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Stagnation Point Flow and Heat
Transfer of a Micropolar Fluid with
Uniform Suction or Blowing

The steady laminar flow of an incompressible nomAdaian micropolar fluid impinging

on a permeable flat plate with heat transfer isastigated. A uniform suction or blowing
is applied normal to the plate, which is maintairech constant temperature. Numerical
solution for the governing nonlinear momentum andrgy equations is obtained. The
effect of the uniform suction or blowing and tharettteristics of the non-Newtonian fluid
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on both the flow and heat transfer is presented @dindussed.
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Introduction

The two-dimensional flow of a fluid near a stagoatpoint is a
classical problem in fluid mechanics. It was fiestamined by
Hiemenz (1911) who demonstrated that the Naviekédt@quations
governing the flow can be reduced to an ordinarfferntial
equation of third order using similarity transfotina. Owing to the
nonlinearities in the reduced differential equatioo analytical
solution is available and the nonlinear equatiorussally solved
numerically subject to two-point boundary condigpone of which
is prescribed at infinity.

Later the problem of stagnation point flow was exted in
numerous ways to include various physical -effectEhe
axisymmetric three-dimensional stagnation pointvfiwas studied
by Homann (1936). The results of these studies dregreat
technical importance, for example in the predictadrskin-friction
as well as heat/mass transfer near stagnationnm®gib bodies in
high speed flows. Either in the two or three-disienal case
Navier-Stokes equations governing the flow are ceduto an
ordinary differential equation of third order usirgy similarity
transformation. The effect of suction on Hiemenabtem has been
considered in the literature. Schlichting and Buasr(il943) gave
the numerical results first. More detailed solutiowere later
presented by Preston (1946). An approximate swiuto the
problem of uniform suction is given by Ariel (1994ahe effect of
uniform suction on Homann problem where the flaatel is
oscillating in its own plane is considered by Weimand
Mahalingam (1997). In hydromagnetics, the problditH@menz
flow was chosen by Na (1979) to illustrate the sohuof a third-
order boundary value problem using the technique fioite
differences. An approximate solution of the samabfem has been
provided by Ariel (1994b). The effect of an extdiynaapplied
uniform magnetic field on the two or three-dimemsibstagnation
point flow was given, respectively, by Attia (2003and
Attia(2003b) in the presence of uniform suctiorirgection.

The study of heat transfer in boundary layer floigs of
importance in many engineering applications sucthasdesign of
thrust bearings and radial diffusers, transpiratooling, drag
reduction, thermal recovery of oil, etc. Massoudid aRamezan
(1990) used a perturbation technique to solve figr stagnation
point flow and heat transfer of a non-Newtoniandlof second
grade. Their analysis is valid only for small \v@dwof the parameter
that determines the behavior of the non-Newtoniaidf Later
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Massoudi and Ramezan (1992) extended the problem
nonisothermal surface. Garg (1994) improved thatsmi obtained
by Massoudi and Ramezan (1992) by computing nuwérithe

flow characteristics for any value of the non-Newiém parameter
using a pseudo-similarity solution.

Many researchers considered non-Newtonian fluideusT
among the non-Newtonian fluids, the solution of gtagnation
point flow, for viscoelastic fluids, has been givenRajeshwari and
Rathna (1962), Beard and Walters (1964), TeipelB8§)9 Arial
(1992), and others; for power-law fluid by Djukit974); and for
second grade fluids by Teipel (1988) and Ariel @P% the
hydrodynamic case and by Attia (2000) in the hydxgnetic case.
Stagnation point flow of a non-Newtonian micropofarid was
studied by Nath (1975) and Nazar et al. (2004) wiho vertical
velocity at the surface. The potential importandenocropolar
fluids in industrial applications has motivated sbestudies. The
essence of the theory of micropolar fluid flow liesthe extension
of the constitutive equations for Newtonian fluide that more
complex fluids such as particle suspensions, liquigtals, animal
blood, lubrication and turbulent shear flows cardbscribed by this
theory. The theory of micropolar fluids, first paged by Eringen
(1966), is capable of describing such fluids. lagbice, the theory
of micropolar fluids requires that one must addaagport equation
representing the principle of conservation of locahgular
momentum to the usual transport equations for trservation of
mass and momentum, and additional local constaéupiarameters
are also introduced (Nazar et al., 2004). The kaintp to note in
the development of Eringen's microcontinuum medtsaire the
introduction of new kinematics variables, e.g. theation tensor
and microinertial moment tensor, and the additibthe concept of
body moments, stress moments, and microstress gegerto
classical continuum mechanics. However, a seriaffcudty is
encountered when this theory is applied to reah-tniwial flow
problems; even for the linear theory, a problemidgawith simple
microfluids must be formulated in terms of a systefmineteen
partial differential equations in nineteen unknowasd the
underlying mathematical problem is not easily anméo solution.
These special features of micropolar fluids wersca$sed in a
comprehensive review paper of the subject and eguin of
micropolar fluid mechanics by Arimen et al. (1973).

