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Metrics for Nonlinear Model Updating 
in Structural Dynamics 
The aim of this paper is to perform a comparative study between different distance 
measures or metrics for use in nonlinear model updating using vibration test data. Four 
metrics derived from both frequency and time domain updating approaches are studied, 
including the harmonic balance method, the constitutive equation error, the restoring 
force surface and the Karhunen-Loève decomposition. In the first section, a benchmark 
model with local nonlinear stiffness is defined in order to illustrate each method. Secondly, 
each nonlinear updating metric is succinctly reviewed. Finally, the relative performances 
of the different metrics are investigated based on numerical simulations. These results 
allow us to characterize the applicability and limitations of the different approaches. 
Keywords: nonlinear model updating, harmonic balance, constitutive relation error, 
restoring force surface, Karhunen-Loève decomposition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1Local methods for linear model updating based on vibration 

data are well-documented in the literature (Friswell and 
Mottershead, 1995). In general, the goal is to solve an inverse 
problem involving objective functions that represent correlations 
between the experimental and numerical data from a model in which 
some parameters are unknown. Currently, these functions are 
computed using either modal quantities, e.g. natural frequencies, 
modal shapes or frequency response functions (FRF). Unfortunately, 
if the structure presents any nonlinearity, these procedures often fail. 
Fundamentally speaking, the principal reason for this failure is that 
linear modal parameters are functions of relationships based on a 
unidimensional convolution while nonlinear systems follow 
multidimensional convolutions. 

Nonlinear effects are becoming important in lightweight and 
flexible modern engineering structures due to the presence of joints, 
backlash, friction, stiffening nonlinearities, large displacement 
amplitudes, etc. Thus, if these nonlinear effects are not taken into 
account, then the linear model updating procedure will not 
necessarily converge properly, and the resulting model predictions 
will be erroneous (Kerschen et al., 2006). 

The domain of nonlinear structural dynamics is not as mature as 
its linear counterpart, and this is especially true for model updating 
methodologies. However, numerous recent works are dedicated to 
the identification of the local nonlinear parameters of a model based 
on a variety of frequency and/or time domain methods. 

A classical approach is to consider the multidimensional high-
order FRFs as linearized FRFs using the first order harmonic 
balanced (HB) method to obtain a suitable model description in the 
frequency domain. Meyer and Link (2003) employed the HB 
method to update nonlinear two-degree-of-freedom elements in a 
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larger linear finite element model (FEM). Böswald and Link (2004) 
applied the HB method in a similar way to update nonlinear joint 
parameters. The main advantage of this method is that it allows us to 
perform nonlinear updating using FRF residuals. However, the HB 
method fails when working with complex nonlinearities due to the 
loss of information caused by the linearization procedure. 

Another linear updating approach in the frequency domain that 
can be adapted for nonlinear updating is the method based on the 
constitutive relation error (CRE). The CRE is based on a separation 
between the reliable equations, e.g. the equilibrium equations, and 
the less reliable equations, e.g. the constitutive relations 
(Deraemaeker et al., 2002). Puel (2001) investigated an extension of 
CRE for nonlinear model updating employing the HB method to 
obtain linear FRFs. In this case, the same weaknesses shown by the 
HB method were observed. The author concludes that the frequency 
domain methods are not well-adapted for nonlinear identification. 

A more effective frequency domain technique is to consider the 
concept of high-order FRFs using Volterra series. However the 
results produced have been limited by the fact that a low-order 
truncation of the series is in general required (Worden and Manson, 
2005). Campello et al. (2004) proposed Laguerre filters to describe a 
discrete-time Volterra series in order to overcome this limitation and 
to be able to work with high-order kernels in the model. 

Time domain procedures may be more promising than 
frequency domain methodologies because it is possible to avoid the 
transformation between domains, a difficult procedure in nonlinear 
system analysis. Various authors have already investigated this 
possibility. Schmidt (1994) proposed a methodology to update local 
nonlinearities, such as Coulomb friction, gaps and local plasticity in 
a FE model employing conventional modal state observers for the 
linearized model. 

