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Experiments and Theory for Two
Grids Turbulence

Turbulence generated by a pair of oscillating gridsa water tank is investigated using
the digital particle image velocimetry techniquesrical and horizontal components of
fluctuating velocities are measured. Experimentafifes of the turbulent kinetic energy Kk,
and the energy dissipation raté, obtained from the fluctuating velocities, are g#pted
and compared with theoretical predictions. Otheoperties of interest, such as the length
scale and the turbulent viscosity, obtained in ginesent study, are also reported. The
turbulence generated with the pair of grids maydeessified as "nearly isotropic" and
theoretically the flow may be analyzed using thenkedel. The experimental data agree
well with the theoretical predictions. Also datadifferent sources found in literature, for
pairs of vibrating grids, are compared with the geaet experimental results and
theoretical predictions, showing good agreement Studies conducted at the Laboratory
of Environmental Hydraulics from the Department bfydraulics and Sanitary
Engineering, EESC/USP, permits to affirm that “dteubscillating grids” turbulence can

be viewed as nearly isotropic.
Keywords: Grid-turbulence, oscillating grids, turbulence dwels, ke model

Introduction

The study of isotropic turbulence began with Taylaho
defined it as the condition in which all statistigaoperties are
independent of direction. Since then, considered'simplest kind"
of turbulence (in the sense that the least numbgratameters is
necessary to describe it), isotropic turbulence basn broadly
studied aiming a better understanding of turbuleiteelf and its
relation with correlated transport phenomena. K baen used in
theoretical treatments of turbulence with more clempflows
(Townsend, 1976). For many decades, "experimergatrapic
turbulence" has been “generated” in different waltwever,
despite all the effort, this type of turbulence canly be
approximated, as the perfect isotropy is only atétcal hypothesis
and impossible to be reached experimentally (Sedial 1996).
Therefore, "experimental isotropy" is called "ngdsdotropic
turbulence". Some authors used grid-turbulencett@inaa steady
condition of nearly-isotropic turbulence. Amongrhare De Silva
and Fernando (1994), Shet al (1996), Brunket al. (1996),
Thompson and Turner (1975), Hopfinger and Toly @9%ouza
(2002), Janzen (2003) and Janzen and Schulz (20@3Yhe
oscillating grid configuration, a grid (usually sge) of mesh siz#
oscillates around its mean position, with amplit&ighe stroke) at
a frequencyf in a tank. Because the turbulence intensities ydeca
rapidly as the distance from the grid increasedieiMhaux et al.
(1995), Srdicet al. (1996) and Shyet al. (1996), in independent
studies, proposed a two-grid configuration, alrebding object of

study by Shyet al.(1997), Ott and Mann (2000), and Janzen (2003).

In this study, the digital particle image velocimyet(DPIV)
technique is employed to investigate the turbulgmmeluced by a
pair of oscillating grids. The fields for turbulekinetic energy and
its dissipation rate have been compared with ptiedis of
analytical solutions of thke-£turbulence model, proposed by Schulz
and Chaudhry (1998, 1999), and Schulz (2001). Gagrdement
between theory and experimental data is observetherO
characteristic quantities such as length scalen®ldg shear stress
and eddy viscosity are also presented.
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Nomenclature

Cp = coefficient for the evaluation af dimensionless.

C,. = k—¢model constant for theequation., dimensionless.

C, = k—-£model constant for., dimensionless.

f = oscillation frequency, Hz.

f(r) = longitudinal correlation function, dimensitass.

F = Elliptic integral.

F,= Matsunaga et al. transformed space dimension, s/m

g(r) = transversal correlation function, dimensiesk.

Hyp2F1 = Hypergeometric function.

j = coefficient of thee equation, dimensionless.

k = turbulent kinetic energy per unit mas</sh

k = modified turbulent kinetic energy per unit mas&/s”.

k* = nondimensional turbulent kinetic energy.