The purpose of the present paper is to study tlfectebf
uniform suction or blowing directed normal to thallon the steady
laminar flow of an incompressible non-Newtonian mopolar fluid
at a two-dimensional stagnation point with heahgfar. The wall
and stream temperatures are assumed to be constamsmerical
solution is obtained for the governing momentum arergy
equations using finite difference approximationicl takes into
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account the asymptotic boundary conditions. Theerigal solution
computes the flow and heat characteristics forwhele range of
the non-Newtonian fluid characteristics, the suctior blowing
parameter and the Prandtl number.

Formulation of the Problem

Consider the two-dimensional stagnation point flofv an
incompressible non-Newtonian  micropolar fluid  imgiimg
perpendicular on a permeable wall and flows awapgthex-axis.
This is an example of a plane potential flow thaivas from they-
axis and impinges on a flat wall placedya®0, divides into two
streams on the wall and leaves in both directiofse viscous flow
must adhere to the wall, whereas the potential fitides along it.
(u,v) are the components for the viscous flow of vigjoat any
point (x,y) for the viscous flow whereadJ(V) are the velocity
components for the potential flow. A uniform soctior blowing is
applied at the plate with a transpiration veloaitythe boundary of
the plate given by, wherev,>0 for suction. The velocity
distribution in the frictionless flow in the neighihood of the
stagnation point is given by

U(x)=ax, V(y)=-ay
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microelements close to the wall surface are unabl®tate (Nazar
et al., 2004). This case is also known as the gtommcentration of
microelements (Guram and Smith, 1980). The ced¢2 indicates
the vanishing of anti-symmetric part of the striessor and denotes
weak concentration (Ahmadi, 1976) of microelementtich will be
considered here. The casel is used for the modeling of turbulent
boundary layer flows (Nazar et al., 2004). Theagaing equations
(1)-(4) subject to the boundary conditions (5) banexpressed in a
simpler form by introducing the following transfoation

n:@y,u:axf ) =—av ()N :ax\f%g(n), ©)

equations (2) and (3) for the functioifg) andg(n) take the form

=

&
2

It is worth mentioning that when=1/2, we can take (Nazar et
al., 2004) ]

@

m

f"+ff"-f'2+Kg' +1=0

jg”+fg’—fg—K(29+f")=0 ®)

where the constara(>0) is proportional to the free stream velocity

far away from the surface. The simplified two-dimsional
equations governing the flow in the boundary lagéra steady,
laminar and incompressible micropolar fluid are t#iNal975)
(Nazar et al., 2004):

%1-@:0 (1)
ox oy
2
u@.;.v% :Ud7U+(lu+h) ﬂ +h07N’ (2)
ox ay dx ay? ay
2
Yo, ufﬂﬂﬂ+véﬂﬂ, :J?a tl—Jl 2“]+£E{, (3)
ox ay) joy' j oy

whereN is the component of microrotation vector normatttex-y
plane or the angular velocity of the microelemenlt®mse direction
of rotation is in thex-y plane,u is the viscosity of the fluidp is the
density ang is the microinertia densityy is the spin-gradient
viscosity andh is the vortex viscosity. We follow the work of man
recent authors by assuming thais constant and given by (Nath,
1975) (Nazar et al., 2004) (Rees and Pop, 1998):

y=(u+hl2)j (4)
and we takg=v/a as a reference length wherds the kinematic
viscosity. Relation (4) is invoked to allow Eqs)-(8) to predict the
correct behaviour in the limiting case when mianesture effects
become negligible, and the microrotatid,reduces to the angular
velocity (Nazar et al., 2004).

