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Stagnation Point Flow and Heat 
Transfer of a Micropolar Fluid with 
Uniform Suction or Blowing 
The steady laminar flow of an incompressible non-Newtonian micropolar fluid impinging 
on a permeable flat plate with heat transfer is investigated.  A uniform suction or blowing 
is applied normal to the plate, which is maintained at a constant temperature.  Numerical 
solution for the governing nonlinear momentum and energy equations is obtained.  The 
effect of the uniform suction or blowing and the characteristics of the non-Newtonian fluid 
on both the flow and heat transfer is presented and discussed. 
Keywords: stagnation point flow, non-Newtonian fluid, heat transfer, suction, numerical 
solution 
 
 
 
 
 
 

Introduction 
1The two-dimensional flow of a fluid near a stagnation point is a 

classical problem in fluid mechanics. It was first examined by 
Hiemenz (1911) who demonstrated that the Navier-Stokes equations 
governing the flow can be reduced to an ordinary differential 
equation of third order using similarity transformation. Owing to the 
nonlinearities in the reduced differential equation, no analytical 
solution is available and the nonlinear equation is usually solved 
numerically subject to two-point boundary conditions, one of which 
is prescribed at infinity. 

Later the problem of stagnation point flow was extended in 
numerous ways to include various physical effects. The 
axisymmetric three-dimensional stagnation point flow was studied 
by Homann (1936). The results of these studies are of great 
technical importance, for example in the prediction of skin-friction 
as well as heat/mass transfer near stagnation regions of bodies in 
high speed flows.  Either in the two or three-dimensional case 
Navier-Stokes equations governing the flow are reduced to an 
ordinary differential equation of third order using a similarity 
transformation.  The effect of suction on Hiemenz problem has been 
considered in the literature. Schlichting and Bussman (1943) gave 
the numerical results first. More detailed solutions were later 
presented by Preston (1946).  An approximate solution to the 
problem of uniform suction is given by Ariel (1994a). The effect of 
uniform suction on Homann problem where the flat plate is 
oscillating in its own plane is considered by Weidman and 
Mahalingam (1997). In hydromagnetics, the problem of Hiemenz 
flow was chosen by Na (1979) to illustrate the solution of a third-
order boundary value problem using the technique of finite 
differences.  An approximate solution of the same problem has been 
provided by Ariel (1994b). The effect of an externally applied 
uniform magnetic field on the two or three-dimensional stagnation 
point flow was given, respectively, by Attia (2003a) and 
Attia(2003b) in the presence of uniform suction or injection. 

The study of heat transfer in boundary layer flows is of 
importance in many engineering applications such as the design of 
thrust bearings and radial diffusers, transpiration cooling, drag 
reduction, thermal recovery of oil, etc. Massoudi and Ramezan 
(1990) used a perturbation technique to solve for the stagnation 
point flow and heat transfer of a non-Newtonian fluid of second 
grade.  Their analysis is valid only for small values of the parameter 
that determines the behavior of the non-Newtonian fluid.  Later 
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Massoudi and Ramezan (1992) extended the problem to 
nonisothermal surface. Garg (1994) improved the solution obtained 
by Massoudi and Ramezan (1992) by computing numerically the 
flow characteristics for any value of the non-Newtonian parameter 
using a pseudo-similarity solution. 

