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Weak Three Dimensionality of a Flow 
Around a Slender Cylinder: the 
Ginzburg-Landau Equation 
In this paper a weak three-dimensionality of the flow around a slender cylinder is 
considered and the related model, the so-called Ginzburg-Landau equation, is here 
obtained as an asymptotic solution of the 3D (discrete) Navier-Stokes equation. The
derivation is in line with existing slender bodies theories, as the Lifting Line Theory, for 
example, where the basic 2D flow, leading to Landau’s equation, is influenced now by a 
“sidewash” that modifies bi-dimensionally the original flow through mass conservation.
The theory is asymptotically consistent and rests on an assumption that holds in the
vicinity of the Hopf bifurcation (Recr  45); furthermore, it leads to a well-established way
to determine numerically both the Landau’s coefficient  and Ginzburg’s coefficient .
Arguments are given suggesting that this assumption should hold far beyond Hopf 
bifurcation   (Re >> Recr) and, with it, to extend the Ginzburg-Landau equation almost to 
the border of the transition region Re  105. In this work only the theoretical development 
is addressed; numerical results will be presented in a forthcoming paper. 
Keywords:Hydrodynamic stability, Ginzburg-Landau equation, slender cylinder

Introduction
Viscous flow around a 2D circular cylinder is known to produce 

spontaneous harmonic oscillations of the wake for Reynolds number
above a critical value Recr  45, the oscillating part of the pressure
giving rise to an harmonic transverse force on the cylinder that has 
importance in several engineering applications. It seems to be now 
well established that this is essentially a stability problem, see
Huerre & Monkewitz (1990), and that the oscillatory wake can be
identified with Hopf birfucation in the language of the dynamic
systems theory: this idea was first advanced, in a more operational
way, by Bishop & Hassan (1964) and it has been verified
experimentally, among others, by Provansal et. al. (1987) in their
study in the vicinity of the critical Reynolds number.1

Empirical evidences show that both the shedding frequency
(Strouhal number) and the whole phenomenon of the vortex induced
vibration, at least in its more macroscopic appearance, are
essentially invariant with Reynolds number up to the transition zone
(Re  105). This observation has led some authors (Iwan & Blevins
(1975), for example) to propose (heuristic) phenomenological
models, based on Van der Pol equation, to predict the hydro-elastic
interaction, with results that are impressive given the somewhat
loose fluid dynamic background on which they are based;
interestingly enough, the predictions from such models are, in some 
aspects, in much better agreement with experiments than the ones
obtained from direct CFD computation. Being heuristic as they are,
however, they can be used only as interpolators and hardly to 
extrapolate results to situations much beyond the empirical data on
which they are based; furthermore, some hysteric behavior observed
in the experiments are not recovered by these models and, 
obviously, the direct link with the Navier-Stokes equation is lacking 
in such approach.

The final purpose of the on-going research is to derive a “fluid-
elastic oscillator model” directly from Navier-Stokes equation, 
rendering it not only whole predictive but also making it possible to
be used in different situations from the ones observed in the existing
experimental facilities; in particular, the case where the incident
current changes both in direction and intensity along the cylinder
span is particularly relevant for offshore applications. Notice also
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that the link with the more fundamental Navier-Stokes equation has
here an even greater motivation, since direct computation with CFD
did not produce yet a reliable result.

In the present paper only the first step towards this final goal is
addressed, namely, to derive the “fluid oscillator model” by
considering the cylinder fixed in the flow. The model is represented
by the so-called Ginzburg-Landau Equation, see (3.1a), first
proposed by Albarède et al (1990) in the context of VIV, with a 
basic difference, however, in relation to the usual approach: now
this equation is not fitted externally to the problem but it results
from a consistent asymptotic approximation of the 3D (discrete)
Navier-Stokes Equation (NSE). In particular, the coefficients of this
equation – the Landau’s coefficient  and the Ginzburg’s coefficient

 are not inferred from the experiments but they are directly
computed by well established numerical procedures based on the
Finite Element Method (FEM) applied to the 2D cross-flow 
problem: as usual in “slender bodies theories”, one has thus an 
essentially 2D effort to compute a 3D result.

The discrete FEM model is derived, as always, in a finite fluid
region R and one has certainly a difficulty to define the “discrete
fluid flow operator” in R due to the loosely known form of the
proper boundary condition at the outlet of R. By considering the 
flow equation in the wake it has been possible to express the 
“resistance” offered by the wake on the flow within R, named here 
the “wake impedance”, by an explicit expression that depends
solely on the velocity and acceleration of the flow on the borderline
that defines the interface between R and the wake. This derivation is
elaborated elsewhere and it may have an importance that transcends
the specific application aimed in this work.

The final discrete NSE emulates the continuum NSE with a
local inertia, a convective inertia and a viscous dissipation that
incorporate the contributions from both the finite fluid region R, that 
is actually discretized, and the wake. This discrete set of equations 
are thus projected into the solenoidal and gradient sub-spaces and 
standard results in Linear Algebra are used to show the inner
consistency of these projections; in particular, the projection on the 
solenoidal sub-space, that determines the velocity field, leads to a 
normal quadratic dynamic system to which the usual asymptotic
procedure can be applied, to determine first Landau’s Equation in 
the 2D context and after the 3D Ginzburg-Landau Equation.

As it is known, a myriad of interesting small scale features,
some of them uncovered by a detailed numerical analysis, appear
concomitantly with the gross macroscopic ordered behavior of the
wake that really matters in the study of the hydro-elastic
phenomenon (VIV): the purpose in this work it is not, thus, to 
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present a taxonomy of the chaos but rather to capture the underlying
order. To achieve this goal a sort of “blindness” is needed, to avoid
a too detailed picture, and the asymptotic theory is just a technical
filter that provides it. This theory rests on a well defined
assumption, see (2.21), that can be directly verified by the numerical
results; furthermore, although strictly justified only in the vicinity of
Hopf bifurcation (Re  Recr), it seems to hold in a much broader
range of Reynolds numbers, what makes possible to extend
Ginzburg-Landau equation to this range. Incidentally, this yet
speculative result can furnish a theoretical background for the so-
called “phenomenological models” that are in fact applied, with a
relative success in the prediction of VIV, in a range of Reynolds
numbers far beyond the Hopf bifurcation (Re >> Recr).

The paper is organized as follows: in section 2 the two-
dimensional problem is addressed, leading to Landau’s equation,
and in section 3 a weak three dimensionality of the flow is
considered and Ginzburg-Landau equation is obtained. Some more
technical results, including the derivation of the “wake impedance”,
are derived elsewhere and numerical results will be presented in a 
forthcoming paper.

Two-Dimensional Solution: Landau’s Equation
In this section the two dimensional cross-flow around a cylinder

is considered. Points in the cross section plane are designated by the
vector x = xi + yj, the fluid velocity by the vector field u(x,t) =
u(x,t)i + v(x,t)j, the pressure by the function p(x,t) while the
differential operator  is defined by the expression  = i / x +
j / y; these notations will be kept all through the work, even in the
next section where the three dimensional correction will be
addressed.

Let d = 1 be the typical dimension of the cylinder cross section
(the cylinder diameter in the case of a circular cylinder) and U = 1
be the incident velocity along the x-axis at the infinite; obviously,
the non-dimensional frequency d/U coincides numerically with
and both forms will be used here, depending on the convenience.
The fluid density will be also assumed unitary (  = 1) and thus v = 

v/ Ud = 1/Re, where v is the fluid viscosity and Re the Reynolds
number.

