Acessibilidade / Reportar erro

Comparison between experimental data and numerical modeling for the natural circulation phenomenon

The study of natural circulation phenomenon has been object of crescent interest in scientific community in recent years. The new generation of compact nuclear reactors uses natural circulation of the fluid as a residual heat removal cooling system in case of accident or shutdown. The objective of this paper is to present a comparison between experimental data and numerical simulation results for the natural circulation phenomenon in single and two-phase flow regime. Experimental data were obtained from a circuit built with glass tubes, through which thermal hydraulic phenomenon visualization was possible. The circuit is composed of an electric heater as the heat source, a heat exchanger as the heat sink and an expansion tank to accommodate fluid density changes. Instrumentation data acquisition is performed through thermocouples and pressure meters, and controlled by a computer interface developed using LABVIEW. Numerical modeling and simulations were done with the thermal hydraulic code RELAP5, which is widely used for this purpose. The cyclic reverse flow observed in the circuit was well represented by the numerical model. The comparison demonstrated that the numerical simulations are very close to the experimental data.

Natural Circulation; RELAP5; two-phase flow


Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM Av. Rio Branco, 124 - 14. Andar, 20040-001 Rio de Janeiro RJ - Brazil, Tel.: +55 21 2221-0438, Fax: +55 21 2509-7129 - Rio de Janeiro - RJ - Brazil
E-mail: abcm@abcm.org.br