A classical and historical time domain approach with efficient 
and reliable results is the restoring force surface (RFS) method, 
described in standard textbooks (Worden and Tomlinson, 2001). 
Kerschen et al. (2001) illustrated this method using a beam structure 
with bilinear stiffness. However, since it requires that the modal 
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mass matrix be known in advance, this approach is difficult to 
implement in complex structures. 

A more efficient time domain methodology is based on the 
proper orthogonal decomposition (POD) of the covariance matrix 
constructed from response time histories. The POD is also known as 
the Karhunen-Loève decomposition or principal component analysis 
(PCA). These concepts are mainly used in structural dynamics for 
compressing vector data (Silva et al., 2007). Lenaerts et al. (2001) 
used the POD of the displacement vector to identify the nonlinear 
parameters combined with an optimization procedure based on the 
differences between the experimental and simulated POD. Zhang 
and Guo (2007) combined the POD with a design of experiments 
(DOE) in order to update nonlinear material parameters based on 
strain measurements with uncertainty considerations. The DOE 
followed the work of Schultze et al. (2001). These examples and 
numerous others in the literature show that the POD is a suitable and 
promising indicator for nonlinear model updating. However, the 
decomposition is essentially a linear tool, and there are some 
difficulties that must be overcome in the future. 

The reader interested in a detailed review of frequency and time 
domain techniques for nonlinear model updating can consult the 
work of Kerschen et al. (2006). 

The aim of the present paper is to examine, through numerical 
simulations, some practical aspects and limitations of some 
frequency and time domain methods for nonlinear model updating. 
The following approaches are compared: HB method, CRE, RFS 
and POD. Initially, a benchmark example is defined and used to 
simulate different levels of local nonlinearities (weak, medium and 
strong). The residuals adapted for nonlinear behaviors obtained by 
the various methods are succinctly described. The results are then 
interpreted and suggestions for improving each method are 
discussed. 

Nomenclature 

M  mass matrix 
K  stiffness matrix 

mdK  modified stiffness matrix 
C  proportional damping matrix 

nlf  vector of nonlinear force function 
x&&  acceleration vector 
x&  velocity vector 
x  displacement vector 
x̂  displacement amplitude in steady state 
( )0x  initial condition vector of displacement 
( )tF  excitation force in the time domain 
( )ΩF  excitation force in the frequency domain 

F  excitation force amplitude [N] 
m  lumped mass [kg] 

ik  linear spring [N/m] 

ic  linear viscous damping [N.s/m] 

nlk  nonlinear stiffness parameter [N/m3] 

eqH  equivalent FRF 

exH  experimental FRF 
( )nlkJ  objective function 
( )WVU ,,eω   constitutive relation error 

( )nlCRE kE  CRE energy index 
p  nonlinear updating parameter 
[ ]kz  time response matrix 

 

Benchmark Structure Description 

The equations of motion for a nonlinear vibrating system can be 
written by: 

 
( ) ( ) ( ) ( ) ( )t,ttt nl FxxfKxxCxM =+++ &&&&  (1) 

 
where the vector ( )xxf &,nl  is a nonlinear function of displacements 
x  and velocities x& . In this paper the techniques are illustrated 
using a two DOF example in which the first mass is connected to the 
ground through a spring with a cubic stiffness 15=nlk  N/m3, (see 
Fig. 1). In this case the equations of motion are given by:  

 
( ) ( ) ( )

( ) ( ) 012122322322

3
122221211211
=−−++++
=+−−++++

xkxcxkkxccxm
tfxkxkxcxkkxccxm nl

&&&&

&&&&  

 

 
Figure 1. Nonlinear model of the 2 DOF system. 