It is desirable to work here with a velocity field u(x,t) that
satisfies homogeneous boundary condition both at the infinite and at 
the cross section contour line B. With this purpose in mind one
introduces here an auxiliary vector field up(x) such that 
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with the subsidiary condition that up(x) approaches its limit value i
“fast enough”, namely: up(x) i for |x| > 5d, for example. In the
case of a circular cross section this field can be determined with the 
help of the stream function
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where up(x) i for |x| > 5d with an error smaller than 0.025% for
= 5. If the cross section is arbitrary this function up(x) can be 
determined numerically, for instance, but once this is done the
actual velocity field uT(x,t) can be written as

T p( , t) ( ) ( , t)u x u x u x . (2.1c)

Introducing now the (volume) force vector

2
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, (2.2a)

the flow problem is reduced to determine the fields {u(x,t); p(x,t)}
such that 
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subjected to the homogeneous boundary conditions
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The discrete version of (2.2) will be addressed next. 

Boundary Conditions and “Wake Impedance”

In order to deal with (2.2) one must specify, first of all, a finite
fluid region R, as shown in Fig.(1), where the flow variables will be
discretized by Finite Elements. Boundary conditions must be
imposed on the border R of R: only with them the “fluid flow
operator” can be properly defined within R.

Figure 1. Finite fluid region R ( R = B Ri Rl Rw) and wake.

(uT(x,t) = up(x) + u(x,t); up(x) i for |x| b).

The boundary R is made by the cross section contour line B,
by the “inlet” Ri at the vertical line x = b, by the “lateral sides”
Rl at y = b and by the “outlet” Rw at x = l that defines the

interface between R and the wake region   x > l ( R = 
B Ri Rl Rw). The velocity field u(x,t) is certainly null at B

and if b is large enough (b  5d) and l is not much larger than b (l
10d) it seems reasonable to assume that u(x,t) is also null at 
Ri Rl: the presence of the cylinder should not perturb the

incoming flow at sufficient distance both upwind and laterally. The
following essential boundary condition is thus assumed on this part
of R:

iB R R
( , t)

x
u x 0

l

. (2.3a)

The same homogeneous boundary condition cannot be extended
to the “outlet” Rw unless the distance l is very large (and so it must 
be b). In fact, the vorticity generated at the cylinder dies out very
slowly downstream, typically in a distance of order l  Re for the
largest wavelength, and since b increases roughly with l1/2 the 
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condition (2.3a) could be pushed to Rw only if the finite region R
becomes very large2.

The velocity field at Rw should thus remain unspecified while 
the proper boundary condition at the outlet of R will be defined 
below in this section. If now the dynamic equation in (2.2b) is 
multiplied by a virtual velocity u(x) that satisfies, as usual, the
same essential boundary condition (2.3a), and the continuity
equation in (2.2b) is multiplied by p(x) and both expressions are 
further integrated in R one obtains, after partial integration, that

p p

R R

p w w

R R R

R

1
dR u ( u) v ( v) dR

t Re

dR p( )dR ( ) dR I( (y); (y));
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(2.3b)

In (2.3b) the notation {(uw(y,t); uw(y))  (u(l,y,t); u(l,y)); |y|
b} was used to define the velocity and the virtual velocity over Rw

and I(uw(y); uw(y)) is the “wake impedance”, namely,

w w w w
w w

1 u 1 v
I( (y); (y)) p u (y) v (y) dy

Re x Re x
u u

b

b

, (2.3c)

where, assuming continuity, ( )w stands for the stress field in the
wake at x = l: the “wake impedance” is thus the virtual power done 
by this stress field on the virtual velocity uw(y) and it represents the
“resistance” offered by the wake for the flow within the finite fluid
region R.

The wake region is bounded on the left by Rw and by two semi-
infinite lines R , as indicated in Fig.(1). Since u(x,t) was assumed
null at the lateral sides Rl it is certainly consistent with this
assumption to take u(x,t) 0 on R , since the perturbation caused
by the cylinder should be even smaller over R  than over Rl. It 
turns out then that the flow in the wake is forced solely by the field
uw(y,t) and thus 
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where the functionals X,Y( ) can be determined by solving the flow 
problem in the wake. If both the velocity and virtual velocity
{uw(y,t); uw(y)} at the outlet are discretized as

w
w
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where {hk,w(y); k = 1,2,…,Nw} are the interpolation functions for
the velocity field restricted to Rw  and {Uw(t); Uw} are the nodal 
values vector, it can be shown that

2 This seems to be true even for a “small” Reynolds number: for Re = 41 the
wake has already begun to oscillate sinusoidally far downstream, see Van Dyke
(1982), plate 46. The existing numerical results predict, as a rule, a critical
Reynolds number above 40 (Recr  45) although the expected value should be
below (Recr  35).
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the matrices {Mw; Kw; Nw(Uw)} being computed from explicitly
defined Fourier series3.

Within R the discrete velocity and pressure fields can be 
expressed as 
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k k N k
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with {hk(x); k = 1,2,...,N} and {t (x);  = 1,2,…,e} being,
respectively, the interpolating functions for the velocity and pressure 
fields. The functions {hk(x)} are necessarily continuous but the 
{t (x)} may or may not be so; in reality, the pressure field does
work on u and it seems reasonable to choose the {t (x)} in 
conformity with the discrete field u obtained from the {hk(x)}.
Placing (2.5a) into the integrals that appear in (2.3b) and defining
the matrices
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the discrete form of the flow equation in weak form reads (see
(2.3b) and (2.4c))

t
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t t
w w w w w w w w p
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Observing that {Uw; Uw} are, in fact, the part of {U; U}
defined in Rw, one can take the “wake impedance” on the left side
of (2.5c) and sum both contributions to obtain

t t
p p

t

( ) ;

.

U M U K U N U U R P U F

R U 0
 (2.6) 

The dynamic parcels of (2.6), proportional to {M; Kp; N(U)},
come both from the finite fluid region R, where the flow variables
are discretized, and the wake region downstream: M is the local
inertia matrix, Kp represents, as indicated in (2.5b), the influence of 
the viscous stress and the convective acceleration due to the 
auxiliary field up(x) and N(U) U is the convective inertia force. The
parcels { Rt U; R P} are due to mass conservation and the related
constraint force (pressure) defined in the finite region R: the matrix

3 For the Fourier series expansion one must impose a finite breadth 2W for the
wake, with 2W being arbitrarily large (2W >> b). It can be shown that the 
number of terms nL in these series increases both with W and Re; typically, nL 
 O(W (Re)1/2).
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R represents the (discrete) gradient operator and Rt the (discrete)
divergence operator. Obviously, mass is already conserved in the 
“wake solution” (2.4c) and this constraint should not appear again at 
(2.6).

The (discrete) Navier-Stokes equation (2.6) emulates thus the
structure of the original equation (2.2b) and it will be analyzed next:
in this discrete form the mathematical analysis is much simpler,
once is based only on some general results in Linear Algebra, and, 
furthermore, its outcome has an operational appeal given its direct
link to the final numerical results. 

The Solenoidal and Gradient Sub-Spaces

Let WN be the 2N-dimensional linear space of the discrete
velocity vector U and Le be the e-dimensional linear space of the 
discrete pressure vector P; in both spaces it will be assumed the
standard inner product <U;V> = Ut V and the related norm ||U||2 = 
<U;U> = Ut U.

Let also {Js; Gr} be the s-dimensional and r-dimensional sub-
spaces of WN defined by the relations

t
s N e

r N

J W : L

G W : ; L

V R V 0

V V R e

;

.

(2.7a)

Elements of Gr are “gradients” of “scalar fields”  Le and for 
this reason Gr is called the “gradient sub-space” of WN; notice that
Gr is generated by the linear combinations of the column vectors of 
R. Elements of Js have null divergence and so Js is called the
“solenoidal sub-space”; by definition, their elements are orthogonal
to the column vectors of R and thus Js is the orthogonal complement
of Gr or (r + s = 2N)

N s r
, (2.7b)W J G

see Ladyzenskaja (1969).
One introduces here the operators

t
e e

t
N N

: L L ;

: W W ,

R R
R R

 (2.8) 

where  is the (discrete) Laplacian operator and  will be named 
the “conjugated Laplacian”. Both  and are represented by
symmetric, positive semi-definite sparse matrices, the “sparseness”
being a consequence of the “local character” of the Finite Element
discretization.

