
M. de S. G. Tsuzuki and M. Shimada

/ Vol. XXV, No. 4, October-December 2003 ABCM396

M. de S. G. Tsuzuki and
M. Shimada

Escola Politécnica Universidade de São Paulo
Departamento de Engenharia Mecâtronica e

Sistemas Mecânicos
Av. Prof. Mello Moraes, 2231

05508-900 São Paulo, SP. Brazil
mtsuzuki@usp.br

Geometric Classification Tests Using
Interval Arithmetic in B-rep Solid
Modeling
In this work, the use of interval arithmetic is considered to increase robustness of geometric
classification algorithms in B-Rep solid modeling systems. The classification algorithms,
also known as incidence tests, are important to keep the consistency between topology and
geometry in a solid model during the application of Boolean operations. An error in the
incidence test has deep impact over the steps that follow the Boolean operations and can
damage the result, generating an inconsistent solid. The interval arithmetic incorporates
approximation errors, so that, it eliminates the need of defining a fixed tolerance to do the
comparison between floating-point numbers. However, it is not possible to directly convert
floating-point algorithms to interval arithmetic, so that, it is necessary to reformulate the
entire algorithm. Another important step in the Boolean operation is the determination of
intersection points where the use of interval arithmetic can have side effects as intervals
with large dimensions, and may cause incidence tests failures. It is necessary to control the
growth of the intervals based on the geometry and topology. This work will introduce the
application of interval arithmetic to a B-Rep solid modeler.
Keywords: Solid modeling, interval arithmetic, geometric algorithms

Introduction
The expansion of the application domain of geometric modeling

in more and more engineering fields is making the robust
implementations of the underlying geometric computations very
essential. Otherwise the predictable characteristics of the design
methodology can not be completely guaranteed. In a geometric
modeling system, two types of information describe solids: the
geometric and topological information which are related to the
spatial relationships among geometric elements (face, edge, vertex,
etc.). And the numerical information which describes the exact
location of each entity in the three dimensional space. In continuous
geometry these two types of information complement each other.
The geometric and topological information can either be determined
or verified by the numerical information and vice-versa. Usually all
geometric algorithms are designed and implemented with this
assumption of continuity. In practice, discreteness prevails at every
stage in a computer-integrated design and manufacturing system. In
the input stage the data is chosen from a discrete domain either by a
CCD camera or a graphics user interface raster screen. In the
computation stage all the numerical results are computed with the
bounded precision of the CPU. Finally, at the output stage, the result
is either displayed by the same graphics user interface raster, or
translated into action by some actuator or a CNC machine whose
movement is controlled by a discrete stepper motor. In this scenario
the algorithms that do not take into account the discreteness of the
system often fail with severe consequences.1

Good software development uses fundamental strategies of
layering and folding. The purpose of layering is to manage
complexity and to achieve reuse of code components. The purpose
of folding special cases is to achieve more compact code and to
reduce thereby the opportunity for errors. These activities are so
fundamental that most developers no longer think about them and
consciously consider more the derived aspects such as complexities
of code interdependence etc., as described by Lakos (1996). In the
development of geometric software, however, we are required to
review the code development fundamentals as part of the
algorithmic strategy, and must re-examine assumptions that have
become automatic.

Paper accepted October, 2003. Technical Editor: Edgar Nobuo Mamiya.

Geometric algorithms, though probably correct in a formal
sense, often fail when implemented on a computer. The failure
occurs as a result of the limited precision that is inherent to the
interval representation on floating point numbers. One must always
consider that any sequence of operations on a digital computer is
essentially equivalent to a finite sequence of manipulations on a
discrete grid of points. The absence of perfect arithmetic leads the
program to make guesses where it should make accurate decisions,
and often leads to failure.

Consider the example shown in Figure 1. It is determining the
intersection between a line and a solid. In this example, assume that
the front face of the cube cuts the line at a shallow angle. When
carried out numerically, it is possible that we calculate the line
intersection with the front face to be in the face interior, owing to
the steep angle and the resulting better numerical conditioning of the
linear system that determines the coordinates of the intersection.
Nevertheless, the intersection with the top face may be calculated to
lie on the edge of the face. After all, the shallow angle of the line
with the top face results in a linear system that has a poorer
condition number and therefore yields coordinate values with
greater errors. The partition of the top and front faces that would
result from this incidence is show in Figure 1. The two partitions are
logically inconsistent, because the line now intersects the top face
twice, at A and B. This will break the algorithms, as the designer
would not anticipate that a line intersects a plane in two separated
points.