 
The nonlinear system also has linear springs 11 =k N/m, 
152 =k N/m and 13 =k N/m, linear viscous damping with 

10321 .ccc === Ns/m and mass 1=m kg. To obtain the frequency 
responses one generated 4096 samples with a sampling rate of 100 
Hz. The time responses for the time domain procedures were 
obtained assuming the excitation force ( )tf  null, and using 
different initial displacement vectors. The vectors used are 
( ) [ ]T.. 9180500 =x  for weak nonlinearities, ( ) [ ]T.. 9180010 =x  

for medium nonlinearities and ( ) [ ]T.. 9180220 =x  for strong 
nonlinearities. Due to the assumed natures of the nonlinearity, it 
becomes clear that the larger the magnitudes of the initial 
displacements, the most important the nonlinear effects will be. The 
phase plots for these conditions considering ( )tx1  and ( )t1x&  are 
shown in Figs. 2 to 4. One can clearly see that the trajectories 
change as the initial condition vector varies. 
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Figure 2. Phase portraits computed for weak nonlinearities. 
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For the frequency response analysis, sinusoidal excitations are 
applied in the frequency band from 0 to 2.5 Hz, using four increasing 
amplitudes, namely 10.F = , 250.F = , 50.F =  and 1 N. This 
variation leads to increasing levels of nonlinear behavior. A 
classical downsampling procedure was performed to obtain a new 
sampling rate of 5 Hz, in order to improve the resolution near the 
equivalent linear modes. The frequency information of the two 
equivalent linear modes is in this range. 
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Figure 3. Phase portraits computed for medium nonlinearities. 
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Figure 4. Phase portraits computed for strong nonlinearities. 

 
 
The plots of the ratio between the amplitudes of ( )tx1  and ( )tf  

are shown in Fig. 5. As can be seen, the resonance peaks change 
when the force amplitude is increased, (see Fig. 5b). This is a 
qualitative index of the presence of nonlinearity that affects mainly 
the first mode of the equivalent linear model. Several techniques can 
be used to detect nonlinear behaviors in experimental data, 
including the coherence functions, the Hilbert transform or the 
wavelet transform. These methodologies provide qualitative 
indicators for the presence of nonlinearities. The distortions between 

the FRF curves indicate the nonlinear effects. Further details about 
these approaches can be found in (Worden and Tomlinson, 2001). 

Metrics for Nonlinear Behavior 

In this section, the metrics for nonlinear model updating 
obtained by several methods are reviewed. For the example 
considered herein, we assume for all the approaches that the nature 
and location of the nonlinearity are known.  
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(a) FRF. 
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(b) Zoom in the first peak. 

Figure 5. Nonlinear FRF considering several levels of amplitude excitation. 

Harmonic Balance Method 

The harmonic balance method (HB) is a procedure to linearize 
the FRFs. The transformation to the frequency domain is performed 
by calculating the equivalent linear stiffness and damping 
parameters for the nonlinear elements (Böswald and Link, 2004). 
The fundamental assumption of the HB method is that the response 
of a nonlinear structure due to harmonic excitation can be 
approximated by a harmonic function of the frequency of excitation, 
Ω  (in rad/s). Hence: 
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( ) ( )
( )
( )
( )⎪

⎩

⎪
⎨

⎧

ΩΩ−≈
ΩΩ≈
Ω≈

⇒+Ω=
tsinx̂x

tcosx̂x
tsinx̂x

tsinf̂tf
2&&

&ϕ  (2) 

 
In order to illustrate this approach, let us consider the simple 

case of a single degree of freedom system: 
 

( ) ( )tfx,xfxm nl =+ &&&  (3) 
 
The nonlinear function ( )x,xfnl &  can be decomposed into a 

Fourier series which can be truncated keeping only the fundamental 
terms: 

 
( ) ( ) ( ) L& +Ω+Ω+= tcosbtsinaax,xfnl 110  (4) 

 
where the coefficients 0a , 1a  and 1b  are given by: 

 