By definition Rt V = 0 if  V  Js and so V = 0 or Js Null
( ). In reality, it can be shown that Js Null ( ). Let {T ;  = 
1,2,…,s} be an othonormal basis of Null ( )  Js and {Gj; j =
1,2,…,r} be the orthonormal eigenvectors corresponding to the 
positive spectrum { j >0; j = 1,2,…,r} of , namely:

 (2.9a) 
j j j

;  1, 2,...,s;

;  j 1, 2,..., r.

T 0
G G

Obviously {G1; G2; …; Gr} is a basis of Gr while {T1; T2;
…;Ts} is a basis of Js; assuming that 0 < 1 2  … r consider 
the matrix

1
r

1I . (2.9b)

Certainly 1 is a symmetric, positive semi-definite sparse matrix
with a spectrum in the interval [0;1]; furthermore

1 T T , (2.9c)

a relation that can be used to determine an orthonormal basis of the 
solenoidal sub-space4 . 

The Laplacian operator may have a non-empty null sub-space 
(Null ( ) ) but it certainly has a positive spectrum; in fact, if

t
j j

j

1Ĝ R G

ˆ ˆ

, (2.10a) 

then one can easily check that = 1 with 
j

ˆ|| ||G

jj jG G . (2.10b) 

Observing now the conjugated relation

j j

j

1 ˆG R G , (2.10c) 

the following result can be derived: the positive spectrum of  must
coincide, necessarily, with the positive spectrum { j >0; j = 
1,2,…,r} of . In fact, if j were a positive eigenvalue of  with 

eigenvector thenĜ ˆG R G should be an eigenvector of  with
the same eigenvalue  and so  { j >0; j = 1,2,…,r} once, by
definition, this is the set of all positive eigenvalues of . The 
operators { ; } establish, thus, a duality between the sub-space

 LrĜ e, generated by the vectors
1 2 r

, and the

gradient sub-space G

ˆ ˆ ˆ{ ; ;...; }G G G
r  WN: if 

r
then R  GĜ r and if V  Gr

then Rt V ; the sub-space Null ( ) is the orthogonal

complement of and so 

rĜ

rĜ

e r

N r

ˆL ( ) G

W ( )

Null

Null

;

G .

r

 (2.11a) 

Let {S ;  = 1,2,…,e-r} be an orthonormal basis of Null ( ),
named the “spurious pressure modes” in the specialized literature,
see Gunzburger (1985); they satisfy the relations

; 1,2,..., eS 0  (2.11b) 

and, as it will be seen in the next item, these modes play in the 
discrete problem the same role played by the constant pressure field
in the continuum problem, namely: they do not interfere with the 
dynamics of the flow. In accordance with (2.9b) one introduces here
the matrix

1
r

1I , (2.11c) 

where, again, 1 is a symmetric, positive semi-definite sparse matrix
with spectrum in the interval [0;1]; this matrix will be used in the 
next item in the context of the Poisson’s equation for the (discrete)
pressure field. 

It seems worthwhile to finish this section with a more technical
remark about the Finite Element discretization, related to the so
called “div-stability condition” (Ladyzhenskaya – Babuska – Brezzi

4 The ARPACK algorithm is specially suited to deal with eigenvalue problems of
a large sparse matrices, see Lehoucq & Sorensen & Yang(1997).
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condition). The point is that for some classes of Finite Elements
(FE) the smallest eigenvalue 1 becomes “too small” as the mesh
size h goes to zero, indicating that elements of the gradient sub-
space Gr tend to “slip” into the solenoidal sub-space Js as h  0. In
this case the solenoidal sub-space Js becomes “too rarefied” once at
least some of the solenoidal fields are, in fact, “slipping modes” of 
Gr; this problem is particularly acute for the simplest FE
discretization, where the velocity field is linear piecewise
continuous and the pressure is constant in each element, see
Gunzburger (1985) and Bathe (1996), for example. However, as 
shown in Aranha (2003), if the actual solenoidal sub-space is 
enlarged by these “slipping modes” in a way dictated by the “div-
stability condition” this problem can be overcome without impairing
the standard Finite Element convergence rate. In the present context
some of the eigenvalues-eigenmodes in Gr are naturally computed in 
the effort to determine the basis {T ;  = 1,2,…,s} of Js and this
“enlarging” process can then be worked out easily; or, in short, 
questions related to the “div-stability condition” are of no special
concern here.

The Solenoidal Velocity Field and Poisson’s Equation

The solution of the (discrete) Navier-Stokes equation (2.6) will 
be dealt in two stages: first, the projection of (2.6) into Js will result
in a standard nonlinear differential equation for the velocity; second,
Poisson’s equation for the pressure will be derived by projecting
(2.6) into Gr. The simple structure of the dynamic equation in Js

allows one to develop standard asymptotic analysis for the 
underlying nonlinear system and to obtain, in this way, Landau’s
equation in the vicinity of the Hopf bifurcation; in the other side, it
is possible to show, with the help of item (2.2), that Poisson’s
equation has a solution and that this solution is “unique”. With this
purpose in mind one introduces the matrices

1 2 s

t
s

t
p,s p

t
s

t
p,s p

[ ; ;...; ];

;

;

( ) ( ) ;

,

T T T T
M T M T
K T K T

N q T N T q T
F T F

 (2.12a) 

where Rt T = 0 since T  Js; also, given arbitrary s-dimensional
vectors {q(t); q} one has

s

s

(t) J (t) (t);

J .

U U T
U U T q

q

N

(2.12b)

The virtual velocity U  WN in (2.6) belongs either to Js or to
Gr; assuming first U = T q  Js and recalling that Tt R = (Rt T)t = 
0t one obtains, with the help of (2.12b), the following equation for
the variable q(t) (see (2.12a)):

s p,s s p,s( )M q K q N q q F . (2.13)

The asymptotic solution of (2.13), leading to Landau’s equation,
will be addressed in item (2.5). Introducing the dynamic force vector
(see (2.6))

D p p(t) ( ) WM U K U N U U FF , (2.14a) 

one can write D(t) in the form ({T } {Gj} is an orthonormal
basis of WN)

s r

D d, d, j j
1 j 1

d, D d, j D j

(t) f (t) f (t) ;

f (t) (t); ; f (t) (t); .

T G

T G

F

F F

 (2.14b) 

By placing now U = R  Gr in (2.6) one obtains, with the
help of (2.8) and (2.10a), the following Poisson’s equation for the 
pressure P

r
t

D d, j j j r
, (2.14c) 

j 1

ˆ ˆ(t) f (t) GP R GF

since Rt T 0 (T  Js). But P  Le and {S ;  = 1,2,..,e-
r} { } is an orthonormal basis of L

j
ˆ ; j 1,2,.., rG e: expressing P in 

this basis and using (2.10b) it is easy to check that the general
solution of (2.14c) is given by (recall that S  = 0)

s

e r r
d, j

j
1 j 1 j

f (t) ˆ

P

P Sa G ,

where {a ; = 1,2,…,e-r} are arbitrary coefficients. The “spurious
mode” Ps = a S  plays here the same role played by the constant
pressure field in the continuum problem: in fact, its (discrete)
gradient R Ps – and it is in this way that the pressure appears in the 
discrete flow equation (2.6) – is null since Ps 0 (recall that S
= 0) and 

2 t t t
s s s s s|| || 0R P P R R P P P . (2.15a) 

The solution P of the Poisson’s equation is thus “uniquely”
defined by the expression 

r
d, j

j
j 1 j

f (t) ˆ(t)P G , (2.15b) 

and it is important to point out that P(t) can be also obtained by
repeated multiplications of the sparse matrix 1; in fact, from
(2.11c) it follows that 

1 j j j j j r
ˆ ˆ ;  1G G ,

and from the convergence of the geometric series ( j)
n = 1/(1 j)

one obtains 

n t
1 D

n 0r

1
(t) (t)P R F . (2.15c) 

The series (2.15c) has an “almost geometric structure” and its
convergence can be thus accelerated by Shanks Transformation, see 
Bender & Orszag (1978). 