L = half distance between oscillating grids, m.

L, = Turbulence length scale, m.

Ls = Turbulence length scale, m.

Ly = Turbulence length scale, m.

m = parameter of the elliptic integral, dimensiosde

M = mesh size.

N = number of images, dimensionless.

r = distance between two points in the fluid, m.

Re = Reynolds number, dimensionless.

s = dimensionless distance.

S = Stroke, m.

u = RMS value of the x-component of the velodiisb(tlence
intensity, defined according to Brodkey, 1967),.m/s

u' = fluctuation of the x-component of the velogitys.

w = RMS value of the z-component of the veloditp(ience
intensity, defined according to Brodkey, 1967),.m/s

w' = fluctuation of the z-component of the velqaitys.

w; = integration constant for grid turbulence (constan
viscosity), rif.

W, = integration constant for grid turbulence (genexascosity),
m°/<,

ws = integration constant, fis®.

W, = integration constant, dimensionless.

Ws = integration constant, dimensionless.

w* = dimensionless constant.

X = space dimension, m.

Z = space dimension, m.

z* = nondimensional space dimension.
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Greek Symbols

a = modified turbulence Reynolds number.

&= turbulent energy dissipation rate s’

& = nondimensional turbulent energy dissipation rate.
k = parameter of the elliptic integral, dimensiordes

I = turbulent kinematic viscosity, ¥s.

v = kinematic viscosity of the fluid,¥s.

o0, =k-£model constant fos.

0k = k= model constant for k.

¢ = parameter of the elliptic integral, dimensionless

Subscripts

0 relative to the origin position.

1,2,3,4,5 relative to integration constants ositions within
the fluid.

Ze relative to the equation.

500 relative to 500 images.

f relative to longitudinal correlation.

g relative to transversal correlation.

k relative to kinetic energy.

m relative to Matsunaga et al. transformation.

N relative to the number of images.

t relative to turbulence.

£ relative do energy dissipation rate.

M relative to viscosity.

Theoretical Approximation Considering Constant vy

Schulz and Chaudhry (1998, 1999) and Schulz (2pfd9ented
analytical solutions for two-grid turbulence, assugmo mean flow
and that the statistical quantities vary only altingz axis (normal
to the planes of the grids). For this field, coesidg first the
hypothesis of a constant turbulent viscosity, the governing
equations from thk-£ model are given only by

ok
0z
in which k is the turbulent energy is the dissipation rate, ang

and C, are model constants. Eliminating and integrating the
resulting equation, Eq. (2) and (3) are obtained:

2

4

_ti = and Vt:C,u_
&

ok 0z

@

0%k O .2
—|=C,, =2k 2
[022] H VR @
(3)

wherew; is an integration constant. Considering that tirulent
kinetic energy assumes a minimum vakgeat z = 0 (the central
position between the two grids), the boundary ciiors are given
by k=k, and dk/dz=0 at z=0 To simplify Eq (3), the following
dimensionless quantities are definédig§ the half distance between
grids andReis a convenient Reynolds number):

L 2C 0o
|(*:£l s:E, af:_\/E #k
ko L Vt 3
Lk
7 =Re| 2% with Re= 2 (4)
3 Vi
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These definitions and boundary conditions simgty (3) to

K=J_rz7/\/k*3—1

5

s ®)

which integrated produce?i:ias. The right term (with
1yk*3-1

the integral symbol) is recognized as an elliptiegral of the first

kind. Therefore, this equation can be represerged a

mF(¢,K) =+as (6)

wherem, ¢ andk are the parameters of the elliptic intedfép, ).
The values ofn, ¢ and « are required to visualize the evolution of
the nondimensional turbulent kinetic energk*)( with the
nondimensional distance)( For the present case, the values are:

2-43 J3+1-k*
2 J3-1+k*

Figure 1 shows the graph of Eq. (6) kras function ofas.

m= 4i 007598357 & = 002588190 cosg =
3

3.0
k*
25
2.0
i
oS
1.0
oo 02 04 0B 08 10 12 14

Figure 1. Curve obtained for k* versus  as, from Eq. (6).