Many researchers considered non-Newtonian fluids. Thus, 
among the non-Newtonian fluids, the solution of the stagnation 
point flow, for viscoelastic fluids, has been given by Rajeshwari and 
Rathna (1962), Beard and Walters (1964), Teipel (1986), Arial 
(1992), and others; for power-law fluid by Djukic (1974); and for 
second grade fluids by Teipel (1988) and Ariel (1995) in the 
hydrodynamic case and by Attia (2000) in the hydromagnetic case. 
Stagnation point flow of a non-Newtonian micropolar fluid was 
studied by Nath (1975) and Nazar et al. (2004) with zero vertical 
velocity at the surface. The potential importance of micropolar 
fluids in industrial applications has motivated these studies. The 
essence of the theory of micropolar fluid flow lies in the extension 
of the constitutive equations for Newtonian fluids so that more 
complex fluids such as particle suspensions, liquid crystals, animal 
blood, lubrication and turbulent shear flows can be described by this 
theory. The theory of micropolar fluids, first proposed by Eringen 
(1966), is capable of describing such fluids. In practice, the theory 
of micropolar fluids requires that one must add a transport equation 
representing the principle of conservation of local angular 
momentum to the usual transport equations for the conservation of 
mass and momentum, and additional local constitutive parameters 
are also introduced (Nazar et al., 2004). The key points to note in 
the development of Eringen's microcontinuum mechanics are the 
introduction of new kinematics variables, e.g. the gyration tensor 
and microinertial moment tensor, and the addition of the concept of 
body moments, stress moments, and microstress averages to 
classical continuum mechanics. However, a serious difficulty is 
encountered when this theory is applied to real, non-trivial flow 
problems; even for the linear theory, a problem dealing with simple 
microfluids must be formulated in terms of a system of nineteen 
partial differential equations in nineteen unknowns and the 
underlying mathematical problem is not easily amenable to solution.  
These special features of micropolar fluids were discussed in a 
comprehensive review paper of the subject and application of 
micropolar fluid mechanics by Arimen et al. (1973). 

The purpose of the present paper is to study the effect of 
uniform suction or blowing directed normal to the wall on the steady 
laminar flow of an incompressible non-Newtonian micropolar fluid 
at a two-dimensional stagnation point with heat transfer. The wall 
and stream temperatures are assumed to be constants.  A numerical 
solution is obtained for the governing momentum and energy 
equations using finite difference approximations, which takes into 
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account the asymptotic boundary conditions. The numerical solution 
computes the flow and heat characteristics for the whole range of 
the non-Newtonian fluid characteristics, the suction or blowing 
parameter and the Prandtl number. 

Formulation of the Problem 

Consider the two-dimensional stagnation point flow of an 
incompressible non-Newtonian micropolar fluid impinging 
perpendicular on a permeable wall and flows away along the x-axis.  
This is an example of a plane potential flow that arrives from the y-
axis and impinges on a flat wall placed at y=0, divides into two 
streams on the wall and leaves in both directions.  The viscous flow 
must adhere to the wall, whereas the potential flow slides along it.  
(u,v)  are the components for the viscous flow of velocity at any 
point (x,y) for the viscous flow whereas (U,V) are the velocity 
components for the potential flow.  A uniform suction or blowing is 
applied at the plate with a transpiration velocity at the boundary of 
the plate given by -vo, where vo>0 for suction.  The velocity 
distribution in the frictionless flow in the neighborhood of the 
stagnation point is given by 

 
U(x)=ax, V(y)=-ay 
 

where the constant a(>0) is proportional to the free stream velocity 
far away from the surface.   The simplified two-dimensional 
equations governing the flow in the boundary layer of a steady, 
laminar and incompressible micropolar fluid are (Nath, 1975) 
(Nazar et al., 2004): 
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where N is the component of microrotation vector normal to the x-y 
plane or the angular velocity of the microelements whose direction 
of rotation is in the x-y plane, µ is the viscosity of the fluid, ρ is the 
density andj is the microinertia density, γ is the spin-gradient 
viscosity and h is the vortex viscosity. We follow the work of many 
recent authors by assuming that γ is constant and given by (Nath, 
1975) (Nazar et al., 2004) (Rees and Pop, 1998): 

 

jh )2/( += µγ  (4) 
 

and we take j=v/a as a reference length where v is the kinematic 
viscosity. Relation (4) is invoked to allow Eqs. (1)-(3) to predict the 
correct behaviour in the limiting case when microstructure effects 
become negligible, and the microrotation, N, reduces to the angular 
velocity (Nazar et al., 2004). 