The Steady State Solution (Ue)

Let qe,p be the steady solution of (2.13), namely

p,s e,p s e,p e,p p,s( )K q N q q F , (2.16a) 

where both Kp,s and Fp,s are functions of the Reynolds number (Kp,s

= Kp,s(Re); Fp,s = Fp,s(Re)) and so it is the steady solution: qe,p = 
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qe,p(Re). If (2.16a) is differentiated with respect to Re and the matrix

Ks = Ks(qe,p) is defined by the identity ( stands for the derivative
with respect to Re)

f

, (2.16b) 
s e,p e,p p,s e,p s e,p e,p s e,p e,p( ) ( ) ( )K q q K q N q q N q q

s

k

one obtains for  the following nonlinear (Ke,pq s = Ks(qe,p))

differential equation: 

s e,p p,s e,p p,K q K q F . (2.16c)

The solution of (2.16c) obviously exists and it is unique as long
as

s e,p ( ) 0K qdet , (2.16d) 

and if this latter condition is fulfilled one is able, by integrating 
(2.16c), to march the root of (2.16a) as the Reynolds number
increases: equations (2.16c,a) define a predictor-corrector method
to determine the steady solution.  In the other hand, if det Ks(qe,p) =
0 one would have a classic bifurcation of the equilibrium: the steady
solution could then be marched out in Re by defining a proper
(“statically stable”) branch after the bifurcation. As it will be seen in 
the next item, the underlying assumption behind the asymptotic
theory to be developed in this work implies in a condition stronger
than (2.16d): within this context it can be taken here that a steady
solution exists and it is uniquely defined.

If {xk; k = 1,2,…,N} are the nodes of the Finite Element mesh
then, given any continuous field u(x,t), the “nodal interpolate”
uh(x,t) is defined by the expression

N N

h k k k k k N
k 1 k 1

( , t) u( ,t) v( ,t) h ( ) U (t) U (t) h ( )u x x i x j x i j x ,

(2.17a)

and, within the context of the discrete model, one can ignore the
difference between u(x,t) and its “nodal interpolate” uh(x,t): there is 
thus a one-to-one relation between the field u(x,t) and the “nodal
values vector” U(t) (u(x,t) U(t)). If now Up is the “nodal values
vector” of the auxiliary field up(x) (up(x) Up), the steady solution
ue(x) Ue is defined by the expression

e p eU U T q ,p
, (2.17b)

and the global solution uT(x,t) UT(t) can be thus written as

T e o o o(t) (t) ; (t) (t)U U U U T q . (2.17c)

Keeping in mind these definitions and introducing also the field
uo(x,t) Uo(t), it is an easy task to show that the matrix Ks can be
expressed in the form (see (2.5b))

t
e o o e o o

R R

t
s

1
dR u ( u) v ( v) dR ;

Re

.

u u u u u U K U

K T K T

o

 (2.17d) 

The parcel [(ue )uo + (uo )ue ] of the convective acceleration
introduces, as usual, a non-symmetry in Ks that plays a role in
stability theory to be addressed next.

Hopf Bifurcation and Asymptotic Solution of Fluid Equation

The differential equation for the perturbation Uo(t) = T qo(t) on 
the steady solution Ue can be easily derived by using the definition
q(t) = qe,p + qo(t) in (2.13); one obtains then, with the help of
(2.16a), the homogeneous nonlinear equation

s o s o s o o( )M q K q N q q 0 , (2.18a) 

the non-symmetric matrix Ks being defined in item (2.4). The 
eigenvalues of Ks are thus complex, in general, and they will be 
defined as follows:

1 2 3 3 3 s s

3 s

i ; i ; i ;...; i ;

... .

s  (2.18c) 

The first mode, the one that becomes first unstable since j,
is of the form

1t
o (t) eq E , (2.19a) 

where the mode E is such that ((*) stands for the complex
conjugate)

1 s s

* t
s

;

( ) 1.

M K E 0

E M E
 (2.19b) 

Notice that 1(Re) = (Re) + i (Re) where, from (2.19b), it 
follows that

* t t * t t
s s

* t t * t t
s s

(Re) ½( ) ½( ) ( );

i (Re) ½( ) ½( ) ( ).

E K K E T E K K T E

E K K E T E K K T E

 (2.19c) 

Relation (2.19c) can be used in conjunction to (2.17d) to provide
more explicit expression for { (Re); (Re)}; indeed, if e(x) T E
one obtains 

1

* *
* * * *

e e e x y x

R

(Re)

2 2 2 2e e
x y x y

R R

*
e

(Re) ½ u ( ) v ( ) 2 ( ) e e e e dR
x x y y

u v 1
½ | e | | e | dR | e | | e | dR ;

x y Re

i (Re) ½ u ( )
x

y

e e e ex e e x e e x

ex e

b

* *
* *

e e x y

R

v ( ) 2 ( ) e e e e dR,
x y y

e e ee x e e x *
x y

(2.20a)

where e(x) = ½( ve/ x + ue/ y) is the shear rate of deformation of
the steady solution ue(x) and e(x) = ½( ve/ x ue/ y) its
vorticity.

The above expression suggests to write (Re) as (Re) = a1(Re)
 b1(Re)/Re, with b1(Re) > 0. The Strouhal number S(Re)5

(Re)/2  is known to change weakly with Re and from the structure
of (2.20a) one should expect that both {a1(Re); b1(Re)} also do; if 
now one writes {a1(Re) = a(Re)S(Re); b1(Re) = b(Re) a(Re)S(Re)}
and assumes that {ao; So; bo} are typical values of the slowing
varying functions {a(Re); S(Re); b(Re)} one obtains

o
o o

(Re)
(Re) (Re) S(Re) 1 S 1

Re Re

bb
a a , (2.20b) 

5 The actual Strouhal frequency s(Re) differs slightly from (Re), see (2.23b).
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an expression that has some empirical support, as discussed in item
(2.6) below. It follows that (Re) is (roughly) monotonically
increasing with Re, where (Re) < 0 for Re < bo = Recr and (Re) > 
0 for Re > bo = Recr. The value of Recr inferred from numerical
simulations seems to coalesce around 45 (Recr  45) although there
are experimental evidences showing that this threshold value is a bit
smaller (Recr  35). Obviously, for Re below Recr the steady
solution is stable ( (Re) < 0) while it becomes unstable for Re > 
Recr ( (Re) < 0); furthermore, (Recr)  0 and one has thus a typical
Hopf bifurcation.

For Re above Recr but close to it one has 0 < (Re) << 1, since
(Recr) = 0; furthermore, the experiments suggest  – and the 

numerical results confirm – that only one mode is unstable in this
range of Reynolds numbers ( j < 0; j 3). The asymptotic solution to 
be developed is based on the following assumption 

j

i)0 (Re) 1;  (Re) O(1);

ii) (Re) 0 for j 3,...,s,
(2.21)

that should be strictly satisfied in the vicinity of Hopf bifurcation;
notice that (2.21) implies, necessarily, that { 1(Re)  0; j(Re)  0}, 
since { (Re)  0; j(Re) < 0}, and so det Ks(Re)  0.

