter operator is applied in
each component of the primitive variable vector, ¢* = (p,u, v, p)T,
derived from the conserved variables of the CV averaged mean and
its quadrature points. For each CV, the following numerical mono-
tonicity criterion is prescribed:

—p min

i.J

—p max

< qzj (Trgs Yrq) < q; ; ) (34)

—_p min — .. .
where @} ; and g?{"/** are the minimum and maximum cell av-

eraged primitive variables among all neighboring CVs that share a
face with C; ;, defined as

" min(fp . 1 ab . )
qz,] ) mln(lﬁTSK) qz,],r

v = max(qﬁj, max(1<r<K) qi,jﬁr)

If Eq. (34) is strictly enforced, the method becomes TVD
(Leveque, 2002). However, it would become first order accurate and
compromise the general accuracy of the solution. To maintain high-
order accuracy away from discontinuities, small oscillations are al-
lowed in the simulation following the idea of TVB methods (Shu,
1987). If one expresses the reconstruction for the quadrature points,
in the sense of Eq. (33) converted to primitive variables, as a differ-
ence with respect to the cell averaged mean,

(35)

AGry = pi(Trg, Yrq) — T 4 (36)
then no limiting is necessary if
|Adrq| < AMgR2,, (37)

where M, is a user chosen parameter. Different M, values must
be used for the different primitive variables which have, in general,
very different scales. Then it is scaled according to

Mq — M(apmax _ apmin)7

(38)

where M is the input constant independent of the component, g#™**

and ™" are the maximum and minimum of the CVs-averaged
primitive variables over the whole computational domain. Note that
if M = 0, the method becomes TVD. If Eq. (36) is violated for any
quadrature point it is assumed that its CV is close to a discontinuity,
and the solution is linearly reconstructed:

(39)

The solution is assumed linear also for all CVs inside a SV if any
of its CVs are limited. Gradients are computed with the aid of the
gradient theorem (Swanson and Radespiel, 1991), in which deriva-
tives are converted into line integrals over the cell faces. This gradi-
ent may not satisfy Eq. (34). Therefore, it is limited by multiplying
a scalar ¢ € [0, 1] such that the limited solution satisfies

0, =T+ VT (P 1),

The ¢ scalar is computed following the general orientation of the
literature, such that it satisfies the monotonicity constraint. In this
work, the vanAlbada limiter is used (Hirsch, 1990). The limited
properties at the quadrature points are then converted to conserved
variables before the numerical flux calculation. After this operation,
the properties are no longer continuous within the SV if any of its
CVs is limited, thus the numerical flux is used on the internal faces,
instead of the analytical flux.

G ;= ; + V- (F—175), V7€ Cij.

(40)
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Numerical Results

The results presented here attempt to validate the implementation
of the data structure, boundary condition treatment, numerical sta-
bility and resolution of the SFV method. First, the simulation of the
supersonic wedge flow with an oblique shock wave is carried out, for
which the analytical solution is known (Anderson, 1982). Second,
the transonic external flow over a NACA 0012 airfoil is considered.
Next, the simulation of the Ringleb flow is performed followed by
the shock tube problem. These test cases were selected to check
upon the method capability to deal with discontinuities with the pro-
posed limiter and to measure the effective order of the scheme. For
the presented results, density is made dimensionless with respect to
the free stream condition and pressure is made dimensionless with
respect to the density times the speed of sound squared. For the
steady case simulations the CFL number is set as a constant value
and the local time step is computed using the local grid spacing and
characteristic speeds.

Wedge Flow

The first test case is the computation of the supersonic flow field
past a wedge with half-angle § = 10 deg. The computational mesh
has 816 nodes and 1504 volumes. For comparison purposes, the sec-
ond, third and fourth order SFV methods were utilized along with
other schemes. The leading edge of the wedge is located at coordi-
nates z = 0.25 and y = 0.0. The computational domain is bounded
along the bottom by the wedge surface and by an outflow section
before the leading edge. The inflow boundary is located at the left
and top of the domain, while the outflow boundary is located ahead
of the wedge and at the right of the domain. The analytical solution
gives the change in properties across the oblique shock as a function
of the free stream Mach number and shock angle, which is obtained
from the § — 8 — M ach relation. For this case, a free stream Mach
number of M; = 5.0 was used, and the oblique shock angle (3 is
obtained as =~ 19.5 deg. For the analytical solution, the pressure
ratio is pa/p1 = 3.083 and the Mach number past the shock wave
of M5 ~ 3.939. The numerical solutions of the SFV method are in
good agreement with the analytical solution. Also, a simulation with
the second order WENO (Wolf and Azevedo, 2006) was performed
to compare the resolution of the methods, as can be seen in Fig. 11.
Note that the SFV scheme is the one that better approximates the
jump in pressure on the leading edge. The pressure ratio and Mach
number after the shock wave for the fourth order SFV scheme were
computed as pa/p; &~ 3.047 and M =~ 3.901. The pressure con-
tours for this solution can be seen in Fig. 12.