Figure 1. An edge intercepts a solid inconsistently.

Geometric Classification Tests Using Interval Arithmetic in B-rep Solid Modeling

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2003 by ABCM October-December 2003, Vol. XXV, No. 4 / 397

The B-Rep Solid Modeling
The B-Rep representation stores several details of the solid such

as how faces, edges and vertices are agglutinated to form a solid. A
solid modeled by the B-Rep representation must have the capacity
to describe how each face is connected to its adjacent faces, such
that a closed volume is totally defined. The adjacency of those faces
can be derived through some numerical techniques; however, the
computational cost is very high and numerical precision problems
can arise. In the B-Rep representation that information is explicitly
available.

The first B-Rep based Solid Modeler was implemented using
the Winged Edge Data Structure (Baumgart, 1975). However,
during the past twenty years several data structures have been
proposed to implement the B-Rep representation. The proposed data
structures have in common the fact that they are based on the edge.
In a curved environment where it is possible to an edge to be
adjacent to two identical faces or to two identical vertices, the access
to the topological information must be made with special care. The
Winged-Edge Data Structure evoluted to an easier mechanism to
access the topological information in a curved environment, called
as Half-Edge Data Structure (Weiler, 1985).

A typical B-Rep data structure is shown in Figure 2. The solid is
a collection of shells. The shell is a collection of adjacent faces. A
face has one external boundary and zero or more internal
boundaries. The loop represents the boundary of a face and the
sequential list of half-edges that defines that boundary. An edge is
associated to two half-edges, each half-edge is associated to one of
the two faces and one of the two vertices associated to that edge.

Loop

Face

Shell

Solid

Loop

Face

Shell

Half-Edge Half-EdgeHalf-Edge

Vertex Vertex

Solid

Edge

Figure 2. Winged Edge Data Structure.

Why do Geometric Algorithms Fail?
The first cause of an ambiguous branch is roundoff error. A

floating-point number is represented with two components: a
mantissa and an exponent. If two numbers, a and b , are represented
with P-bit mantissas, then the product, ab , must in general be
represented with a 2P-bit mantissa. However, to keep the size of
these numbers from growing, floating-point arithmetic rounds the
mantissa of ab to P bits. Thus, if a third number c is subtracted

from ab the sign of cab − is not known when abPcab −<− 2 .

For that same reason 0.10*)0.10/0.1(on most systems does

not compare equal to 0.1 . That is because of rounding in the
division. Since one tenth cannot be represented exactly as a binary
fraction (it has an infinite expansion, just like one third as a
decimal), some bits get lost. Multiplying by ten cannot restore those
lost bits, so the result is not exactly one. For most purposes, though,
it is close enough. Most algorithms attempt to the notion of close

enough is to define an acceptable tolerance and check whether the
difference between the two values being compared is less than this
tolerance:

baba =⇒<− 0001.0 (1)

However, if a and b are numbers with large exponents, 0001.0
is too small to be meaningful. The difference between 400001.1 e
and 400000.1 e is 400001.0 e , which is much larger than 0001.0 .
For large numbers, the only difference that is smaller then 0001.0 is
zero. The test, also fails for small numbers, but in the opposite
direction: the difference between 0001.0 and 00019.0 is less than

0001.0 , but these two numbers differ by nearly a factor of two.
They are close enough under this simple test, but often this is not we
want. A solution is to scale the tolerance according to the magnitude
of the numbers that we are dealing with. A simple approach is to
divide the difference by one of the numbers:

ba
b

ba =⇒<− 0001.0)((2)

A central difficult for the reasoning approach is that deductions
about geometric incidences are based on a notion of nearness. As
such, they must follow unfamiliar logical rules. For example, fix a
threshold distance below which is judged that the points are
coincident. One may find that point A is coincident with point B
and point B coincident with point C , but that point A is not
coincident with point C .

The second cause of ambiguous branch is inaccurate input. For
example, suppose a polyhedron is represented with a set of plane
equations (one for each face) and some topological information. It is
possible that the topological information specifies that four faces are
to meet at a vertex, but the actual faces (lying on planes having
floating point coefficients) do not meet at a unique vertex.