The adjoint eigenvalue problem (Ks Ks
t) plays a role, as it will

be seen, in the derivation of the asymptotic theory. This problem has
the same eigenvalues (2.18c) but the eigenvectors are distinct; in
particular, to the “unstable” eigenvalue 1 it is associated the adjoint
unstable mode Ea where

t
1 s s aM K E 0 . (2.22a) 

From (2.21) it follows that the “unstable” eigenvalue 1 =  + 
i  is a single root of the related characteristic equation: if it were
not, some of the j would be equal to 1 and the condition (ii) in
(2.21) would be not fulfilled. Under the condition that 1 is a single
root it is possible to show that

t
a s 0E M E , (2.22b) 

and thus Ea can be normalized by the condition

t
a s 1E M E , (2.22c) 

a relation that it will be used below in this section.
The argument now is classic and it will be just sketched here:

for 0 < (Re) << 1 the amplitude A(t) ei t of the unstable mode E = 
ER + iEI increases (initially) exponentially with time (A(t)  e t;
dA/dt = A) and the solution of the dynamic system (2.18a) is 
attracted, since j < 0 for j  3, to the (unstable) two dimensional
manifold tangent to the plane generated by {ER; EI}; the exponential 
growth in this manifold is halted by the nonlinear term and
expanding N(qo) qo in power series in the amplitude only the cubic
term |A(t)|2A(t) ei t can match the term A(t) ei t that causes the
exponential growth. The equation for the amplitude A(t) – namely,
Landau’s equation – is thus given by6

6 It has been implicitly assumed here that one has a super-critical Hopf
bifurcation with R = Real  > 0. This assumption has an experimental support,
see Provansal & Mathis & Boyer (1987) and Leweke & Provansal (1994) among
others, and it has been also verified numerically by Noack & Eckelmann (1994).
Some preliminary numerical computation, to be published soon, corroborates
this result.

2
R I

dA
A | A | A 0;  = i

dt
, (2.23a) 

the steady solution (limit cycle) Ac exp(i st) being given by

c
R

I
s

R

A ;

.

 (2.23b) 

The formal asymptotic solution of the (discrete) Navier-Stokes
equation will be derived next. In fact, writing the solution of (2.13) 
in the form

e,p o(t) (t)q q q , (2.24a) 

with the perturbation qo(t) satisfying (2.18a), one must have, to
leading order, that qo(t)  [A(t) E + (*)], since the solution of 
(2.18a) should follow, at least initially, the unstable mode E. The
amplitude A(t), however, is such that (see (2.23))

1/ 2A(t) O( ) 1;

dA
O( A),

dt

 (2.24b) 

and expanding qo(t) in the small parameter A(t)  O( 1/2) one 
obtains, with an error in (2.24a) of the form [1 + O( 2)], that

1/ 2

3 / 2

i t 2 2 2i t
o 20

O( )O( )

2 i t 3 3i t 2
31 33

O( )

(t) A(t) e (*) | A(t) | A (t) e (*)

+ |A(t)| A(t) e A (t) e (*) O( ).

22q E

(2.25a)

The nonlinear term in (2.18a) can, accordingly, be written as 

2i t i t 3i t 2
s o o 20 22 31 33( ) e (*) e e (*) O( )N q q N N N N

(2.25b)

with

* *
20 s s

22 s

* *
31 s 20 s 20 s 22 s 22

33 s 22 s 22

( ) ;

( ) ;

( ) ( ) ( ) ( )

( ) ( )  .

N N E E N E E
N N E E
N N E N E N E N E
N N E N E

;

(2.25c)

Placing (2.25) into (2.18a) one obtains ( 1 =  + i )

2 i
s 31 1 s s 31

2 2
s 20 20 s s 22 22

3 3i t 2
s s 33 33

dA
A | A | A ( ) e

dt

| A | A 2i e

A 3i e O( ) 0,

t

2i t

M E N M K

K N M K N

M K N

(2.26a)
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where the term |A|2A( Ms 31)e
i t  O( 5/2) has been added just for 

convenience; if now { 20; 22; 33} are solutions of the (non-
singular7) linear systems

s 20 20

s s 22 22

s s 33 33

;

2i ;

3i ,

K N 0
M K N 0

M K N 0

 (2.26b) 

(2.26a) reduces to 

2
s 31 1 s s

dA
A | A | A ( )

dt
M E N M K 31 0

1

. (2.26c) 

Multiplying (2.26c) on the left by the adjoint unstable mode Ea

and using (2.22a,c) Landau’s equation (2.23a) is obtained with 

t
a 3E N . (2.27) 

Summarizing: solving the eigenvalues problems (2.19b) and 
(2.22a,c) the vectors {N20; N22} can be computed from (2.25c) and 
the solutions { 20; 22} of the linear systems (2.26b) can be 
determined; with them the vector N31 can be obtained from (2.25c)
and Landau’s coefficient is thus given by (2.27).

Writing now N31 in the form

(a)
31 s 31,

t (a )
a 31,

;

0,

N M E N

E N
 (2.28a) 

and placing (2.28a) into (2.26c) one obtains, with the help of
(2.23a), the equality

t (a)
1 s s 31 31, s0 Jq M K N all q . (2.28b)

Introducing the (s  2)-dimensional sub-spaces {J ; Ja, } of Js by
the definitions

t

t
a, a, a, a a, a,

J : 0 ;

J : 0

q q E q S x

q q E q S x,
(2.28c)

with x being an arbitrary (s  2)-dimensional vector, and the
matrices

t
s, a , s

t
s, a, s

;

,

M S M S

K S K S
(2.28d)

the vector 31 can be obtained from the solution of the (non
singular8) linear system

t (a )
1 s, s, 31 a , 31,

31 31

;

.

M K x S N 0

S x
(2.28e)

Reverting to the “nodal values vector” U(t) = T (qe,p + qo(t)), see 
(2.1c), (2.17), one has 

7 Notice that (2.21) rules out {0; 2i ; 3i } as possible eigenvalues of Ks once j
< 0 for j  3 and 0; the matrices {Ks; (2i Ms + Ks); (3i Ms + Ks)}in (2.26b)
are thus non-singular.
8 Recall that (2.21) implies that 1 is a single root of the characteristic
polynomial of Ks and so the matrix 1Ms + Ks, restricted to the sub-space
orthogonal to the eigenvectors {E; Ea}, must be non-singular.

1/ 2

3/ 2

i t 2 2 2i t
e,p U 20,U 22,U

O( )O( )

2 i t 3 3i t
31,U 33,U

O( )

(t) A(t) e (*) | A(t) | A (t) e (*)

 + |A(t)| A(t) e A (t) e (*) O

U U E

2( ),

(2.29a)

with

e,p U 20,U 22,U 31,U 33,U e,p 20 22 31 33; ; ; ; ; ; ; ; ; ;U E T q E
, (2.29b)

and placing (2.29a) into (2.14a) one obtains 

1 / 2

3 / 2

i t 2 2 2i t
D 00 11 20 22

O( )O( )

2 i t 3 3i t 2
31 33

O( )

(t) A(t) e (*) | A(t) | A (t) e (*)

    + |A(t)| A(t) e A (t) e (*) O( ),

F F F F F

F F

(2.30a)

with (see (2.17d) and (2.23a) with 1 =  + i )

00 p e,p e,p e,p p

11 1 U

20 20,U 20,U

22 22,U 22,U

31 1 31,U U 31,U

33 33,U 33,U

( ) ;

;

;

2i ;

;

3i ,

K U N U U F

M K E
K N

M K N

M K M E N

M K N

F

F
F

F

F

F

 (2.30b) 

where {N20,U; N22,U; N31,U; N33,U} are defined as in (2.25c) with
{Njk Njk,U; E EU; 20 20,U; 22 22,U}. Considering now the 
solutions of the Poisson’s equations (see (2.14c))

t
jk jk ; ( jk) {(00);(11);(20);(22);(31);(33)}P R F , (2.30c) 

the (discrete) pressure field is given by (Pe = P00 is the pressure 
related to ue(x) Ue)

1/ 2

3 / 2

i t 2 2 2i t
e 11 20 22

O( )O( )

2 i t 3 3i t 2
31 33

O( )

(t) A(t) e (*) | A(t) | A (t) e (*)

 + |A(t)| A(t) e A (t) e (*) O( ),

P P P P P

P P

(2.30d)

with the same error factor [1 + O( 2)] of the velocity field
approximation.

Expressions (2.29a) and (2.30d) synthesize the asymptotic
solution of the (discrete) Navier-Stokes equation in the vicinity of
Hopf bifurcation (Re  Recr); in the next item, the possibility to
extend this solution to the range Re >> Recr is discussed.