The appropriate physical boundary conditions of Eqs. (1)-(3) are  
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where n is a constant and 0 ≤ n ≤ 1. The case n=0, which indicates 
N=0 at the wall, represents concentrated particle flows in which the 

microelements close to the wall surface are unable to rotate (Nazar 
et al., 2004). This case is also known as the strong concentration of 
microelements (Guram and Smith, 1980). The case n=1/2 indicates 
the vanishing of anti-symmetric part of the stress tensor and denotes 
weak concentration (Ahmadi, 1976) of microelements which will be 
considered here.  The case n=1 is used for the modeling of turbulent 
boundary layer flows (Nazar et al., 2004).  The governing equations 
(1)-(4) subject to the boundary conditions (5) can be expressed in a 
simpler form by introducing the following transformation 
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equations (2) and (3) for the functions f(η) and g(η) take the form 
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It is worth mentioning that when n=1/2, we can take (Nazar et 

al., 2004) ] 
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then Eqs. (7) and (8) can be reduced the single equation 
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subject to the boundary conditions 
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where K = h/µ (>0) is the material parameter, νavA o /=  is the 

suction parameter and primes denote differentiation with respect to 
η.  For micropolar boundary layer flow, the wall skin friction wτ  is 

given by 
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Using U(x)=ax as a characteristic velocity, the skin friction 

coefficient 
fC  can be defined as 
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Substituting (6) and (12) into (13), we get 
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where ν/Re 2/1 xUx =  is the local Reynolds number. 

Using the boundary layer approximations and neglecting the 
dissipation, the equation of energy for temperature T is given by 
(Massoudi and Ramezan, 1990) (Massoudi and Ramezan, 1992), 
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where 

pc  is the specific heat capacity at constant pressure of the 

fluid, and k is the thermal conductivity of the fluid.  A similarity 
solution exists if the wall and stream temperatures, wT and ∞T  are 

constants–a realistic approximation in typical stagnation point heat 
transfer problems (Massoudi and Ramezan, 1990) (Massoudi and 
Ramezan, 1992).   

The boundary conditions for the temperature field are 
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Introducing the non-dimensional variable  
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and using the similarity transformations given in Eq. (6), we find 
that Eqs. (12) and (13) reduce to, 
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where kcp /Pr µ=  is the Prandtl number. 

The heat transfer at the wall is computed from Fourier's law 
(Massoudi and Ramezan, 1990) (Massoudi and Ramezan, 1992) as 
follows; 
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where G is the dimensionless heat transfer rate which is given by 
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The flow Eqs. (10) and (11) are decoupled from the energy Eqs. 

(18) and (19), and need to be solved before the latter can be solved.  
The flow Eq. (10) constitutes a non-linear, non-homogeneous 
boundary value problem (BVP). In the absence of an analytical 
solution of a problem, a numerical solution is indeed an obvious and 
natural choice. The boundary value problem given by Eqs. (10) and 
(11) may be viewed as a prototype for numerous other situations 
which are similarly characterized by a boundary value problem 
having a third order differential equation with an asymptotic 
boundary condition at infinity. Therefore, its numerical solution 
merits attention from a practical point of view. The flow Eqs. (10) 
and (11) are solved numerically using finite difference 
approximations. A quasi-linearization technique is first applied to 
replace the non-linear terms at a linear stage, with the corrections 
incorporated in subsequent iterative steps until convergence. The 
quasi-linearized form of Eq. (10) is, 
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where the subscript n or n+1 represents the nth or (n+1)th 
approximation to the solution.  Then, Crank-Nicolson method is 
used to replace the different terms by their second order central 
difference approximations. An iterative scheme is used to solve the 
quasi-linearized system of difference equations. The solution for the 
Newtonian case is chosen as an initial guess and the iterations are 
continued till convergence within prescribed accuracy. Finally, the 
resulting block tri-diagonal system was solved using generalized 
Thomas' algorithm. 