Theoretical Approximation Considering General vy

Diffusion and dissipation of turbulence with a gexteurbulent
viscosity may also be described by #e model. In this case both
transport equations, fédrande&, must be used. Schulz and Chaudhry
(1998, 1999) and Schulz (2001) proposed solutiamrskfand &
considering general turbulent viscosity, with tlobusons presented
as power series of the distance to the originhéngresent study an
alternative solution is furnished, based on a linddferential
equation relatingg ande.

The original set of equations to be solved is gibgrEqg. (7) and
(8) (two coupled nonlinear equations).

Cu k? ok |_,
o £ 0z

]

32 (7)
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The first integration of Eq. (7) furnishes now (8tzh and
Chaudhry, 1998):

©)

W, IS an integration constant. Although Eq. (9) i sbnlinear, £

and k appear isolated (only one variable at each sidethef

equation), and suggest that

e=g(k) and k=k(z) (20)

Matsunaga et al. (1999) proposed transformatior), (izhich
simplify the representation of the original equasip

dj =% (11)
dz 1©;
Using Eqg. (11) into Eq. (7) and (8) leads to:
2
d k2 =k? (12)
dFp
2 -
d 52 = jek (13)
dFmy
where the following definitions apply:
_ C Cos0
k=—Hk and j= 2e7¢ (14)
k Ok

The first integration of Eq. (12), after the sug@es of Schulz
and Chaudhry (1998, 1999), furnishes:
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dk
dFn

=+ wg +§IZ3

Wz iS an integration constant. Equations (9) and ér@)still valid,
so that we have:

(15)

e=g(k) and k=k(Fy) (17)
From Eq. (17) it follows immediately that:

2 2 = \2 2
dg:d_g[dk]+d_{dk 18)
dFp? dk2 dFm) dk dF,2

Using Eq. (12), (13) and (15) into Eq. (18) leanis t
2-3 d?e —ode -
(W +=k jT+k — - jke=0 (29)
3 Jdk? k

This result is important, because the original pFoh composed
by two coupled nonlinear equations foand« is transformed into
only one linear equation fag = ¢ (|Z). To generalize the equation
and its results, a nondimensional forfeq. 20 is presented,
considering the values of the turbulent kineticrgmek,) and its
dissipation rateg) at the origin.

2 .
(W*+Ek*3j—d 0298 a0 (20
3 dk*?2 dk*
=X and k=
€0

w* is a nondimensional constant. A solution of tiiedr equation
is presented using Hypergeometric functioRypg2F1in Eq. 21),
useful to represent turbulence generated in themdgetween two
oscillating grids.

0.667

0.667k* 3
Hyp2F1 ~05670.7340.667- " *— | 1-wsHyp2F 1 ~02341.0671.333-~ "> ||+

k* ws Hyp2F 1{— 0.5670.7340.667,~ 0'\:5’?7

£* (k*)=

%3
}HypZF 1{— 0.2341.0671.333- Oei\;kjl

(21)

w,andws are integration constants.

Experimental M ethods

Figure 2 shows the turbulence-generating systerd usehis
study, a tank with walls of acrylic plates, with0&60 mx 0.50 m
square cross-section and 1.15 m height. The trasspaalls allow
laser beams to be projected into the water andethigting images
to be captured with a CCD camera. These images wsed to
evaluate instantaneous velocity fields. Two ideitiborizontally
oriented grids, 31.6 cm apart from each other, wenepled to a
vertically oscillating driving device and oscilldtén phase. The
lower grid was positioned 55.0 cm above the bottafnthe tank.
The grids were built using 1.0 cm square bars withl cm mesh
size (M), obtaining a solidity of 32%. A 0.2-0.3 cm gapvbeen the
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0.667

Hyp2FJ{— 0.5670.7340.667- T}

sidewalls and the grids permitted the easy mantipmaf the grids

in the tank. The strok& was varied from 2.0 to 5.0 cm and the
frequencyf from 1.0 to 4.0 Hz. Table 1 presents experimental
parameters, wherea is described in detail in the Section
“Experimental Results”, and is used to obtain Rif. Oscillating
grid turbulence is sensitive to initial conditionsp that data
acquisition could only begin 30 min after the ornsfebscillation.