An important component of a solid modeler system is the
Boolean operation engine. The Boolean operation engine aids the
creation of complex solids as a combination of simple solids. One of
the critical points in the Boolean operations engine is the
classification algorithm among geometric element (vertex, edge and
face) (Hoffman, 1989). It is necessary to determine if a solid’s
vertex is positioned on another solid’s vertex, or if a solid’s edge
intersects another solid’s edge defining an intersection vertex. The
classification routines make verifications to determine if a geometric
element is incident to another geometric element. The incidence
tests studied in this work are the following:

• Incidence test between two vertexes (it is determined if two
vertexes have equal coordinates);

• Incidence test between vertex and edge (it is determined if the
vertex is on the edge); and

• Incidence test between vertex and plane (it is determined if the
vertex is on the plane).

It is usual to implement algorithms that, using numeric
manipulation with fixed tolerance, determine the geometric
classification.

Solution Approaches
Several authors (Fortune, 1997) use exact arithmetic to address

the robustness problem: this could be integer arithmetic, extended
precision arithmetic or symbolic arithmetic. There are two problems
that complicate this approach: proliferation, if the input to a
geometric operation has k-digit precision, the output may require
higher precision and irrationality, some operations result in

M. de S. G. Tsuzuki and M. Shimada

398 / Vol. XXV, No. 4, October-December 2003 ABCM

coordinates that have no finite precision. In the literature (Latham,
1996), it is possible to find the symbolic reasoning approach: based
on the nature of the geometric problem, one could symbolically
reason, based on deductions have already been made, without any
calculations, and deduce results that are a consequence of already
known facts. A key issue in geometric computations is to achieve
consistent evaluation of predicates and constructors. Therefore the
problem of recognizing that such a decision is implied by earlier
decisions already made lied in the domain of geometric reasoning.

The third is reliable calculations: using interval arithmetic, one
can probably enclose the result of an arithmetic calculation with a
floating point interval within which the result of the corresponding
infinite precision exact computation must lie. In this work it is
considered the use of interval arithmetic (Hu et al., 1996) to increase
the robustness of the geometric classification algorithms. The
interval arithmetic incorporates the approximation errors, and then it
eliminates the need to define a tolerance to implement the
comparison between two real numbers. Several authors (Hu et. al.,
1996) studied the use of interval arithmetic in Solid Modeling.
However, the implications of using interval arithmetic in the
geometric classification were not discussed in the literature. In this
work, it is shown that the adaptation of a conventional floating-point
algorithm into a new interval algorithm is not just a type
substitution. Another drawback is that the interval can grow too
much, becoming useless.

In the following sections, it is presented an introduction to
interval arithmetic, the representation of geometric elements using
interval arithmetic and the incidence tests using interval arithmetic
are discussed. Finally, some results and some conclusions are
presented.

Rounded Interval Arithmetic
An interval of real numbers is defined by:

}|{],[bxaxba ≤≤= (3)

The interval],[ba is degenerated if ba = . The intersection

between two intervals],[ba and],[dc is empty if da > or

bc > . Otherwise:

)],min(),,[max(],[],[dbcadcba =∩ (4)

The union of two intervals that have a non-empty intersection is:

)],max(),,[min(],[],[dbcadcba =∪ (5)

The comparison between two intervals can result in three
possibilities: certainly equal, possibly equal or certainly not equal.
Two intervals],[ba and],[dc are considered certainly equal if

ca = and db = . Two intervals],[ba and],[dc are considered
certainly not equal if there is an empty intersection between them.
Two intervals],[ba and],[dc are considered possibly equal if
there is a non-empty intersection between them.

If floating-point arithmetic is used to evaluate the interval
arithmetic equations there is no guarantee that the rounding of the
bounds are performed conservatively. Then, rounded interval
arithmetic ensures that the computed end points always contain the
exact interval as follow (Abrams et. al., 1998):

[] [] []
[] [] []
[] []

[] [] 







+
−

=









+⋅⋅⋅⋅
−⋅⋅⋅⋅

=⋅

+−−−=−
++−+=+

u

l

u

l

ul

ul

dbcbdaca
dbcbdaca

dcba

dbcbdaca
dbcbdaca

dcba

cbdadcba
dbcadcba

ε
ε
ε
ε

εε
εε

)/,/,/,/max(

,)/,/,/,/min(
,/,

),,,max(

,),,,min(
,,

,,,

,,,

(6)