( ) ω
π

π

∫=
2

0

0 ,
2
1 dxxfa nl &

 

( ) ( ) ωω
π

π

∫=
2

0

1 ,1 dcosxxfa nl &

 

( ) ( ) ωω
π

π

∫=
2

0

1 ,1 dsinxxfb nl &

 
 

where tΩ=ω . The goal is to replace the nonlinear function 
( )x,xfnl &  with equivalent elements. In the linear case: 
 

( ) ( )[ ] ( )[ ]tcosx̂ctsinx̂kxcxkx,xf eqeqeqeqnl ΩΩ+Ω=+= &&  (5) 
 
After comparing Eq. (5) and (4) we note that: 
 

( )
x̂
bx̂keq
1=  (6) 

 

( )
Ωx̂
ax̂ceq

1=  (7) 

 
The values of the equivalent parameter depend on the steady-

state amplitude x̂ . The equivalent parameter for a nonlinear cubic 
stiffness can be expressed by: 

 
2

4
3 x̂kkk nleq +=  (8) 

 
The equivalent stiffness keq is a function of the amplitude x̂  and 

varies with the excitation frequency. From this equation it is 
possible to describe a linear FRF associated to the nonlinear system: 

 

( )
22

4
3

1

x̂kkjcm
H

nl

eq
++Ω+Ω−

=Ω  (9) 

 
An optimization procedure can be proposed by considering the 

experimental FRF obtained by a sinusoidal excitation in a given 
frequency range, ( )ΩexH . The unknown parameters in Eq. (9) can 
be found by minimizing the following objective function: 

( ) ( ) ( )( )∑
=

Ω−Ω=
2

1

2
N

Nk
keqkex ,HHJ pp  (10) 

 
where *  is the module, 1N  and 2N  indicate the initial and final 
index frequency point, respectively, close to an equivalent linear 
mode and p  is the vector of parameters to update; in our example, 

nlk=p . Classical local optimization procedures can be performed 
to solve the minimization problem. Another indicator could be used 
based on the covariance: 

 

( ) ( ) ( )( )∑
=

−=
2

1

N

Nk
keqkex p,HHcovpJ ΩΩ   (11) 

 
In a multi-degree of freedom (MDOF) system, the Eq. (9) can 

be replaced by a FRF matrix between the input-ouput signals related 
to the nonlinear parameters. In this case, the modified stiffness 
matrix mdK  is given by: 

 

∑
=

+=
nlN

i
i

T
ieqimd kKK

1
ΘΘ  (12) 

 
where the vector iΘ  indicates the position of the lumped nonlinear 
parameter of the ith nonlinear parameter, and nlN  is the number of 
nonlinear elements. 

Constitutive Relation Error 

The problem in the CRE method is to find an admissible 
solution which verifies the less reliable equations and quantities as 
closely as possible. In the frequency domain, this is expressed by: 

 

( ) ωωω SeS ∈∈ ppp      where   minimizeswhich     Find 2  (13) 
 

where ( )p2
ωe  is the CRE modified in each sampling frequency. The 

CRE contains all the less reliable information that is not verified by 
the admissible solution ωS . In the case of a FEM, the CRE is 
expressed based on the discrete fields U , V  and W , and the 
structural matrices (Deraemaeker et al., 2002): 

 

( ) { } [ ]{ }

{ } { }

{ } { }exr
*

ex

*

md
*

r
r

e

UUGUU

WUMWU

VUCTKVUWV,U,

−Θ−Θ
−

+

−Ω−
−

+

−Ω+−=

1

2
1

2
2

22

γ

γ
ω

 (14) 

 
where γ  and T  are constants and rG  represents a weighting 
matrix for the test-analysis distances, given by: 

 

[ ] rrmdrr MCTKG 22
2

1
2

ωγγ −
+Ω+=

 (15) 
 

where the subscript r  indicates the reduced matrix and mdK  is the 
modified stiffness matrix given by Eq. (12). The fields U , V  and 
W  must be admissible and are computed by solving the following 
linear system of equations for each frequency value: 
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BAZ =  (16) 
 

where 
 

( )
( ) ( )
( )

( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

Ω+Ω−−

ΘΘ
−

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Ω−Ω+

Ω−
−

Ω+

Ω
−

Ω+

=

MCK
0

G

MCK

MKCTK

MCTK

A

2

2

2

22

1

2
1

2

2
1

2

j

r
r

j

j

md

r
T

md

mdmd

md

γγ

γγ

 

 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−
−

=
U

WU
VU

Z

 
 

( ) ⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Ω

ΘΘ
−

=
F

G

B 0
1 r

T
r

r

 
 
To summarize, the CRE method requires the evaluation of Eq. 

(14) for each nonlinear parameter of cubic stiffness defined in the 
matrix mdK . The procedure used for nonlinear model updating 
assumes also a linearization by HB method. However, this technique 
expands the information on unmeasured points through the 
estimation of the different displacement fields using the Eq. (16). In 
comparison with the HB method which attempts to minimize output 
errors, the CRE method leads to the minimization of a residual 
having a strong physical meaning. This method requires information 
on the displacements and the excitation forces in the frequency 
domain and assumes that the linear parameters are known. 

In order to evaluate the CRE total energy, an indicator is 
computed in a frequency range close to the equivalent linear mode 
of interest. This metric is obtained for each nonlinear parameter 

nlk : 
 

( ) ( )2
2

1
nl

N

Nk
knlCRE kekE ∑

=
= α  (17) 

 
where kα  is a value to normalize the energy. 

Restoring Force Surface Method 

The RFS method rewrites the Eq. (1) in a different form in order 
to emphasize the nonlinear function ( )xxf &,nl : 

 
( ) ( ) KxxCxMtFxxf −−−= &&&&,nl  (18) 

 
If the values of excitation forces, accelerations, velocities, 

displacements, and the linear structural matrix are assumed to be 
known, then the nonlinear function ( )xxf &,nl  can be estimated. 
Moreover, if the order and degree of nonlinearity is known, the 
method has been shown to work well. For example, in our 
benchmark, this term is a function of the displacement x  and the 
nonlinear parameter nlk : 

( ) 3
11 xkk,xf nlnlnl =  (19) 

 
It is thus possible to propose an indicator using the Eqs. (18) and 

(19). For example, one can use the following objective function 
considering that the nonlinear force vector in Eq. (18) is the 
experimental value, and the value given by Eq. (19) is the model-
predicted value for each time instant: 

 

( ) ( ) ( )( ) ( )( )( )
2

0
1∑

=
−=

N

k
nlk

m
nlkk

e
nlnl k,txftx,txfkJ &  (20) 

 
where N  is the number of time points considered and the 
superscripts e  and m  indicate the experimental and the model data, 
respectively. Another indicator can be obtained using the covariance 
of this residual: 

 

( ) ( ) ( )( ) ( )( )( )∑
=

−=
N

k
nlk

m
nlkk

e
nlnl k,txftx,txfcovkJ

0
1&  (21) 

 
The acceleration vector can be estimated using the numerical 

derivative of the velocity: 
 

t
xlimx

t δ
δ

δ

&
&&

0→
=  (22) 

 
In the numerical example in this paper, the Eq. (18) is replaced 

by the following expression: 
 

( ) ( ) ( ) 22221211211 xcxkxkkxccxmx,xfnl &&&&& +++−+−−=  (23) 
 

as, since we are working with the free response, ( )tF  is null. It is 
worth observing that this method requires information about the 
displacement and velocity of the first and second masses. The 
advantage of this approach is that it allows an optimal value to be 
found without having to solve an optimization problem. The exact 
value of a parameter vector nlk=p  can be found by solving the 
following problem: 

 

( ) ( )xxfXXXp &,nl
TT 1−

=  (24) 
 

where X  is the regressive vector that contains the acceleration, 
velocity and displacement vectors.  