As mentioned, the velocity fields were measuredhsy DPIV
technigue (Digital Particle Image Velocimetry). Bikt are found in
Janzen (2003). Images of approximately 15.0xc&b.0 cm were
taken at the middle distance between the grids. “Itierrogation
area” chosen to evaluate the vectors was abowtm»01.0 cm (32
32 pixels) with a 50% overlap. About 500 image pairre taken
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for each experiment. An example of the variatiorthef turbulence
intensities ¢ andw), at different distanceg, with the number of
images, is shown in Fig. 3. It shows that the tssalle statistically
consistent for a number of images higher than agmately 300.
The images were captured in sets of 16 photos, avitblocity of 30
photos per second, during a total period of abodtndinutes. For
each image, 29 29 velocity vectors were calculated. Additionally,
computations were performed to evaluate temporalgraged
characteristics of turbulence for all the pointshia imaged area. To
compare these experimental results with the onedsonal
analytical predictions, the data of the turbulemtensities were
averaged along planes parallel to the grids, imean values were
obtained for eaclz. For the present study, the turbulent enekgy

was evaluated ask:[ZU 2 +W'2],2, where u' and w' are,

respectively, the horizontal and vertical instaetars velocity

fluctuations.
! 'Ill_i In'

| —

Figure 2. Experimental apparatus. The distance betw
31.6 cm.

een the grids is

Table 1. Experimental conditions used to conduct th e experiments.

Runno. | f(H2) | S(em) | 1SV | @ L (cm)

1 20 |20 | 800 1:38 éf‘g'iz ;
2 30 |20 | 1200 i:gé 2227 ;
3 40 |20 | 1600 i:gé %_3?;36 ;
4 10 |40 | 1600 ;:?g 2_31'25 ;
5 20 |40 | 6400 ;:2? 2_21'24 ;
6 30 |40 | 4800 i%i ;_31'25 ;
7 10 |50 | 2500 i:?? }:‘2'38 ;
8 20 |50 | 5000 i:gg ;_27'38 ;
9 30 |50 | 7500 i:?g ;2;8 ;
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Figure 3. Variations of (a) horizontal turbulence i
turbulence intensity w with number of images (S =5

ntensity u and (b) vertical
.0cm, f=1.0 Hz).

Experimental Results

Figure 4 shows horizontal distributions of the hontalu and
vertical w intensities for different distancesfrom the origin. The
turbulent velocity fields at small distances frohe tgrids present
inhomogeneities along the axis (parallel to the grids) due to the
bars. At larger distances from the grids, turbutéebecomes more
homogeneous and variations of the turbulence iiitessare
reduced. Cheng and Law (2001), Souza (2002), Ja(2@03),
observed the same behavior for an one-grid cordtgr.

0.06
‘g +-14.1cm
S 005 1@ -10.4 cm
4 -46cm
00 1 x-0.4em
. — 4, *» t *
Y hd ol ® .0
0.03 o + o L
+
0.02
0.01 e
88 0a,, 00 o l:":'l:n:l Ogg”
_— mxxxxxh&?ﬁxxxxxxxmxnx«xxn
0 5 10 15
x (cm)

@)

Figure 4. Horizontal (a) and vertical (b) intensiti
different distances z (S = 2.0 cm; f = 3.0 Hz).

es along the x axis for
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Figure 4. (Continued).