Where lε and uε are the units in last place for each separate

floating point number resulting from the floating point operations
giving the lower and upper bonds. When performing standard
operations, the lower bound is extended to include its previous
consecutive floating-point number, which is smaller than the lower
bound by lε . Similarly, the upper bound is extended by uε to

include the next consecutive number. Thus the width of the result is
enlarged by ul εε + and the result will be reliable in subsequent

operations.
The following example shows that equivalent algebraic

expressions can give different results in the interval arithmetic.
Consider the expression below:

1
1

)(≠
−

= x
x

xxf (7)

And]3,2[][=x , then

]1,3[
]3,2[1

]3,2[
][1

][
])([−−=

−
=

−
=

x
xxf (8)

For 0≠x we can rewrite)(xf as

0
11

1
1

)(
1

≠
−

=
−

= x
xx

xxf (9)

For the interval arithmetic evaluation over]3,2[one obtains:

]1,3[]2
3,2[

1
]3,2[

1
1

1
][

1
1

])([1 −−≠−−=
−

=
−

=

x

xf

(10)

The reason for this is based on the fact that interval arithmetic
does not follow the same rules as the arithmetic for real numbers.

Geometric Elements
The representation of the geometric elements is presented:

vertex, line, vector and plane.

Interval Vertex: each coordinate of the vertex is represented by
an interval. A 2D interval point is represented by

]),[],,([aualaual yyxx , and a 3D interval point by

]),[],,[],,([aualaualaual zzyyxx .

According to Hu and Patrikalakis (1996), the incidence
transitivity is an example of the superior robustness of interval
arithmetic against floating-point arithmetic. Using floating-point
implementation, a point A can be incident to point B , and point B
can be incident to point C . But it is not sure that point C is incident
to point A , as illustrated in Figure 3 (a). Using interval arithmetic
points A and B are replaced by a new point that covers both points.
So, point C is incident to this new point. In this case the interval
grows (see Figure 3 (b)).

Geometric Classification Tests Using Interval Arithmetic in B-rep Solid Modeling

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2003 by ABCM October-December 2003, Vol. XXV, No. 4 / 399

The widths of intervals of interval points are typically very
small. However, to make the transitivity incidence property true, the
widths of intervals of interval points can increase very fast.

Figure 3. Incidence transitivity using tolerance is not true, and using
interval arithmetic it becomes true.

Interval Line: Intervals line, with two end vertexes][0P and

][1P , are defined as the linear combination of these two interval

vertices. The 2D representation of the interval line is a polygon with
six sides, and the 3D representation is a polyhedron.

Interval Vector: a vector is defined by:

][][]][[][1221 PPPPv −== (11)

It is shown in Figure 4, an example where])1,0[],1,0([][1 =P
and])3,2[],3,2([][2 =P . The region defined by vector

])3,1[],3,1([][=v contains all possible floating point vectors

between][1P and][2P (see Figure 5). It will be shown in a next

section that in the discussion of Vertex-Edge incidence, the
direction of the vector is more important than the value of its
module. As the size of the interval vertexes grows and the distance
between them decreases, the number of possible directions that can
be associated to the interval vector increases.

Figure 4. An Interval Vector between vertexes][1P and][2P .

Figure 5. Representation of interval vector][21PP .

Another very important property is that the size of the interval
always increases. Consider the calculation of]][[][][2112 PPPP +=n

,

the result is])4,1[],4,1([][2 =nP . Actually, this result should be equal

to point][2P (see Figure 6). However,][2nP is a larger region than

][2P . As we have seen previously, the evaluation in interval

arithmetic of mathematically equivalent expressions gives values
that are not necessarily equal.

Figure 6. Example showing that][2P is not the same as][2nP .

Interval Face: the face equations are calculated based on
vertexes coordinates. An efficient and numerically robust way to
calculate the face equation is the method of Newell (Mäntylä, 1988).

Considering that the face is defined by n vertexes, and the
vertexes’ coordinates are][ix ,][iy and][iz . Then, the coefficients

][a ,][b ,][c and][d of the plane equation can be calculated by:

∑

∑

∑

=
++

=
++

=
++

+−=

+−=

+−=

n

i
iiii

n

i
iiii

n

i
iiii

yyxxc

xxzzb

zzyya

1
11

1
11

1
11

])[]])([[]([][

])[]])([[]([][

])[]])([[]([][
(12)

The remaining coefficient is calculated using the average point
in the following equation:

[] []T
avavav cbazyxd][][][][][][][⋅−= (13)

Incidence Tests
In this section, we will analyze three incidence tests: vertex-

vertex, vertex-edge and vertex-face.