The energy Eq. (18) is a linear second order ordinary differential 
equation with variable coefficient, f(η), which is known from the 
solution of the flow Eqs. (10) and (11) and the Prandtl number Pr is 
assumed constant.  Equation (18) is solved numerically under the 
boundary condition (19) using central differences for the derivatives 
and Thomas' algorithm for the solution of the set of discretized 
equations.  The resulting system of equations has to be solved in the 
infinite domain 0<η<∞. A finite domain in the η-direction can be 
used instead with η chosen large enough to ensure that the solutions 
are not affected by imposing the asymptotic conditions at a finite 
distance. Grid-independence studies show that the computational 
domain 0<η<η∞ can be divided into intervals each is of uniform 
step size which equals 0.02. This reduces the number of points 
between 0<η<η∞ without sacrificing accuracy. The value η∞=10 
was found to be adequate for all the ranges of parameters studied 
here. Convergence is assumed when the ratio of every one of f,  f ´,  
f ´´, or f ´´´ for the last two approximations differed from unity by 
less than 10-5 at all values of η in 0<η<η∞. 

Results and Discussion 

Figures 1 and 2 present the profiles of  f and  f ′, respectively, for 
various values of K and A. The figures show that increasing the 
parameter K decreases both f and f ′ due to the increase in the 
damping effect of the viscous forces. On the other hand, increasing 
A increases them which is expected since increasing suction opens 
an easier path for the incoming flow towards the wall and, in turn, 
increases both f and f ′. The figures indicate also that the effect of K 
on f and f ′ is more pronounced for higher values of A (case of 
suction). However, the effect of A on f and f ′ becomes more 
pronounced for smaller values of K.  Also, increasing K increases 
the velocity boundary layer thickness while increasing A decreases 
it. 

Figure 3 presents the profile of temperature θ for various values 
of K and A and Pr=0.5. It is clear that increasing K increases θ and 
the thickness of the thermal boundary layer. Increasing A decreases 
θ for all K and its influence becomes more apparent for smaller K. 
This emphasizes the influence of the injected flow in the cooling 
process. The action of fluid injection (A<0) is to fill the space 
immediately adjacent to the disk with fluid having nearly the same 
temperature as that of the disk. As the injection becomes stronger, 
so that does the blanket extends to greater distances from the 
surface. As shown in Fig. 3, the progressive flattening of the 
temperature profile adjacent to the disk manifests these effects. 
Thus, the injected flow forms an effective insulating layer, 
decreasing the heat transfer from the disk. Suction, on the other 
hand, serves the function of bringing large quantities of ambient 
fluid into the immediate neighborhood of the disk surface. As a 
consequence of the increased heat-consuming ability of this 
augment flow, the temperature drops quickly as we proceed away 
from the disk. The presence of fluid at near-ambient temperature 
close to the surface increases the heat transfer.   

Figures 4 and 5 present the temperature profiles for various 
values of K and Pr and for A=-0.5 and 0.5, respectively.  The figures 
bring out clearly the effect of the Prandtl number on the thermal 
boundary layer thickness.  As shown in Figs. 4 and 5, increasing Pr 
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decreases the thermal boundary layer thickness for all K and A.  It is 
shown in Fig. 4 the influence of blowing in flattening of the 
temperature profiles adjacent to the disk for higher Pr.  The effect of 
K on θ is more pronounced for higher values of Pr for the blowing 
case (see Fig. 4). 
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Figure 1. Effect of the parameters K and A on the profile of f. 
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Figure 2. Effect of the parameters K and A on the profile of  f . 
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Figure 3. Effect of the parameters K and A on the profile of θ  (Pr=0.5). 
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Figure 4. Effect of the parameters K and Pr on the profile of θ (A=-0.5). 
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Figure 5. Effect of the parameters K and Pr on the profile of θ (A=0.5) 

 

Tables 1 and 2 present the variation of the wall shear stress 
2/1RexfC  and the heat transfer rate at the wall G(Pr), respectively, 

for various values of K and A and for Pr=0.5.  Table 1 shows that, 
for A<0, increasing K increases 2/1RexfC  steadily.  However, for 

A≥0, increasing K increases 2/1RexfC  and then increasing K more 

decreases 2/1RexfC .  Increasing A increases 2/1RexfC  for all K and 

its effect is more apparent for smaller K. Table 2 shows that 
increasing K decreases G(Pr) due to its damping affect for the 
coming flow towards the wall.  Increasing A increases G(Pr) for all 
K as increasing suction helps bringing fluid at near-ambient towards 
the surface of the wall which increases the heat transfer. 