For these simulations the use of the limiter was necessary and the
M parameter was set to 50, in order to keep the high order recon-
struction away from the shock wave. The limited CVs for pressure
of the second and fourth order scheme are shown in Figs. 13 and 14.

The same mesh problem was simulated with the WENO 4" or-
der scheme (Wolf and Azevedo, 2007) to see how it compares to the
4t order SFV scheme. The residual history for both schemes can
be observed in Fig. 15. Both simulations were performed until 5000
iterations with the same flow parameters. The SFV scheme reached
the maximum number of iterations in about 20 minutes. The WENO
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Figure 11. Supersonic wedge flow pressure coefficient distribution
for various schemes.

pressure

Figure 12. Supersonic wedge flow pressure contours obtained with
fourth order SFV.

scheme reached the same number of iterations after about 100 min-
utes. The solution in terms of Cp distribution of both schemes is
presented in Fig. 11. This simulation shows the improved efficiency
of the SFV method. Both simulations were carried out with an AMD
Opteron 246 system running the Linux operational system.

Ringleb Flow

The Ringleb flow simulation consists in an internal subsonic flow
which has an analytical solution of the Euler equations derived with
the hodograph transformation (Shapiro, 1953). The flow depends on
the inverse of the stream function k and the velocity magnitude q. In
the present computation, we choose the values £ = 0.4 and k = 0.6
to define the boundary walls, and ¢ = 0.35 to define the inlet and
outlet boundaries. With this parameters, the Ringleb flow represents
a subsonic flow around a symmetric blunt obstacle, and is irrota-
tional and isentropic. This simulation considered four meshes with
128, 512, 2048 and 8192 elements. The analytical and numerical
solutions were computed in all of these meshes so we could mea-
sure how close the numerical results were from the exact ones. This
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Figure 13. Supersonic wedge flow limited CVs for pressure, second
order SFV.

Figure 14. Supersonic wedge flow limited CVs for pressure, fourth
order SFV.

Fresidue
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Figure 15. Supersonic wedge flow residue history of fourth order (a)
SFV and (b) WENO schemes.
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difference was computed using the Lo error norm of the density.
The analytical solution was used as initial condition for all numeric
simulations. As the mesh is refined one expects this error to dimin-
ish. Analyzing this information on all meshes in a logarithm scale,
we can calculate the effective order of the method by computing the
slope of the least squares linear fit curve of all meshes errors. This
is what is represented in Fig. 16 for the second, third and fourth or-
der simulations. The order of the SFV was computed as 1.956 for
second order, 2.337 for the third order and 3.671 for the fourth order
case. The mesh with 2048 elements is shown in Fig. 17 along with
its analytical and numeric third order density distribution.

A high-order representation of the curved boundaries of the ge-
ometry is required to maintain the high resolution of the method
(Wang and Liu, 2006, van den Abeele and Lacor, 2007). The high-
order boundary representation also reduces the total number of SVs
in the mesh. Using standard linear mesh elements one needs so many
elements only to represent such curved boundaries. The simulations
performed for this case did not consider a curvature approximation
of the boundaries and for that reason it is assumed that lower than
expected orders were obtained. Note that the measured order of the
linear SFV reconstruction is indeed second order accurate, since the
representation of the boundary elements as straight lines do not com-
promise the order of the method, as shown in Fig. 16(a). The values
for k and q parameters of the geometry were chosen so that the flow
is subsonic everywhere in the domain in an attempt to reduce the er-
rors produced by not using a high-order boundary representation or
possible development of a shock wave (Wang and Liu, 2006). Even
though, for the fourth order scheme on the finest mesh the simulation
actually diverged.

Shock Tube Problem

The third test case analyzed is a shock tube problem with length
10 and height 1, in dimensionless units, discretized with a mesh
containing 4697 nodes and 8928 triangular control volumes and is
shown in Fig. 18. The results presented here are for a pressure ra-
tio, pl = p4 = 5.0. Here, pl denotes the initial static pressure in
the driver section (high-pressure side) of the shock tube, whereas p4
denotes the corresponding initial static pressure in the driven sec-
tion (low-pressure side) of the shock tube. It was assumed that both
sides of the shock tube were originally at the same temperature. In
this problem, a normal shock wave moves from the driver section of
the shock tube to the driven section. As the shock wave propagates
to the right, it increases the pressure and induces a mass motion of
the gas behind it. The interface between the driver and driven gases
is represented by a contact discontinuity. An expansion wave propa-
gates to the left, smoothly and continuously decreasing the pressure
in the driver section of the shock tube. All these physical phenomena
are well captured by the SFV schemes.