Vextex-Vertex: Given two vertexes][1P and][2P , where:

]),[],,[],,([][

]),[],,[],,([][

2222222

1111111

ululul

ululul

zzyyxx
zzyyxx

=
=

P
P (14)

Vertex][1P is considered incident to vertex][2P if the

following conditions are satisfied:

∅≠∩
∅≠∩
∅≠∩

],[],[

],[],[

],[],[

2211

2211

2211

ulul

ulul

ulul

zzzz
yyyy
xxxx

(15)

If][1P and][2P are incidents, then a new vertex][3P is created.

Vertex][3P covers vertexes][1P and][2P .

Mäntylä (1988) and Chiyokura(1988) used fixed tolerance to
determine if two vertexes are coincident. Guibas et al. (1989)
determines a pair).,.(hieloe such that hieqploe .,5.0. ≤≤ . Where

M. de S. G. Tsuzuki and M. Shimada

400 / Vol. XXV, No. 4, October-December 2003 ABCM

22)..()..(, yqypxqxpqp −+−= . The interval).,.(hieloe shows

that it is possible to make p and q coincident if one displaces both

points by hie. in suitable direction, and it is not possible to make p
and q coincident if one displaces them by less than loe. . The

tolerance used is calculated, based on the floating point values
involved in the calculation. However, none of the proposals deals
with the transitivity property.

Vertex-Edge: The tests for collinearity and orientation of three
given points deserve careful discussion, since they are basic
building blocks of many geometric algorithms. Given three vertexes

][1P ,][2P and][3P . One method to verify if vertex][3P is on

]][[21 PP is to calculate the area defined by the triangle formed by

vertexes][1P ,][2P and][3P . If the area defined by triangle][1P ,

][2P and][3P is null, then the three vertexes are colinear, and there

is a possibility that vertex][3P is on]][[21 PP . The area is calculated

by:

2/)]][[]][[(][1312 PPPPA ×= (16)

Then a scalar product is calculated to determine if vertex][3P is

between][1P and][2P or not:

]][[]][[][1312 PPPP ⋅=E (17)

If the scalar product is less than or equal to zero, then vertex

][3P is considered incident to]][[21 PP . When working with

vertexes where the distance between them is almost the size of the
interval some unexpected results can appear, as the number of
directions associated to the interval vector can increase. The area is
determined considering][1P as the common vertex and two vectors

emanate from it. When using interval arithmetic, depending on the
common vertex, the distance among the points and the size of the
intervals the result can change. Consider the example shown in
Figure 7, where][3P is not on edge]][[21 PP and

])2,0[],2,0([][1 =P ,])12,6[],6,4([][2 =P and])2,2[],4,4([][3 =P . In

case that][1P is the common vertex, the calculation results in:

]2,24[2/)]][[]][[(][13121 −=×= PPPPA (18)

Figure 7. The distance among vertexes is near the interval vector’s size.

However, when][3P is the common vertex, the calculation

results in:

]2,20[2/)]][[]][[(][32312 −−=×= PPPPA (19)

][1A is probably equal zero giving that][1P ,][2P and][3P are

probably collinear. However,][2A is certainly not equal zero,

concluding that][1P ,][2P and][3P are certainly not collinear.

Then, to be sure of the result, vertexes][1P ,][2P and][3P are

certainly collinear when][1A ,][2A and][3A are possibly equal to

zero, where:

2/)]][[]][[(][

2/)]][[]][[(][

2/)]][[]][[(][

32313

23212

13121

PPPPA
PPPPA
PPPPA

×=
×=
×=

(20)

To determine if vertex][3P is on]][[21 PP , the following three

scalar products must be calculated:

]][[]][[][

]][[]][[][

]][[]][[][

32313

23212

13121

PPPP
PPPP
PPPP

⋅=
⋅=
⋅=

E
E
E

(21)

If][3E is probably less than or equal to zero, then this means

that vertex][3P is probably on]][[21 PP . If][1E and][2E are

probably greater than zero, then this means that][1P and][2P are

respectively probably outside]][[32 PP and]][[31 PP (see Figure 8).

If any of these verifications fails, then point][3P is certainly not on

]][[21 PP .