Horizontal distributions of Reynolds stresses d&ews in Fig.
5. Variations ofu'w' near the grids can be noted, i.e., shear flow
exists at small distances from the grids. Turbwersan be
considered shear-free only at greater distancem ftbe grid
(Reynolds stresses approach zero). The data sugdlgastthe
turbulence may be isotropic in the sense that teynBlds stresses
are small (close to zero).

To obtain the integral length scale, the corretatfanctions
were first calculated. The longitudind{r) and transversag(r)
correlation functions are defined as:

f(r)zu'ix)_l]'ix+r) and g(r)zwixmix+r) (22)
uixiuix+ri w(xw(x +1)

Figure 6 presents the longitudinal and transvefsattions
computed forf = 3.0 Hz andS = 5.0 cm. It can be seen that the

Harry E. Schulz et al

—+—-141cm —=—-104cm
-3.604
—a—-46cm ——-04cm
-4 E-04
0 5 10 15
X (cm)
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Figure 5. (Continued).
e ——0.9cm
S =
0.8 1 —=—52cm
0.6 —— 11.0cm
\\& —— 14.6 cm
0.4 \ <
0.2 =
[Py
Py m&
0.0 :-;;r
-0.2 T

0 2 4 6 8 10 12 14 16

@)

v (cm)

values increase with increasing distance from tiigg gntil r about 1.0 05 O
10. The integral length scale is computed usinddhgitudinal and MO 8 :
transversal correlation functions, as follows: " k —=—5.2cm
0.6 —=—11.0 cm
Ly =y f(r)dr and Ly =[5 g(r)dr (23) - Eﬁg ——14.6 cm
- 4E04 0.2 v .}i P
R? PO IS Ll U Ry
L 3EM 0.0 3
2 2E04 0.2 ‘
1.E-04 A A 0O 2 4 6 8 10 12 14 16
0.E+00 M e
' (b)
1504 1+ Figure 6. (a) Longitudinal and (b) transverse corre lation functions at
2 E04 different distances z (S = 5.0 cm; f = 3.0 Hz).
——-14.1cm —=—-10.4 cm
et —a—4Bem —<—-04cm A total integral length scale was calculated, bseathe grid
-4.E-04 turbulence is not completely isotropic, using tbeditudinal and
0 a 10 15 _ 2 2 ;
o et transversal scales, a, =,/2L3 +Lg - The total integral length
(a) scaleL, is plotted against the distanzén Fig. 7 forS= 5.0 cm and

Figure 5. Reynolds stresses along x axis for differ ~ ent distances z: (a) S =
40cm;f=1.0Hz (b) S=4.0cm;f=2.0Hz.

f = 3.0 Hz. The data suggest a combination of twedr trends, one
for the upper side of the region between the gaiutd the other for

the lower side. The same behavior is obtainediemther runs.
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z (cm)

:Pa:F‘

-5 .

-10

-15
o] 2 4 8 8
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Figure 7. Relation between z and Lt (S=5.0cm;f =3.0 Hz).

Experimental data of; are plotted againgtin Fig. 8. It can be
seen that the turbulent viscosity is approximamwiystant in the
central region between the grids, but increasesngly in the
vicinity of the grids.

These observations indicate that the assumptiorooftant
turbulent viscosity, used in the first analyticallugion presented
here, is an acceptable approximation for the cerggon. For the
entire space between the grids it is better tathisgeneral turbulent
viscosity solution. Further, Fig. 9 presents thebtilent kinetic
energyk against the distanafor S= 4 cm and = 3 Hz. Interesting
"S forms" are observed for the behaviorkadlongz near the grids,
which may be related to production and advectiokiétic energy
in this region. As the theoretical models considermtil now
encompasses (embraces) only the diffusive-disspaithenomena
(without production and advection), the comparisdmetween
experimental and theoretical results must be censdl for the
central region, where production does not playnaportant role. It
can also be seen, in Fig. 9, that the minimum efttinbulent kinetic