Extension of Landau’s Equation Beyond Hopf Bifurcation

The asymptotic solution of the (discrete) Navier-Stokes was
derived assuming (2.21), two conditions that hold in the vicinity of
the Hopf bifurcation but not necessarily only there. The purpose
here is to give arguments that suggest that (2.21) – and, with it, the
given asymptotic solution – can be extended far beyond Hopf
bifurcation, that is, to the range Re >> Recr.
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In fact, numerical results by Noack & Eckelmann (1994) 
indicate that (2.21) remains essentially correct in the range Recr  45 
< Re < 300 and Henderson (1997), after a detailed numerical work,
affirms that up to Re = 1000 no other bifurcation, besides the one at 
Recr, could be observed in the two dimensional model; or, in other
words, that { j < 0; j  3} in this range.

From the experimental side, Provansal & Mathis & Boyer
(1987) have observed that the inferred value of (Re) could be fitted
to the expression

crRe(Re)
(Re) 0.20 1

U R

d

e
, (2.31)

while Leweke & Provansal assumed (2.31) in the range Recr  45 < 
Re < 300.

As already discussed, the empirical relation (2.31) seems to have
a foot on the more basic set of equations that describe the fluid flow,
since a similar expression can be derived exactly, see (2.20b);
furthermore, it indicates that (Re) can be considered a “small
parameter” of order 0.20 (or less). All together, these evidences
suggest that (2.21) could be pushed at least up to Re  1000 since, 
following Henderson, no other bifurcation (in 2D) could be found in 
this range while (2.31), together with (2.20b), seems to indicate that

(Re) remains in fact “small” as asserted in (2.21).
Experimental results on VIV are mostly in the range 103 < Re <

104, see Khalak & Wiliamson (1996), and they do not seem to
depend very much on Re. The observed harmonic pattern is very
neat and this, undoubtedly, was the motivation behind a bold
assumption introduced by Bishop & Hassan (1964) to describe the 
flow around a circular cylinder: they proposed to represent the flow
by an one degree of freedom “wake oscillator model” based on Van
der Pol equation that leads, for a small enough , to Landau’s
equation (2.23a); this idea was further developed and it is the basis
of the so-called phenomenological models used to predict VIV, see
Iwan & Blevins (1975). In despite of the loose link with the more
basic flow equation the predictions from these models have some
accuracy, showing that the ordered oscillatory behavior in the wake
can be apparently described by means of an one degree of freedom
system related to the unstable mode of the problem. The smallness
of , a common feature in all “wake oscillator models”, coupled to
the flow representation by only one unstable mode, can be translated
in the following words: the basic assumption (2.21) is, apparently,
correct in the range 103 < Re < 104 of Reynolds numbers of the VIV
experiments. However, from Re  104 until the transition region Re 

 105 nothing very much different occurs and one can possibly push
(2.21) up to the transition region Re  105. For Re > 106 the 
boundary layer is fully turbulent but a (relatively) well defined
Strouhal frequency can be detected again: in line with the overall 
view taken here, one speculates that the same conditions (2.21) can 
hold if one searches for the stability of the time averaged
(turbulent9) symmetric solution of the flow around the circular
cylinder.

These extensions should be obviously confirmed numerically
but certainly the present theory has a range of application much
broader than foreseen a priori; more than that, (2.21) can be used to 
determine precisely this range.

Weak Three-Dimensionality: Ginzburg-Landau Equation
The perturbation uo(x,t) on the 2D steady solution ue(x) is, to 

leading order, given by uo(x,t)  A(t) e(x) where e(x) T E is the

9 Boundary layer turbulence is likely due to the concomitant instabilities of
several symmetric modes, as elaborated in a forthcoming paper; it will be also
discussed there a possible scenario for the transition region 105 < Re < 106.

unstable mode and A(t) its complex amplitude: A(t) =
|A(t)| exp( (t)). It is known for a long time – see, for instance,
Toebes (1969) – that the vortices are not shed in phase along the 
span of a fixed cylinder, and in fact the correlation among the 
vortices emitted in distinct sections tends to zero “very fast”10, in a
length of order of 10d. The phase  should then change in the 
longitudinal z-direction and so it does the amplitude A and the 
perturbation uo(x,t); or {A = A(z,t); uo = uo(x,z,t)}, where x = xi + 
yj continues to represent the position vector in the cross section 
plane and uo(x,z,t) = uo(x,z,t)i + vo(x,z,t)j the perturbed velocity
field in this plane at the z-level. The longitudinal component of the 
perturbed velocity field will be designated by wo(x,z,t).

The variation of A(z,t) in the longitudinal z-direction should be
expressed by an even derivative with respect to z, since there is no
preferred direction, and observing that the viscous diffusion in this
direction, given by (1/Re) 2uo/ z2, implies to leading order in a term 
proportional to 2A/ z2, the following 3D correction is proposed for 
Landau’s equation (2.23a):

2
2

2

A A
A | A |

t z
A 0 . (3.1a)

This is the Ginzburg-Landau Equation (GLE), first proposed by
Ginzburg more than fifty years ago in his study on
superconductivity, see Ginzburg & Landau (1950); notice that, in
general, both Landau’s coefficient  and Ginzburg’s coefficient  are
complex numbers: {  = R + i I;  = R + i I}. Assuming, as before, 

 << 1 (see (2.21)) and recalling that A  O( 1/2), a proper balance
of the terms in (3.1a) indicates that the length scale lz for the 
longitudinal variation of A(z,t) must be such that

z O
d

l d
, (3.1b) 

or, in short: (3.1a) deals with a weak three-dimensional variation of
the flow field. As it is discussed in the last item of the present
section, GLE can be easily extended to the case where both the
geometry and the incident flow change in the longitudinal direction
if the rate of change is weaker than (3.1b).

In what follows, (3.1a) will be obtained as a consistent
asymptotic approximation of the NSE and, in deriving it, a 
procedure to determine Ginzburg’s coefficient  will be defined.

Asymptotic Approximation for 3D Field Equation

Let u(3d)(x,z,t) = ue(x) + [uo(x,z,t) + wo(x,z,t)k] be the 3D
velocity field for the flow around a slender cylinder, with ue(x)
being the 2D steady solution and [uo(x,z,t) + wo(x,z,t)k] the
perturbation on it; if, as defined in section (2),  = i / x + j / y,
the 3D NSE for the perturbation [uo(x,z,t) + wo(x,z,t)k] is given by

3/ 2
o

1/ 2
o 1/ 2 2

o oo

2
2o o o

e o o e o o o o o2

O( w )O( )

2
2o o o

e o o o o o 2

O( w )O( )O(w ) O( w )O( w )

1 1

o

p w ;
t Re

w p w1 1
w w w w ;

t Re z z Re z

Re z z

w

u uu u u u u u u

u u

u

1/ 2
o

o
o

O( w )

w
,

z
u

 (3.2a)

10 “Very fast” in the relation to the longitudinal length of the slender cylinder; in
fact, “very slowly” in the natural length scale d of the cross flow problem. 
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where (3.1b) was used to estimate the order of magnitude of the z-
derivative and {uo; po}  O( 1/2), see section (2). From the wo-
equation one obtains, at once, that

ow O( ) , (3.2b) 

showing that the longitudinal perturbed velocity wo is, as expected,
of smaller order than the perturbed cross-flow uo. Furthermore, if 
terms of order 2 are disregarded, as before, it is possible to check
from (3.2a) that the longitudinal velocity wo does not affect the
(dynamic) uo-equation: the longitudinal flow affects the 2D solution
uo only through the mass conservation equation, with a term of 
order O( 3/2), the same order of magnitude of the longitudinal
diffusion in the uo-equation. One is left, thus, with the equation

3 / 2

3 / 2

2
2o o

e o o e o o o o 2

O( )

2o o
e o o

O( )O( )

o
o

O( )

1 1
p ;

t Re

w p1
w w ;

t Re z

w
,

z

u uu u u u u u u

u

u

Re z

(3.2c)

that defines, with an error factor [1 + O( 2)], an asymptotic
approximation for u(3d)(x,z,t).