Karhunen-Loève Decomposition 

In this method, a vector [ ]kz  of the response components 
corresponding to m  measurements locations is formed, according 
to: 

 
[ ] [ ] [ ] [ ][ ]kzkzkzkz mL21=  (25) 

 
The covariance matrix, Ψ ( mm× ), constructed from spatial 

measurement locations summed over all discrete time samples, is 
obtained by: 

 

[ ] [ ]∑
=

=
N

k

Tkzkzψ
1

 (26) 

 
The eigenvalue problem associated to the covariance matrix 

satisfies: 
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iii vvψ λ=                                                                          (27) 
 

where iλ  and iv  are the eigenvalues and eigenvectors, 
respectively. The eigenvector iv  is called a principal component of 
the covariance matrix or proper orthogonal model (POM) (Sohn et 
al., 2000). 

The nonlinear model updating can be based on the minimization 
of the difference between the experimental and simulated POM, 
with the advantage of having a metric requiring a limited number of 
measurements points. 

Several methods can be used to compute behavior metrics with 
the POM. Lenaerts et al. (2001) used the differences between 
quantities resulting from the singular value decomposition the 
matrix defined in Eq. (26), TVUΣψ = . This objective function is 
given by: 

 

( ) ( ) ( ) ( )∑∑∑∑∑ ++=
j k

jk
j

ij
i j

ijnl VΣUkJ 222 ∆∆∆           (28) 

 
where U  ( )mm×  and V  ( )mm×  are orthogonal matrices IUU =T  
and IVV =T , with I  being the identity matrix, and 

( )n, ,,diag σσσ L21=Σ , where iσ  are the singular values of the 
covariance matrix ψ  ( mm× ). Only the dominant terms are used to 
compute the summation indicated in Eq. (28). Another common 
function is based on the Modal Assurance Criterion (MAC) between 
the experimental and model-predicted POM. This function is used in 
the work of Kerschen et al. (2002) in the form: 

 

( ) ( ) [ ]∑
=

−∈
−

=
q

i
mieinl v,vMAC

q
kJ

1
011                           (29) 

 
where q  is the number of POM considered and the subscripts e  
and m  are relative to experimental and model POM, respectively. 
However the POD is a linear projection, so it also fails when 
working with strong nonlinearities (Kerschen, 2002). 

Results 

In this section, we will compare the performance of the different 
metrics presented above for nonlinear model updating. Equations 
(10), (11), (17), (20), (21) and (28) are applied to the numerical 
simulation data obtained in Section 2. All metrics are normalized 
with respect to their maximum values. 

Figures (6) to (11) show the curves of the objective function 
over a range of values of the unknown nonlinear parameter. The 
exact value is indicated by the vertical line in order to facilitate the 
comparison with the actual minima in the curves which are the 
points to which an optimization algorithms are expected to 
converge. Moreover, the figures are divided according to the level of 
nonlinearity and the domain of the test, either frequency or time. 
The nonlinearity levels considered are obtained by applying 
different amplitudes of the excitation force, F = 0.1 N, 0.25 N and 
1.0 N, for weak, medium and strong nonlinearity, respectively. 
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Figure 6. Evolution of the frequency residuals with the variation of the 
nonlinear parameter considering weak nonlinearity, where HB1 and HB2 
are the residuals by using Eqs. (10) and (11), respectively. 
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Figure 7. Evolution of the time residuals with the variation of the nonlinear 
parameter considering weak non-linearity, where RFS1 and RFS2 are the 
residuals by using Eqs. (20) and (21), respectively. 

 
 
The first remark is that all curves are convex and hence well 

adapted to conventional local optimization procedures. The 
frequency methods studied here introduce in a strong linearization 
due the application of the HB method, once it is considered that the 
response of a nonlinear structure due to harmonic excitation is 
approximated by a harmonic function with contribution only 
provided by the fundamental frequency. 