energy, ideally atz = 0, is dislocated in about 2.3 cm. Such

dislocation was also observed by Srdical. (1996) and Ott and
Mann (2000). To compare the present results with ahalytical

ones, the axis was submitted to a translation in 2.3 cmthst the

origin of z coincides with the minimum of the turbulent kiweti
energy. This translation of the axis appoints tlecessity to

calculate twoa values, since the distande from the point of

minimum to both grids is not the same anymore. &ltistances are
indicated ad., (upper region) andl; (lower region) in Table 1. The
least squares method was used to fitdhealue for each situation.
The values ofg and the different distancésare given in Table 1.
Figure 10 presents the good agreement Kbrand s between

experimental data and the analytical solution (&qgfor different

experimental conditions. The profile &f, obtained theoretically,
hold very well to that of the experimental data, fos values less
than about 1.4, i.e., the region where the turbdwescosity can be
considered constant. The experimental data fromestal. (1997)

and Ott and Mann (2000) are also presented.

As theoretical results using a general viscositg also
furnished, the comparison between prediction& ahd £ and the
experimental data is also possible. Figures 11 Bhdshow the
agreement between the proposed solution of Eq. (@4l
experimental data obtained by Janzen (2003)ttier experimental
conditions already described in Table 1. The expenial data for
the situations of minimum and maximum stroke weoengared
with the theoretical predictions in nondimensiofoaim.
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Figure 8. Relation between [itand z for (a) S=5.0 cm; f=1.0 Hz and (b) S
=5.0 cm; f = 2.0 Hz. Solid lines represent mean “c  onstant” viscosities.
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Figure 9. Turbulent kinetic energy k versus z for S
"S forms" are observed for k along z that the minim
kinetic energy, ideally at z = 0, is dislocated.
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Souza (2004). The constants of kkemodel used here af®=1.44,

C,=1.92, C,~=0,090; =1.3 and g=1.0. The boundary condition
adopted is: fok* = 1, & = 1. The remaining integration constants
were evaluated through adjustment with the experaielata.

Table 2. Maxima and minima conditions for the strok

e in the present

25

4

study, used to evaluate the predictions of Eq. 21.

25
as
Figure 10. Experimental data and analytical solutio  n (as, k*). Solid curve
obtained from Eq. (6). (x) Present authors. ( A) Ott and Mann (2000)(these

data are very close to the origin and are not visib  le in the figure). ( *) Shy et
al. (1997).

« 1000
® 500

100
50

10 .
5

2 5 10 20 50
k*

Figure 11. €* versus k* (S = 2.0 cm, f = 2.0 Hz of Table 1). Th e line is the
prediction of Eq. (21). Dots are measured values.

, 1000 . : : :
® 500

100 .
50 .

2

LA

10 20 30
k‘:‘r

Figure 12. &* versus k* (S = 5.0 cm, f = 2.0 Hz of Table 1). Th e line is the
prediction of Eq. (21). Dots are measured values.

The conditions used for the present analysis aeeifspd in
Table 2. Such analysis was also performed, in déweal form, by

222 / Vol. XXVIIl, No. 2, April-June 2006

Frequencyf | StrokeS | w,=ws wx
(H2) (cm)
2.0 2.0 4.5 1.0
3.0 2.0 6.0 1.0
2.0 5.0 2.0 1.0
3.0 5.0 25 1.0