This way, it is necessary to make three cross products and three
scalar products. Trying to find new possibilities to verify the
geometric incidence, it was verified that if the order of the
calculations is inverted the number of calculations could be smaller.
First it is verified the three scalar products to determine the relative
position between][1P ,][2P and][3P , and it is necessary only one

cross product to verify if][1P ,][2P and][3P are collinear in the

case that][3P is between][1P and][2P :

Figure 8. Possible configurations between vertex][3P and edge

]][[21 PP .

Geometric Classification Tests Using Interval Arithmetic in B-rep Solid Modeling

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2003 by ABCM October-December 2003, Vol. XXV, No. 4 / 401

2/)]][[]][[(][

]][[]][[][

]][[]][[][

]][[]][[][

3231

32313

23212

13121

PPPPA
PPPP
PPPP
PPPP

×=
⋅=
⋅=
⋅=

E
E
E

(22)

Mäntylä (1988) and Chiyokura (1988) used fixed tolerance to
determine the incidence between edge and vertex. Guibas et al.
(1989) determine the smallest perturbation that makes the three
points collinear. However, it is not possible to differentiate inputted
from calculated vertexes’ coordinates. In this approach, inputted
vertex’ coordinates have intervals with smaller size than calculated
vertex’ coordinates. Hu et. al. (1996) do not analyze this incidence
test.

Vertex-Face: It is verified if vertex][4P is on the plane defined

by vertexes][1P ,][2P and][3P . One method is to calculate the

volume of the tetrahedron defined by vertexes][1P ,][2P ,][3P and

][4P . If the volume][V is equal to zero, then][4P is on the plane,

where][V is given by:

6/]][[)]][[]][[(][141312 PPPPPP ⋅×=V (23)

Similarly to the Vertex-Edge incidence, using interval
arithmetic, it is necessary to calculate four volumes. Otherwise, an
incorrect answer can be found. When][1V ,][2V ,][3V and][4V are

possibly equal to zero then][4P is on the plane defined by vertexes

][1P ,][2P and][3P . Where:

6/]][[)]][[]][[(][

6/]][[)]][[]][[(][

6/]][[)]][[]][[(][

6/]][[)]][[]][[(][

4342414

3432313

2423212

1413121

PPPPPP
PPPPPP
PPPPPP
PPPPPP

⋅×=
⋅×=
⋅×=
⋅×=

V
V
V
V

(24)

Another method consists in use the plane’s equation
0=+⋅+⋅+⋅ dzcybxa and applies it to vertex point][4P . If

0][][][444 =+⋅+⋅+⋅ dzcybxa is possibly equal to zero, then point

][4P is on the plane. This is a much simpler approach and it is used

in our solid modeler implementation.

Results – Boolean Operations
According to Mäntylä (1988), the lack of robustness to deal with

all the possible intersections that can happen between the geometric
elements and the possibility of precision error during the incidence
tests and the determination of intersection are the main problems
that the Boolean operations can suffer. For the second problem, the
rounded interval arithmetic will help to keep the topologic
consistency preventing that the approximation errors interfere in the
solid topology. The algorithm of Boolean operation of type union
can be divided into the following steps, for two solids A and B :

1. Determination of the intersection points of faces from solid
A with the faces from solid B ;

2. The intersection points determined in the previous step are
transformed into vertexes in the data structure. Edges and
faces are also added to the data structure;

3. The faces from solids A and B are classified to determine
which face must be removed (Chiyokura, 1988);

4. After the deletion of the faces, adjusts and cleaning of the
data structure of solids A and B are made. This is

necessary because the region’s topology where is the gluing
is going to happen must match exactly at both solids;

5. Solid B is glued to solid A . This means that the data
structure of solid B is moved to the data structure of
solid A .

In steps 1 and 2, the interval arithmetic has fundamental
importance, to prevent that unnecessary vertexes, edges or faces are
created, because unnecessary elements can change the solid’s
topology.

Plane-Edge Intersection
When the intersection point between an edge and a face is

determined, the size of the interval point becomes bigger than the
original edge. Figure 9 illustrates the intersection point larger than
the original edge. This is a big problem, because as the interval
grows it becomes useless. Figure 10, in the right, shows a result of a
boolean operation where the interval size of calculated vertex’
coordinates became too large, and consequently the incidence tests
fails producing an incorret result.

However, it is known that the equation of a plane is a secondary
information, calculated based on vertexes’ coordinates. Thus, the
size of a interval vertex must be bounded by the interval edge and
not by the interval face, as shown in Figure 11.