In this example the minimum value is found far from the exact 
value, as seen in figures (6), (8) and (10). Quantitatively speaking, 
this error is about 7%. In the case of strong nonlinearity, the curves 
become multimodal, which can be more difficult to handle in an 
optimization loop. 
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Figure 8. Evolution of the frequency residuals with the variation of the 
nonlinear parameter considering medium nonlinearity, where HB1 and 
HB2 are the residuals by using Eqs. (10) and (11), respectively. 
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Figure 9. Evolution of the time residuals with the variation of the nonlinear 
parameter considering medium nonlinearity, where RFS1 and RFS2 are 
the residuals by using Eqs. (20) and (21), respectively. 

 
 
In the frequency domain, the CRE gives superior results in 

comparison to the HB method since in this approach the FRF 
information on the mass 2, considered unmeasured, is estimated by 
solving the linear system given by Eq. (16). 

In the time domain, the same can be said for the RFS method 
which benefits from a knowledge of a complete set of measurement 
points. The RFS approach also appears to be best adapted to treat all 
types of nonlinearities since the method is based on the exact 
equations. In all cases the minima of the curves correspond to the 
exact value of the nonlinear parameter knl. However, it is unrealistic 
to expect a complete knowledge of the system state vector as is 
required in this approach. 
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Figure 10. Evolution of the frequency residuals with the variation of the 
nonlinear parameter considering strong nonlinearity, where HB1 and HB2 
are the residuals by using Eqs. (10) and (11), respectively. 
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Figure 11. Evolution of the time residuals with the variation of the 
nonlinear parameter updating considering strong nonlinearity, where 
RFS1 and RFS2 are the residuals by using Eqs. (20) and (21), respectively. 

 
 
The POD method only requires the output signals, since is 

assumed that the nature of excitation force is known. This 
characteristic makes this approach very promising for nonlinear 
updating based on operational data in comparison to the other 
methodologies studied here, which require laboratory tests under 
controlled conditions. However, we also note that the POD is very 
sensitive to the sampling frequency used and number of samples. 
Lenaerts et al. (2001) discussed how to choose these parameters. If 
these values are not defined correctly, the results can diverge from 
the exact parameters, and the shape of the objective function can 
change considerably. Another important point to observe is that the 
POD is basically a linear projection so it is not necessarily well 
adapted to strong nonlinear behaviors. In this case, the nonlinear 
POD could be not used with strong nonlinearities which have been 
omitted from the figure. A solution is to use a clustering technique, 
for example fuzzy c-means clustering, to separate the data in groups, 
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and then to apply the POD to each cluster in order to try to preserve 
the character of the nonlinear effects. This technique is known as 
nonlinear proper orthogonal decomposition (Kerschen, 2002). 

In terms of computational costs, the frequency methods are 
more demanding because they require the simulation of a 
sinusoidal excitation over the frequency range for each iteration. 
The POD also requires the solution of the nonlinear equations of 
motion for each value of knl. The lowest computational cost is 
required by the RFS methodology. 

Final Remarks 

The different metrics discussed in the present paper for 
comparing nonlinear model updating technique have proven to be 
effective in working with structures with local and weak 
nonlinearities. However, in the case of strong nonlinearity, only the 
RFS method provided accurate results. Nonetheless, this approach 
must be adapted in order to be applied to complex structures. In 
perspective, further study should focus on two aspects: (1) nonlinear 
methods capable of accounting for strong nonlinear effects, and (2) 
a time domain approach based on the constitutive equation error, 
which should have the advantage of the RFS method without the 
constraint of measuring all model degrees of freedom. Moreover, in 
order to consider nonlinear updating in systems with strong 
nonlinearities and to overcome the above-mentioned difficulties, it 
will be fundamental to consider unconventional approaches based 
on adaptive filters, nonlinear state estimation, as well as other recent 
techniques based on the Volterra series. 
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