Hypergeometric functions as presented by Eq. (B4 }abulated
in the literature and may also be evaluated throagequate
softwares. The obtained solution permits, of coutsealculate the
spatial evolution of the relevant parameters (altflonumerically).
As an example, the equations presented in thisyspetmit to
obtain the evolution ok* with the nondimensional distaneg, in
the form of Eq. (24):

dZ[j _ [C//

05 2
w (o)
dk k ED(k*)\/W* +§k[3

zZ&
, Wwherez* :Tg (24)
ko

&(k*) is given by Eqg. (21). A graph &fagainstz*, for the same
condition of Fig. 11, is given by Fig. 13. Equati(#4) was solved
using a fourth order Runge-Kutta scheme, with bampaondition
k* = 1 for zx = 0. Experimental energy dissipation rates were
obtained using =Cpk®?/L;, whereCp, is an empirical constant and
L, is the integral turbulence length scale. The valu€p used here
was 0.5. Figure 13 also contains the points locateder to the
grids, marked with ellipses in Fig. 9a. It can leers that the
agreement between theory and experimental dat&sdsgmod for
the general turbulent viscosity case, as quantife.

100 200 300

400

k ®
Figure 13. k* as function of the normalized distanc e z* (S=2.0cm, f=2.0

Hz, Cp = 0.5). The line is the prediction of Eq. (24). D ots are measured
values.

Conclusions

The turbulence field generated by a pair of gridss wstudied
experimentally and theoretically. Theoretical petidns obtained
through application of th&-£ model were compared with the
experimental data. The solution for the behaviorths turbulent
kinetic energy, considering constant turbulentassty, is supported
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by the experimental data for the central regionwbken the grids. It
is therefore possible to predict the behaviour kofand & for
turbulence generated by a pair of oscillating gagsuming constant
I, around the central region of the flow. Furthermdhs present
study reveals that the integral length scale hasgproximately
linear behavior with the distance to the origin.eTimeasurements
also suggest that the turbulence produced by agbabscillating
grids can be considered nearly isotropic in thessethat the
Reynolds stresses are small.

Furthermore, considering the equations for the ulart field
presented here using a general turbulent viscdsity,important to
stress that the original set of equations compdsetivo coupled
nonlinear differential equations was transformedhrotigh
mathematical tools, into a single linear differahtiquation relating
k and & A solution of this governing equation was presdniand
the theoretical prediction agrees well with experital data. In this

Hopfinger, E.J. & Toly, J.A., 1976, “Spatially derag turbulence and
its relation to mixing across density interfacek”Fluid Mechanics, Vol. 78,
pp 155-175.

Janzen, J.G.,2003,” Details of turbulence properiie water agitated
through a pair of oscillating grids”, Master degréeesis, School of
Engineering at S&o Carlos, University of Sdo PaBiazil (in Portuguese).

Janzen, J.G. & Schulz, H.E.,2003, “Using PIV toedetine turbulence
characteristics in tanks with two oscillating gtidBroceedings of the 15th
Brazilian Symposium on Water Resources, ABRH, RBhlelil in CD-ROM,
Curitiba PR, Brazil (in Portuguese), 23 to 27 Nobem

Matsunaga, N.; Sugihara, Y.; Komatsu, T. & Masuda, 1999,
“Quantitative properties of oscillating-grid turlbualce in a homogeneous
fluid”, Fluid Dynamics Research, Vol. 25, pP.147516

Schulz, H.E. & Chaudhry, F.H., 1998, “A Theoreticablution for
Turbulence Generated by Oscillating Grids”, Progagslof the First Spring
School of Transition and Turbulence, Brazilian Asation of Mechanical
Sciences, COPPE, Rio de Janeiro, Brazil, 21 to25898, pp. 181-194.

Schulz, H.E., & Chaudhry, F.H., 1999, “Theoreticablutions for
Turbulence Generated by Two Oscillating Grids. 1Bitazilian Congress of

case, the behaviour &fcould be followed until greater distances toMechanical Engineering. ISBN-85-85769-03-3, Pulgléhin CD-ROM,

the origin (in comparison with the solution for stent turbulent
viscosity). For both cases, constant and generbukent viscosity,
the equations consider diffusion and dissipatiok afd & which is
a situation more adequate for the central regidwésen the grids.
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