Figures 19 and 20(a) present the density and pressure distribu-
tion for the flow in the shock tube for an instant of time equal to 1.0
dimensionless time units after diaphragm rupture. The results pre-
sented were obtained along the shock tube centerline. The results
are plotted for the second, third and fourth order SFV scheme. One
can see in the density distribution that the results of the schemes are
in good agreement with the analytical solution. However, it is possi-
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Figure 16. Measured orders with (a) second, (b) third and (c) fourth
order SFV method for the Ringleb flow problem.

(a)

Figure 17. (a) Mesh, (b) analytical and (c) numerical density con-
tours for Ringleb flow.
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Figure 18. Mesh considered for the shock tube problem.
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Figure 19. Density distribution along the centerline of the shock
tube att = 1.

ble to see that the quadratic and cubic reconstructions were limited
to the point that most of their CVs were linearly reconstructed. Nev-
ertheless, the resolution of these methods for the discontinuities is
greater than that of the second order scheme, as noted on the pres-
sure distribution at Fig. 20(b).

NACA 0012 Airfoil

For the NACA 0012 airfoil simulation, a mesh with 8414 ele-
ments and 4369 nodes was used in the same conditions of the exper-
imental data (McDevitt and Okuno, 1985), that is, freestream Mach
number value of M., = 0.8 and 0 deg angle-of-attack. The sec-
ond, third and fourth order schemes were computed with a CF'L
value of 0.5, 0.3 and 0.2, respectively. Figure 21 shows the results
of the simulation using the fourth order SFV method. Its agreement
with the experimental data, in terms of shock position and pressure
coefficient (Cp) values, is very reasonable and the resolution of the
shock wave is really sharp, with only one mesh element to represent
it. The same is true for the other schemes. Note that the results pre-
sented are those for the SV mesh for all cases. For this simulation
the use of limiter is also necessary, and the limiter range parameter
is M = 50.

The region where the limiter works in the CVs is shown if Fig.
22 for the second order scheme and in Fig. 23 for the third order
scheme for pressure. For the linear reconstruction only the CVs
close to the shock wave were limited. For the third order scheme,
most SVs on the shock wave region were linearly reconstructed and
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Figure 20. (a) Pressure distribution along the centerline of the shock
tube at t = 1 and (b) detailed shock wave region.
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Figure 21. Pressure contours on NACA 0012 airfoil, third order SFV
scheme.

some limited. The choice of an adequate value for the M parameter
can lead to a lower usage of the limiter operator. The fourth order
SFV scheme achieved very similar results compared to the 3" order
scheme, given the fact that most CVs on the shock region were lim-
ited. The numerical results for the pressure contours are plotted in
Fig. 21 for the third-order SFV scheme. Figure 24 indicates that both
the second and third order methods capture the shock wave over the
airfoil, with a single SV element in it. The Cp distributions in the
post-shock region shows that the influence of the limiter operator re-
duced the third order scheme resolution. It is important to emphasize
that the present computations are performed assuming inviscid flow.
Nevertheless, the computational results are in good agreement with
the available experimental data. One should observe, however, that
the pressure rise across the shock wave, in the experimental results,
is spread over a larger region due to the presence of the boundary
layer and the consequent shock-boundary layer interaction that nec-
essarily occurs in the experiment. For the numerical solution, the
shock presents a sharper resolution, as one can expect for an Euler
simulation.

Conclusions

The second, third and fourth order spectral finite volume method
were successfully implemented and validated for external and in-
ternal flow problems, with and without discontinuities. Tests were
performed with different partition schemes and it was shown that
it can greatly influence the method behavior. The SV partitions in
the present work were not the ones with the smallest Lebesgue con-
stant, used until recently to indicate the quality of the polynomial
interpolation, but those that produced a smoother interpolation.

The effective order of the schemes was measured using the
Ringleb flow case and are in the expected values for the current im-
plementation. Further modifications in the code that support cur-
vature boundaries representation is necessary in order to maintain
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Figure 22. Limited CVs for pressure on NACA 0012 airfoil, second
order SFV scheme.

=

Figure 23. Limited CVs for pressure on NACA 0012 airfoil, third
order SFV scheme.
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Figure 24. Cp distribution for NACA 0012 airfoil for SFV method.

high-order resolution for such simulations. The method behavior
for resolution greater than second order showed to be in good agree-
ment with both experimental and analytical data. Furthermore, the
results obtained were indicative that the current method can yield so-
lutions with similar quality at a much lower computational resource
usage than traditional k£ — exact schemes, as demonstrated in the su-
personic wedge case compared to the WENO fourth order scheme.
The method seems suitable for the aerospace applications of interest
to IAE in the sense that it is compact, from an implementation point
of view, extensible to higher orders, geometry flexible, as it handles
unstructured meshes, and computationally efficient.
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