The appropriate physical boundary conditions of. Efjs(3) are

u(x,0) = 0,v(x,0) = -v,, N(x,0) = —na—u, (52)
oy
y - w:u(xy) - U(X)=axv(x,y) - O,N(xYy) - 0, (5b)

wheren is a constant and 9 n < 1. The cas&=0, which indicates
N=0 at the wall, represents concentrated partic<lin which the
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9 =3 1) ©)
then Egs. (7) and (8) can be reduced the singlatieou

(1+%jf’"+ ffr-f'2+1=0 (10)
subject to the boundary conditions

f(O)=Af'(0)=0f'(0)=1 (11)

whereK = h/y (>0) is the material parametep=v_/+/av is the
suction parameter and primes denote differentiatitih respect to
n. For micropolar boundary layer flow, the wallsiiction 7, is

given by

12)

T :[(wh)@w\l}
ay y:O

Using U(X)=ax as a characteristic velocity, the skin friction
coefficientcf can be defined as

Cf :7TW2 ! (13)
o3|

Substituting (6) and (12) into (13), we get

CsReY?=(@1+K/2)1"(0) (14)

where Re}(/z = xU /v is the local Reynolds number.

Using the boundary layer approximations and neigigcthe
dissipation, the equation of energy for temperafliris given by
(Massoudi and Ramezan, 1990) (Massoudi and Ram&288),
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oo ua—T+va—T =k
PL™ ax ay

is the specific heat capacity at constant presstitbe

0°T

6y2

(15)

where
Cp

fluid, andk is the thermal conductivity of the fluid. A simrity
solution exists if the wall and stream temperatuw%and T, are

constants—a realistic approximation in typical s&@n point heat
transfer problems (Massoudi and Ramezan, 1990) {iMat and
Ramezan, 1992).

The boundary conditions for the temperature field a

y=0:T =Ty, (16a)

y - 0T o Ty, (16b)

Introducing the non-dimensional variable

g T T, 17)
Tw ~ Teo

and using the similarity transformations given ig. £6), we find
that Egs. (12) and (13) reduce to,

6" +Prg =0 (18)

6(0) =1,6() =0, (19)

where py = Mep /K is the Prandtl number.

The heat transfer at the wall is computed from Feoisr law
(Massoudi and Ramezan, 1990) (Massoudi and Ramé&gaR) as
follows;

O = - (‘”j = (T, ~To), 2G(PY)
oy y=0 v

(20)

whereG is the dimensionless heat transfer rate whiclivisrgby

® n
Gl= Idnexp(—ZPrI fds) (1)
0 0

The flow Egs. (10) and (11) are decoupled fromehergy Eqgs.
(18) and (19), and need to be solved before therlatin be solved.
The flow Eqg. (10) constitutes a non-linear, non-bgeneous
boundary value problem (BVP). In the absence ofaaalytical
solution of a problem, a numerical solution is ied@n obvious and
natural choice. The boundary value problem givertgy. (10) and
(11) may be viewed as a prototype for numerousrahtaations
which are similarly characterized by a boundaryugaproblem
having a third order differential equation with asymptotic
boundary condition at infinity. Therefore, its numgal solution
merits attention from a practical point of view.eTflow Eqgs. (10)
and (11) are solved numerically using finite diflece
approximations. A quasi-linearization techniqusfiist applied to
replace the non-linear terms at a linear stageh wie corrections
incorporated in subsequent iterative steps untiiveogence. The
quasi-linearized form of Eq. (10) is,

A+ KD B + o flug + B Fnag = fafy =267 fhg + 112 +1=0(22)

J. of the Braz. Soc. of Mech. Sci. & Eng.

Copyright O 2008 by ABCM

where the subscripn or n+l represents the nth om+l)th

approximation to the solution. Then, Crank-Nicolsmethod is
used to replace the different terms by their secordkr central
difference approximations. An iterative schemesdsdito solve the
quasi-linearized system of difference equation® 3dlution for the
Newtonian case is chosen as an initial guess amdtdrations are
continued till convergence within prescribed accyrdrinally, the
resulting block tri-diagonal system was solved gsgeneralized
Thomas' algorithm.