Equation (3.2c) is, in some sense, standard in existing “slender
bodies theories”: the 2D structure, represented by the dynamic uo-
equation, is not spoiled by the longitudinal velocity wo, the influence
of this parcel appearing only in an oblique way in the problem. In
fact, a “spontaneous” 3D perturbation on the cross-flow introduces a
pressure gradient that forces a longitudinal flow wo and only then,
through mass conservation, the 3D perturbation feeds back the 2D
original equation: as in the well known Lifting Line Theory, the 
three-dimensionality, represented by the “sidewash” wo, affects
essentially the kinematics of the 2D flow. Furthermore, the pressure 
gradient, and so the “sidewash”, is proportional to A/ z and then 

uo
2A/ z2: this correction on the cross-flow is added to the 

straight diffusion term, proportional to 2uo/ z2, to produce the
Ginzburg coefficient  = R + i I. The influence of the “sidewash”
on the final equation is thus twofold: first, it gives rise to a
longitudinal diffusion, proportional to 2wo, that together with the
cross-flow diffusion 2uo/ z2 determines R; second, the longitudinal
flow wo introduces a kind of “compressibility” for the cross-flow uo

( uo
2A/ z2) and an “acoustic wave equation” must be

expected then, described here by the “longitudinal wave operator”
A/ t  i I

2A/ z2 = 0 with a dispersion relation  + Ik
2 = 0. If the

nonlinear term i I|A|2A is added to this wave operator one obtains 
the cubic Schrödinger equation i A/ t + I

2A/ z2
I|A|2A = 0, a

conspicuous presence in the study of nonlinear dispersive wave 
systems, see Whitham (1974). In what follows the discrete solution
of (3.2c) will be defined and discussed. 

The “Sidewash” and Mass Conservation

One starts by considering the wo-equation, forced by the term
po/ z; to leading order one has (see (2.30d) using p11(x) P11)

i t 3/ 2o
11

p A
p ( ) e (*) O( )

z z
x ,

and thus writing wo(x,z,t) in the form

i t
o 11

A
w ( , z, t) w ( ) e (*)

z
x x , (3.3a)

the following equation for w11(x) can be obtained11:

2
11 e 11 11 11

1
i w ( ) ( )w ( ) w ( ) p ( )

Re
x u x x x . (3.3b) 

Taking the same mesh used to discretize both the velocity and
pressure fields in section (2), namely, assuming

N

11 11, j j 11 11, j
j 1

e

11 11, 11 11,
1

w ( ) W h ( );  W ;

p ( ) P t ( );  P ,

x x W

x x P

 (3.3c) 

and introducing the matrices {m; k; Rw} by the expressions 

t t
11 11 11 w 11

R R

t
e 11 11 11

R

w ( ) w( )dR ;  p ( ) w( )dR ;

1
w ( ) w( ) w ( ) ( w( )) dR ,

Re

x x W m W x x W R P

u x x x x W k W

(3.3d)

the following algebraic equation is obtained for the “nodal values
vector” W11,

11 w 11i m k W R P , (3.4a)

the non-singularity of (3.4a) being granted by the fact that all 
eigenvalues { j; j = 1,2,..,N} of the matrix k have necessarily12

negative real parts and so{ j  i all j}. The continuity equation in 
its weak form reads

2
i t

o 11 2
R

A
p( ) w ( ) e (*) dR 0

z
x u x ,

and the discrete form of this equation is given by

2
t t i t

o w 11 2

A
e (*)

z
R U R W . (3.4b) 

If (3.4b) is multiplied on the left by R and the definition of the
“conjugated Laplacian”  = R Rt is used, one obtains for Uo(t) the 
equation

2
t i t

o w 11 2

A
( ) e (

z
U R R W *) , (3.5a) 

whose general solution can be written as (recall that Null( ) = Js)

11 For simplicity, homogeneous boundary condition is assumed on R. Others
boundary conditions could be used instead but this simple one is reasonable
and easier from a more technical point of view.
12 The parcel proportional to ue in (3.3d) leads to an anti-symmetric matrix
while the one proportional to 1/Re leads to a symmetric positive definite matrix.
From this it follows at once that Real < 0 if ( m + k) X = 0.
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2
i t

o o 2

A
(t) (z, t) e (*)

z
U T q C

( ) GC R R W

, (3.5b) 

with C  Gr being the unique (within Gr) solution of 

t
w 11 r

. (3.5c)

Notice that C can be defined by the sum of the series (see 
(2.9b))

n t
1 w

n 0r

1
(C R R 11)W , (3.5d)

where (3.5d) has again an “almost geometric structure” and its 
convergence can be thus accelerated by Shanks Transformation, see
(2.15c).

The Ginzburg-Landau Equation (GLE) 

The discrete form of the uo-equation in (3.2c) is given by

2
t t

o o o o o 2

1 A
( ) e (*)

Re z
U M U K U N U U R P U M T E i t  (3.6a) 

where the leading order term

i t 1/ 2
o (z, t) A(z, t)e (*) O( )U T E (3.6b)

was used in the right side of (3.2c). Placing now (3.5b) into (3.6a)
one obtains, after projecting into the solenoidal sub-space, the
equation

2
i t

s o s o s s s o o2

t
s

1 A
e (*) ( ) ;

Re z

i ,

M q K q C M E N q q 0

C T M K C
(3.6c)

whose asymptotic solution (2.25a) has an amplitude A(z,t) that 
satisfies the GLE (3.1a) with

t
R I a s

1
i

Re
E C , (3.7)

since Ea
t M E = 1. The remaining terms for the velocity and

pressure fields are given by (2.29a);(2.30b,c,d), adding the pressure
parcels proportional to 2A/ z2. The attention will be turned next to 
a more detailed analysis of GLE.

GLE: Boundary Conditions and Wave-Like Limit Cycles

If the cylinder’s span is defined in the interval l  z l
boundary conditions must be imposed at the cylinder ends z = l,
one in each extremity. Using again the notation {e(x) T E;
w11(x) W11} the velocity field can be written, to leading order, in 
the form

o
o

i t
(3D) e 11

( ,z,t)
w ( ,z,t)

A
( ,z,t) ( ) A(z,t) ( ) (z,t) w ( ) e (*)

z
u x

x

x u x e x x ku , (3.8a)

and two conditions can be naturally imposed on A(z,t), namely:

o

o

A
i) ( , t) 0 w ( ; , t) 0;

z
ii) A( , t) 0 ( ; , t)  .

x

u x 0

l

l l

l  (3.8b) 

Boundary condition (i) is apparently more appropriated for the
case where the cylinder ends either at the free-surface in a water
channel or else if the “end-cylinder technique”13 is used at its
bottom end: in these situations one expects that the perturbation on
the 2D steady solution should be, by far, dominated by the cross-
flow uo(x,z,t). Boundary condition (ii) is more awkward to be
interpreted though it seems to be adequate to represent a cylinder
ending in the interior of the fluid, where then the flow perturbation
wo(x,z,t) in the longitudinal direction should be stronger than the 
perturbed cross-flow uo(x,z,t) near this “free end”. Possibly linear
combinations of (3.8b), including periodic boundary conditions, see
(3.13b) below, could also be imposed.

The GLE (3.1a) depends on three coefficients, { ;  = R + i I;
 = R + i I}, and it is important to understand how the qualitative 

behavior of them affects the solution. The real parameters { ; R;
R} should be all positive:  > 0 is a negative dissipation that causes

the instability, R > 0 is a non-linear diffusion due to the 2D cross
flow and R > 0 is essentially a linear viscous diffusion caused both 
by the viscous stress 1/Re( 2wo) of the longitudinal velocity in the 
cross-section plane and by the cross-flow viscous stress
1/Re( 2uo/ z2); notice that the inequality R > 0 – the super-
criticality of the Hopf bifurcation – was discussed in section (2) 
while the relation R > 0 can be inferred from the Principle of the 
Virtual Power.