 

Table 1 Variation of the wall shear stress 2
xRefC 1/ with K and A. 

A K=0 K=0.5 K=1 K=1.5 K=2 K=10 
-2 0.4758 0.7574 0.7986 0.8377 0.8751 1.3531 
-1 0.7566 1.1586 1.1839 1.2103 1.2372 1.6556 
0 1.2326 1.7915 1.7612 1.7469 1.7431 2.0128 
1 1.8892 2.6352 2.5116 2.4312 2.3779 2.4199 
2 2.6699 3.6299 3.3899 3.2271 3.1124 2.8704 

 

Table 2 Variation of the wall heat transfer G(Pr) with K and A (Pr=0.5). 

A K=0 K=0.5 K=1 K=1.5 K=2 
-2 0.0339 0.0323 0.0313 0.0303 0.0294 
-1 0.1649 0.1600 0.1557 0.1519 0.1486 
0 0.4352 0.4258 0.4178 0.4109 0.4050 
1 0.8042 0.7928 0.7833 0.7752 0.7681 
2 1.2269 1.2157 1.2062 1.1982 1.1912 

 

Table 3 presents the effect of K on G(Pr) for various values of 
Pr and for A=0. Increasing K decreases G(Pr) for all Pr and its 
effect is more for  higher Pr. Increasing Pr increases G(Pr) for all K. 
Table 4 shows the variation of G(Pr) for various values of Pr and A 
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and for K=1. Increasing A increases G(Pr) and its effect is more 
apparent for higher Pr. For the suction case (A ≥ 0), increasing Pr 
increases G steadily. On the other hand, for the large blowing case, 
increasing Pr decreases G steadily.  But for moderate blowing 
velocity (A=-1), increasing Pr increasing G and increasing Pr more 
decreases G. 

 

Table 3 Variation of the wall heat transfer G(Pr) with K and Pr (A=-0.5). 

K Pr=0.05 Pr=0.1 Pr=0.5 Pr=1 Pr=1.5 
0 0.2021 0.2935 0.8042 1.3280 1.8258 

0.5 0.2003 0.2901 0.7928 1.3112 1.8058 
1 0.1988 0.2872 0.7833 1.2975 1.7898 

1.5 0.1974 0.2846 0.7752 1.2860 1.7767 
2 0.1961 0.2822 0.7681 1.2762 1.7656 

Table 4 Variation of the wall heat transfer G(Pr) with A and Pr (K=1). 

A Pr=0.05 Pr=0.1 Pr=0.5 Pr=1 Pr=1.5 
-2 0.1013 0.0966 0.0323 0.0054 0.0008 
-1 0.1317 0.1519 0.1600 0.1126 0.0727 
0 0.1651 0.2176 0.4258 0.5594 0.6535 
1 0.2003 0.2901 0.7928 1.3112 1.8058 
2 0.2371 0.3674 1.2157 2.2008 2.8862 

Conclusions 

The two-dimensional stagnation point flow of an incompressible 
non-Newtonian micropolar fluid with heat transfer is studied in the 
presence of uniform suction or blowing. A numerical solution for 
the governing equations is obtained which allows the computation 
of the flow and heat transfer characteristics for various values of the 
non-Newtonian parameter K, the suction parameter A, and the 
Prandtl number Pr. The results indicate that increasing the 
parameter K increases both the velocity and thermal boundary layer 
thickness while increasing A decreases the thickness of both layers.  
The effect of the parameter K on the velocity is more apparent for 
suction than blowing. The influence of the parameter K on the 
temperature is more apparent for higher values of Prandtl number.  
The effect of the suction velocity on the shear stress at the wall 
depends on the value of the non-Newtonian parameter K. On the 
other hand, the influence of the blowing velocity on the heat transfer 
rate at the wall depends on the value of the non-Newtonian 
parameter K. 
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