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Novozhilov's Mean Rotation Measures 
Invariance 
In this article the invariance of the Novozhilov's mean rotation measures will be emphasize 
by the invariance of the determinant of the gradient of deformation tensor of continuum 
mechanics, or the invariance of the second principal invariant of the tensor (I + E)⎯ 1 W. 
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Introduction 

In the fourth decade of the 20th century Novozhilov obtained a 
measure of the mean rotation (Novozhilov, 1971) by modifying a 
previous definition produced by Cauchy (Cauchy, 1841). In the 
literature, this measure has been named Novozhilov's mean rotation 
measure ever since. 

The original Novozhilov's expression was acquired in terms of 
Cartesian coordinates, therefore hiding its invariant character. 

Later on Truesdell and Toupin (Truesdell and Toupin, 1960) 
reevaluated Novozhilov's measure and found there was a hidden 
invariance in it. 

The present article enhances the invariance of Novozhilov's 
mean rotation measure. This invariance is derived through the 
invariance of the determinant of the gradient of the deformation 
tensor F (Continuum Mechanics), or even the invariance of the 
second invariant of the tensor (I + E)−1W, when the Cartesian 
decomposition F = I + E + W is adopted for the tensor F. 

An arbitrary tensor S can be decomposed, among other ways, in 
the following: (i) polar decomposition S = RU, R ∈ Orth, U ∈ Sym; 
(ii) Cartesian decomposition, S = symS + skwS and (iii) additive 
decomposition, S = Es + Ds, being Es the spherical tensor of S and 
Ds the deviator tensor of S (according to Coimbra, 1981, for 
example), which is a null trace tensor. 

The distributivity of the determinant of S, detS, in the polar 
decomposition is valid, while in the additive and Cartesian 
decompositions it is not valid in general (particularly when the 
domain of S has dimension two, the distributivity of detS is valid). 
When dim(domain S) = 3 and S is the gradient of the deformation 
tensor F, from the Continuum Mechanics, the detF involves the 
measures of Novozhilov´s mean rotation, whose invariance is due to 
the invariance of detF. 

Determinant of the Gradient of the Deformation 

Let the gradient of deformation tensor be denoted by F : V → V , 
dimV = 3, and consider its Cartesian decomposition F = I + E + W, 
with (I + E) ∈ Sym and W ∈ Skw1. Hence the determinant of F is 
calculated as: 

 
detF = det(I + E + W). 
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1 The notations used in this article are the continuum mechanics usual ones, 
found for example in (Gurtin, 1981). 
 

Supposing that det(I + E) ≠ 0, the previous expression can be 
rewritten as: 

 

detF = det ( ) ( )( )[ ]WEIEIEI 1−++++ , 

= ( ) ( )[ ] detdet 1WEIIEI −+++ . (1) 
 
It is known that the characteristic polynomial of any tensor 

S∈Lin is given by 
 

det (S − λ I)= − λ3 + (tr S)λ2 − IIS λ + det S, (2a) 
 

where IIS is the second principal invariant of S. Substituting λ = − 1 
in the expression (2a), the following expression is obtained: 

 
det (I + S)= 1 + tr S + IIS + det S. (2b) 

 
Introducing the expression (2b) in the equation (1), and 

considering S = (I + E)−1 W gives: 
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taking into consideration that det[(I + E)−1W] = det(I + E)−1detW = 
0 because W ∈ Skw. Keeping in mind that tr[(I + E)−1W] = (I + 
E)−1 • W = 0 (result of the inner product of a symmetric tensor by 
an skew symmetric one), the expression of detF can still be written 
as: 

 
detF = det(I + E) [1 + II(I + E)

−1
W]. (3) 

 

Taking account of that IIS = ( ) ( )[ ]22 trtr
2
1 SS − , the invariant II(I + 

E)
−1
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Since (I + E)−1 ∈ Sym, its spectral decomposition is considered, 

according to (Gurtin, 1981), as: 
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ε1 , ε2 , ε3 − principal elongations of E, 
e1 , e2 , e3 – principal directions of elongations of E. 

Taking this expression in equation (4) and after some algebraic 
operations gives 
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Novozhilov's Mean Rotation Measures 

Denoting by 
 

Z3 := e2⊗e1 − e1⊗e2  – skew symmetric tensor of axial vector e3 , 
Z2 := e1⊗e3 − e3⊗e1  – skew symmetric tensor of axial vector e2 , 
Z1 := e3⊗e2 − e2⊗e3  – skew symmetric tensor of axial vector e1 , 

 
equation (5) can be written as: 
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Denoting by ω the axial vector of W, the following expressions 

may be obtained: 
 

e2•We3 = e2•(ω × e3) = − ω•(e2 × e3) = − ω•e1 , 
e1•We3 = e1•(ω × e3) = ω•(e3 × e1) = ω•e2 , 

e1•We2 = e1•(ω × e2) = − ω•(e1 × e2) = − ω•e3 . 
 
Introducing these three expressions in equation (6) one obtains 
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Considering that W•Zi = 2ω•ei , i = 1, 2, 3, according to 

(Chadwick, 1999) comes: 
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Using the notation of (Oliveira, 1987) the terms of the 

expression of II(I + E)
−1

W can be written as: 
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• e  = C(F ; e1) – Novozhilov´s mean rotation 

measure, around e1 ; 
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• e  = C(F ; e2) – Novozhilov´s mean rotation 

measure, around e2 ; 
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• e  = C(F ; e3) – Novozhilov´s mean rotation 

measure, around e3 , 
which gives : 

 
II(I + E)

−1
W = 

 − 
2
1 tr[(I + E)−2 W2] = [C(F , e1)]2 + [C(F , e2)]2 + [C(F , e3)]2  (7) 

 
Substituting expression (7) in equation (3) it follows: 
 

detF = det(I + E) {1+ [C(F , e1)]2 + [C(F , e2)]2 + [C(F , e3)]2}. (8) 

Conclusions 

The following invariance of Novozhilov's mean rotation 
measures is inferred from expressions (7) and (8) : the sum of the 
squares of Novozhilov’s mean rotation measures, around three 
directions mutually orthogonal (specifically the second principal 
invariant of the tensor (I + E)−1 W). 

At the proof of the results, the eigenvectors e1, e2 and e3 (the 
principal directions of elongation of the tensor E) were used as base 
of  V, in order to make the expressions of the mean rotation C(F ; ei) 
simpler. 

As C(F ; n) is the average value of the tangents of the rotation 
angles of fibers of an elastic body around a given direction n, the 
Novozhilov´s mean rotation measure can fail in situations where the 
deformation of the body causes a 90º or a 270º rotation of a fiber 
around n (in this case C(F ; n) → ∞, as it occurs in Truesdell & 
Toupin, 1960, page 293, when K = 2 is used in the equation (36.8)2 
from page 276). 

Another mean rotation measure, based on the mean angle of 
fiber rotations of a body around a direction n, solves also the 
situation described above, being therefore valid for all possible 
deformations of the elastic body. It is called the Cauchy mean 
rotation measure and it has been developed in (Cauchy, 1841), 
(Oliveira, 1987), (Zheng & Hwang, 1989 and 1992) and (Martins & 
Podio-Guidugli, 1992). 
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