This way, a verification routine is executed to limit the size of
the interval point calculated by plane-edge intersection. Figure 10
shows an example of the Boolean Operations implemented using the
interval correction (left) and without using the interval correction
(right).

Figure 9. The intersection point is larger than the interval edge.

Figure 10. Example of a union of two cylinders with interval correction and
without interval correction generating a true result and an incorrect result.

Fixed Tolerance x Interval Arithmetic applied to Boolean
Operations

The following example compares the incidence tests using
interval arithmetic and fixed tolerance. We have that)0,0(1 =P ,

)0,01.0(2 −=P in the floating point environment. The fixed

tolerance is equal to 001.0 . In the interval arithmetic environment
we have])0,0[],0,0([][1 =P and])0,0[],01.0,01.0([2 −=P .

The example in Figure 12 shows the intersection between solids
A and B . The result using fixed tolerance has a salient part,

M. de S. G. Tsuzuki and M. Shimada

402 / Vol. XXV, No. 4, October-December 2003 ABCM

because of the difference between
1P and

2P is greater than the

fixed tolerance. However, the result using interval arithmetic does
not have this salience because the interval size made the calculations
more robust and accumulated the rouding in the interval.

Figure 11. The intersection point was corrected using the border of the
two interval vertexes.

Figure 12. Comparison between results using floating point tolerance and
interval arithmetic.

Conclusions
In this work it was applied interval arithmetic into a B-Rep solid

modeler. It was demonstrated that the incorporation of interval
arithmetic is not only a type substitution, and the algorithm must be
totally reformulated. It was proposed a new algorithm to classify the
incidence between vertex and edge, and applied the algorithm in the
implementation of Boolean Operations. It was proposed a method to
verify the size of the interval vertex calculated from plane-edge
intersection, controlling its size.

The interval arithmetic can give more robust results than the
commonly used floating point arithmetic. In a floating point
arithmetic environment, it is necessary to manage the transitivity
property in a higher level. If

1P is equal to
2P and

2P is equal to
3P ,

however
1P is not equal to

3P . All results obtained from the floating

point arithmetic rules application are processed and
1P turns to be

equal to
1P or

2P turns to be not equal to
3P . In a interval arithmetic

environment, this rule management is not necessary as the
transitivity property is implemented in a very low level.

Acknowledgement
This work was partially supported by FAPESP and CNPq under

grant 300.224/96.

References
Abrams, S.L.; Cho, W.; Hu, C.Y.; Maekawa, T.; Patrikalakis, N.M.;

Sherbrooke, E.C.; Ye, X.; 1998, “Efficient and Reliable Methods for
Rounded Interval Arithmetic”, Computer Aided Design, 30(8), 657-665.

Baumgart, B., 1975, “A Polyhedron Representation for Computer
Vision”. In National Computer Conference, pp. 589-596, AFIPS Conf. Proc.

Chiyokura, H., 1988, “Solid Modeling with DESIGNBASE: Theory and
Implementation”, Addison Wesley Publishing Company.

Fortune, S., 1997, “Polyhedral Modelling with Multiprecision Integer
Arithmetic”, Computer Aided Design, 29(2), 123-133.

Guibas, L., Salesin, D., Stolfi, J., 1989, “Epsilon Geometry: Building
Robust Algorithms from Imprecise Computations”. In Proceedings of the
Fifth Annual Symposium on Computational Geometry, 208-217, ACM
Press.

Hoffmann, C.M., 1989, “Geometric and Solid Modeling: An
Introduction”, Morgan & Kaufmann.

Hu, C.Y.; Patrikalakis, N.M., Ye, X., 1996, “Robust Interval Solid
Modeling Part I: Representations”, Computer Aided Design, 28(10), 807-
817.

Hu, C.Y.; Patrikalakis, N.M., Ye, X., 1996, “Robust Interval Solid
Modeling Part II: Boundary Evaluation”, Computer Aided Design, 28(10),
819-830.

Lakos, J.; 1996, “Large Scale C++ Software Design”, Addison-Wesley,
Reading, MA.

Latham, R. S.; Middleditch, A. E.; 1996, “Connectivity Analysis: a Tool
for Processing Geometric Constraints”, Computer Aided Design, 28(11), pp,
917-928.

Mäntylä, M., 1988, “An Introduction to Solid Modeling”, Computer
Science Press.

Weiler, K., 1985, “Edge-Based Data Structures for Solid Modeling in
Curved-Surface Environments”, IEEE Computer Graphics & Applications,
5(1):21-39.