The energy Eq. (18) is a linear second order orglidéferential
equation with variable coefficienf(s), which is known from the
solution of the flow Egs. (10) and (11) and therfdlthnumberPr is
assumed constant. Equation (18) is solved nunilgricader the
boundary condition (19) using central differencasthe derivatives
and Thomas' algorithm for the solution of the sktdiscretized
equations. The resulting system of equations hiéde tsolved in the
infinite domain O%<cw. A finite domain in then-direction can be
used instead witly chosen large enough to ensure that the solutions
are not affected by imposing the asymptotic coodgiat a finite
distance. Grid-independence studies show that @mepatational
domain 0%<7, can be divided into intervals each is of uniform
step size which equals 0.02. This reduces the numbgoints
between 0%<7, without sacrificing accuracy. The valug,=10
was found to be adequate for all the ranges ofnpeters studied
here. Convergence is assumed when the ratio oy ever off, f~,

f ", orf " for the last two approximations differed fromity by
less than 198 at all values of7 in 0<r<7,..

Results and Discussion

Figures 1 and 2 present the profilesf@nd f ', respectively, for
various values oK and A. The figures show that increasing the
parameterK decreases both andf ' due to the increase in the
damping effect of the viscous forces. On the offeerd, increasing
A increases them which is expected since increagigtion opens
an easier path for the incoming flow towards thdl aad, in turn,
increases bothandf . The figures indicate also that the effeckof
onf andf ' is more pronounced for higher values Adf(case of
suction). However, the effect ok on f and f ' becomes more
pronounced for smaller values Kf Also, increasing increases
the velocity boundary layer thickness while incregsA decreases
it.

Figure 3 presents the profile of temperatéifer various values
of K andA andPr=0.5. It is clear that increasingincrease® and
the thickness of the thermal boundary layer. IrgirepA decreases
@ for all K and its influence becomes more apparent for smidlle
This emphasizes the influence of the injected flavthe cooling
process. The action of fluid injectiorA€0) is to fill the space
immediately adjacent to the disk with fluid havingarly the same
temperature as that of the disk. As the injectiendmes stronger,
so that does the blanket extends to greater dissafrom the
surface. As shown in Fig. 3, the progressive flattg of the
temperature profile adjacent to the disk manifabisse effects.
Thus, the injected flow forms an effective insuigti layer,
decreasing the heat transfer from the disk. Suctionthe other
hand, serves the function of bringing large queagtiof ambient
fluid into the immediate neighborhood of the diskface. As a
consequence of the increased heat-consuming alilitythis
augment flow, the temperature drops quickly as wexeed away
from the disk. The presence of fluid at near-ambtemperature
close to the surface increases the heat transfer.

Figures 4 and 5 present the temperature profilesvémious
values ofK andPr and forA=-0.5 and 0.5, respectively. The figures
bring out clearly the effect of the Prandtl numloer the thermal
boundary layer thickness. As shown in Figs. 4 Bnuhcreasingr
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decreases the thermal boundary layer thicknessllfgrandA. It is

shown in Fig. 4 the influence of blowing in flatteg of the
temperature profiles adjacent to the disk for higbre The effect of
K on @ is more pronounced for higher valuesRuffor the blowing
case (see Fig. 4).

0 2 4 6
- n
---¢--K=0,Pr=0.1 ---m--- K=0,Pr=0.5 - --a--- K=0,Pr=1
——K=1,Pr=0.1 —=—K=1,Pr=0.5 —a—K=1,Pr=1
0 2 4 6 ) )
Figure 4. Effect of the parameters K and Pr on the profile of 8(A=-0.5).
n
1.2
---¢--K=0,A=-1 ---m--- K=0,A=0 ---a--- K=0,A=1 14
—o—K=1,A=-1 —a—K=1,A=0 —a—K=1,A=1 08
' ) > 0.6
Figure 1. Effect of the parameters K and A on the profile of f. 0.4
0.2 1 .
1.2 0 T % —a—&
1 7 - . = 3 O 2 4 6
081  Amg” n
« 0.6 /x
0.4 1 &7 ---@--K=0,Pr=0.1 ---m--- K=0,Pr=0.5 ---a--- K=0,Pr=1
02 1/ —+—K=1,Pr=0.1 —=—K=1,Pr=05 —a—K=1,Pr=1
0 T T
0 2 4 6 Figure 5. Effect of the parameters K and Pr on the profile of 8(A=0.5)
n Tables 1 and 2 present the variation of the wadlashstress
e K0A=1 ---m-- K=OA=0 ---a-- K=0,A=1 Cs Re}!z and the heat transfer rate at the v@&(Pr), respectively,
e KELART A KRLASD e KELARL for various values oK andA and forPr=0.5. Table 1 shows that,

<0, i . . /2 .
Figure 2. Effect of the parameters K and A on the profile of f. for A<O, increasingK mcreasescf Re>l< steadily. However, for