The GLE (3.1a) has wave-like solutions of the form

0 0i(k z t )
0 0

1/ 22
2 20 R

0 0 0
R

A (z, t) R e ;

k
R ; k I I 0R  ,

 (3.9a) 

the stability condition of these wave-like solutions being given by
the condition 

I I R R 0 0,L{ 0;R R ( , , )} . (3.9b) 

Notice that besides a restriction on the coupled effect of
dispersion ( I I) and diffusion ( R R), condition (3.13) offers also a 
restriction on the wave amplitude R0: this amplitude should be, in 
general, larger than a lower bound R0,L = R0,L( , , ) for, otherwise, 
the wave solution (3.2) is possibly within the repulsion basin of the
unstable null solution A(z,t)  0. In the other hand, the existence of
a continuum of stable solutions (3.9c) in the range R0,L  R0

( / R)1/2 (or in the range 0  |k0|  k0,L) seems to be in line with the
diversity of shedding modes (oblique, parallel, etc) found in the 
experiments with fixed cylinders, see Khalak & Williamson (1996). 
Notice, in particular, that (3.9c) satisfies the following boundary
conditions at the cylinder ends z = l,

0)t,(Aik)t,(
z
A

0 ll , (3.9c)

13 Namely, a larger cylinder is smoothly fitted to the bottom end, increasing
locally the cross-flow and creating a bottom end condition similar to the one
found at the free surface; see Khalak & Williamson (1996)
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that reduces to the condition (i) in (3.8b) when k0 = 0 (2D solution):
as a matter of fact, the “end-cylinder technique” was introduced just 
to create conditions to favor the parallel shedding on a cylinder in a 
water channel, see again Khalak & Williamson (1996), since it 
forces, apparently, the condition A/ z  0 at the bottom end.
Obviously, more assertive statements about some features of the 
solutions can only be done by direct numerical simulation of (3.1a)
but it is felt that this simple stability analysis helps to focus some
relevant issues. 

Spanwise Variation of Geometry and Current

So far the analyzes was restricted to the simple uniform flow
along a cylinder – being more precise, all empirical and numerical
evidences commented here are related specifically to the flow
around circular cylinders – although one should be concerned, from
a more practical point of view, with problems where the cross
section geometry and the incident current changes along the span, 
both in intensity and in direction. Relevant examples are the flow
around a tapered cylinder, used to emulate a current variation along
the span, the flow around a circular cylinder with strakes, very
important from a practical point of view, or else the change of the of 
the incident flow direction along depth, a situation usually
encountered in Ocean Engineering. In all these examples the 
unstable mode EU changes in the z-direction and so it does the 
sectional pressure field P11 that forces the longitudinal flow
wo(x,z,t), see (2.30b,c,d); writing, as before, p11(x,z) P11(z), one
has that p11/ z  O(p11/lg,c), where lg,c is the length scale for the 
longitudinal variation of both the geometry and the current, and the 
question one intends to answer is the following: how small can be
lg,c in order the GLE (3.1a) remains valid, with the same error factor
of the form [1 + O( 2)], even in the presence of these variations?
Obviously, the basic parameters should then change (weakly) with z 
– namely, {  = (z);  = (z);  = (z);  = (z)} – but the structure
of (3.1a) would remain the same and so the 2D expressions used to
compute them.

To answer such question one must recall that the three-
dimensionality was forced by the pressure gradient that, to leading
order, is given by

i t 3/ 211
11

p A p
( ,z, t) p A e (*) O( )

z z z
x , (3.14a) 

and observing that to retain the final error O( 2) only the term of 
order O( ) must be kept in (3.14a), the variation p11/ z could be
ignored if it is of order O( ) or smaller: in this case the term
A p11/ z would be of order O( 3/2) or smaller, since A  O( 1/2),
and the variation of the geometry and/or the incident flow direction
would appear at most at the order O( 2) and can, thus, be 
disregarded. It turns out that (3.1a) remains correct, with the
sectional parameters { (z); (z); (z); (z)}, whenever the length
scale lg,c is so large that ( p11/ z  O(p11/lg,c))

11
g,c

p
O( ) O

z
d

l . (3.14b)

As seen in (2.31), empirical evidences suggest that  0.20 and
so lg,c  O(5d), the fastest change in z-direction within the context of 
GLE being defined by the relation lg,c  5d. It is a matter of curiosity
to observe that 5d is a typical length scale for most of the 
“suppressions devices” used to mitigate (or eliminate) VIV; for
instance, this is a typical value for the helicoidal pitch of the strakes
or for the wavelength of the wavy cylinder analyzed by Bearman
(2000).

Conclusion
In the present paper a consistent asymptotic approximation for

the flow around a slender cylinder was developed, leading to the
Ginzburg-Landau equation. The theory is based on an assumption
concerning the behavior of the eigenvalues related to a 2D
perturbation on the steady 2D solution ue(x); it states that there
exists only one unstable mode with eigenvalue 1 =  + i  and,
furthermore, that {  0; 0 <  << 1}, see (2.21).

Both conditions are satisfied in the vicinity of the Hopf 
bifurcation at Re  Recr  45 but to obtain the desired approximation
some more technical results were needed. First, the “wake
impedance” was introduced, by considering properly the flow in the
wake and determining then how the wake “resists” to the flow 
within the finite fluid region that is actually discretized; second, by
projecting the discrete flow equations into the solenoidal and 
gradient sub-spaces it has been possible, using some standard
results in Linear Algebra, to show not only the inner consistency of 
the model but also to obtain the coefficients of the Ginzburg-Landau
equation. In particular, the Ginzburg coefficient  = R + i I was 
analyzed, where the “diffusive feature” of the real part R was 
elaborated and also the “wave feature” of I was established, once it
is related to the “compressibility” of the cross-flow, namely, to the 
work done by the cross-flow pressure field on the divergence of the
cross-flow velocity field.

The final goal of the on-going research is to address the VIV 
problem, of considerable importance in some Ocean Engineering
applications, mainly in the analysis of the “risers” of a floating
production system. This problem has been tentatively addressed,
with a relative success, by the so-called “phenomenological
models”, where the flow is simply described by a Van der Pol 
oscillator with coefficients inferred from some experimental results.
The situation here is not very much different, at least from the
operational point of view, to the usual approach related to Ginzburg-
Landau equation (GLE), once this “model” is fitted externally to the
problem and the coefficients are then inferred also by some
experimental (or numerical) results. But there is a conceptual
difference, at least in its origin, in both approaches: GLE was 
thought to be valid only in the vicinity of Recr (although it has been
used far beyond it, at least up to the range Re  300) while the Van
der Pol model was aimed, from its very first motivation, to deal with
the experiments on VIV, where 103 < Re < 104 roughly speaking. 
Observing that the Van der Pol model assumes, implicitly, that only
one mode is unstable with a “negative damping”  << 1, one may be 
tempted to conclude, based on the relatively good predictive ability
of these “phenomenological models” and also on the already
proposed extensions of GLE to the range Re  300, that the
underlying assumption of the present asymptotic theory holds, in
fact, in a much broader range of Reynolds numbers than foreseen a 
priori.

This conjecture can be raised to the status of a hypothesis in the
mathematical development and, with it, to extend consistently the
GLE to the “whole” range of Re; afterwards, by looking to the 
actual numerical results one can confirm (or not) this hypothesis.
The present theory does not seem to be at odds, thus, with tradition
in physical science: indeed, given a set of a somewhat disperse
results and observations, all of them related however to the
conspicuous oscillatory behavior of the phenomenon, they can be 
gathered by means of an assumption, synthesized by (2.21), that
places all them in an unique framework, namely, the GLE in a
“wide range” of Reynolds numbers. Furthermore, as stated above,
this theory brings in its lay out the possibility to be refuted, once the
basic assumption can be checked directly by means of (numerical)
experiments; or, from a more practical point of view, it allows one 
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