A0, increasingK increasesc; Re}(/Z and then increasing more

12 decreaseg, Re}</2. Increasingh increasesc Re)l(/Z for allK and
1
0.8 its effect is more apparent for small& Table 2 shows that
© 06 increasingK decreases5(Pr) due to its damping affect for the
0.4 1 coming flow towards the wall. Increasidgincrease$s(Pr) for all
02 . - K as increasing suction helps bringing fluid at resabient towards
0 ‘ t—3—3% . the surface of the wall which increases the heaisfer.
0 2 4 6
Table 1 Variation of the wall shear stress ¢;Re+2 with K and A.
n
A K=0 K=0.5 K=1 K=1.5 K=2 K=10
---e--K=0,A=-1 ---m--- K=0,A=0 ---a&-- K=0,A=1
e e 2 04758 07574 07986 08377 08751 13531
b T * T -1 0.7566 1.1586 1.1839 1.2103 1.2372 1.6556
0 1.2326 1.7915 1.7612 1.7469 1.7431 2.0128
Figure 3. Effect of the parameters K and A on the profile of 8 (Pr=0.5). 1 1.8892 2.6352 25116 2.4312 2.3779 2.4199
2 2.6699 3.6299 3.3899 3.2271 3.1124 2.8704

Table 2 Variation of the wall heat transfer G(Pr) with K and A (Pr=0.5).

A K=0 K=0.5 K=1 K=1.5 K=2

-2 0.0339 0.0323 0.0313 0.0303 0.0294
-1 0.1649 0.1600 0.1557 0.1519 0.1486
0 0.4352 0.4258 0.4178 0.4109 0.4050
1 0.8042 0.7928 0.7833 0.7752 0.7681
2 1.2269 1.2157 1.2062 1.1982 1.1912

Table 3 presents the effect kfon G(Pr) for various values of
Pr and for A=0. IncreasingK decrease&(Pr) for all Pr and its
effect is more for highe®r. Increasind’r increase$s(Pr) for all K.
Table 4 shows the variation Gi{(Pr) for various values dPr andA
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and forK=1. IncreasingA increasesG(Pr) and its effect is more
apparent for highePr. For the suction casé & 0), increasing’r
increasess steadily. On the other hand, for the large blowiage,
increasingPr decreasess steadily. But for moderate blowing
velocity (A=-1), increasingPr increasingG and increasindg’r more
decrease§.

Table 3 Variation of the wall heat transfer G(Pr) with K and Pr (A=-0.5).

K Pr=0.05 Pr=0.1 Pr=0.5 Pr=1 Pr=1.5

0 0.2021 0.2935 0.8042 1.3280 1.8258
0.5 0.2003 0.2901 0.7928 1.3112 1.8058
1 0.1988 0.2872 0.7833 1.2975 1.7898
15 0.1974 0.2846 0.7752 1.2860 1.7767
2 0.1961 0.2822 0.7681 1.2762 1.7656

Table 4 Variation of the wall heat transfer G(Pr) with Aand Pr (K=1).

A Pr=0.05  Pr=0.1 Pr=0.5 Pr=1 Pr=1.5

-2 0.1013 0.0966 0.0323 0.0054 0.0008

-1 0.1317 0.1519 0.1600 0.1126 0.0727

0 0.1651 0.2176 0.4258 0.5594 0.6535

1 0.2003 0.2901 0.7928 1.3112 1.8058

2 0.2371 0.3674 1.2157 2.2008 2.8862
Conclusions

The two-dimensional stagnation point flow of andnpressible
non-Newtonian micropolar fluid with heat transferstudied in the
presence of uniform suction or blowing. A numerisalution for
the governing equations is obtained which allowes ¢dbmputation
of the flow and heat transfer characteristics fatiaus values of the
non-Newtonian paramete, the suction parameted, and the

Prandtl numberPr. The results indicate that increasing the

parameteK increases both the velocity and thermal boundaygrl

thickness while increasing decreases the thickness of both Iayersrjou
The effect of the parameté on the velocity is more apparent for

suction than blowing. The influence of the paramé¢eon the

temperature is more apparent for higher valuesrahd®l number.
The effect of the suction velocity on the sheaessrat the wall
depends on the value of the non-Newtonian paranketédn the

other hand, the influence of the blowing velocitytbe heat transfer
rate at the wall depends on the value of the nontbld@an

parameteK.
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