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Theoretical Aspects of Homogenous 
Isotropic Turbulence 
We review some recent advances on the problem of fully developed turbulence within the 
mathematical and physical points of view. From the mathematical perspective, we discuss 
a framework which has been developed for the rigorous treatment of the conventional 
statistical theory of turbulence and address some of the rigorous results which have been 
obtained concerning the energy cascade, the energy spectrum, the energy dissipation rate 
and other physical quantities of turbulent flows. Regarding the physical approach, we 
focus our attention on the relevance of field theoretical methods in the analysis of 
dimensionally reduced models (Burgers and two-dimensional incompressible turbulence), 
the problem of randomly advected scalars, and intermittent fluctuations in homogeneous 
and isotropic turbulent flows. 
keywords: Navier-Stokes equations, turbulence,energy cascade, intermittency 

Introduction 

The conventional theory of turbulence is mainly concerned with 
relations between mean quantities. The mean quantities can be 
considered in different ways such as time averages or ensemble 
averages. In any case, the aim is to relate the physical quantities of a 
flow taken with respect to the corresponding average. However, 
most of the relations are usually obtained using heuristic or 
empirical arguments. It is of fundamental importance to derive such 
relations in a rigorous way based on first principles, i.e. directly 
from the Navier-Stokes equations governing the flow. This is the 
content of the mathematical part of this article, developed in Sec. 2.1

The rigorous estimates that we obtain are for both time averages 
and ensemble averages, and in the context of forced turbulence with 
homogenous boundary condition, which can be no-slip or periodic 
with zero space average. The notion of ensemble average is put into 
a mathematical framework with the concept of statistical solution of 
the Navier-Stokes equations, which are probability  measures in the 
phase space of the system. On the other hand, time averages are 
considered for the so-called Leray-Hopf weak solutions of the 
Navier-Stokes equations. In this note for simplicity we present only 
the results for ensemble averages, proved in Foias et al. (2001). The 
time-average estimates can be found in Foias et al. (to appear). 

A fundamental result obtained from heuristic arguments is the 
Kolmogorov energy dissipation law, which relates the mean energy 
dissipation rate   to the mean velocity U and a macroscale 
wavenumber  ~ 0U3. In contrast, we rigorously define these 
quantities with the help of the statistical solutions of the Navier-
Stokes equations and prove that  C1 0U3, where 0 is taken to be 
the square-root of the first eigenvalue of the Stokes operator, and C1
is a parameter which remains bounded as the Reynolds number is 
increased.

From the energy dissipation law one can derive relations for 
other quantities such as the Kolmogorov dissipation wavenumber 
and the Taylor wavenumber , namely ~ 0Re3/4 and ~ 0Re1/2.
In contrast we prove rigorously that 4/3Re0

4/1
1C  and 

2/1
0

2/1
1 ReC . And similarly for other relations. 
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The last estimate concerns the energy cascade process. This is a 
remarkable feature of turbulence which asserts that within a certain 
range of scales much lower than the energy injective scales the 
energy is transferred in average to the smaller scales at a constant 
rate close to the mean energy dissipation rate. We show that if the 
Taylor wavenumber is large enough compared with the scales in 
which the forcing term acts then the energy cascade holds. 

In Sec. 3, we introduce the field theory approach to turbulence, 
which although not based on rigorous mathematical methods, has 
produced along the last years a number of convincing results related 
to the  intermittency phenomenon in turbulence models. As a 
concrete starting point, we discuss the pedagogical example of a 
linear Langevin equation, which has all  the basic mathematical 
features found in several stochastic models  designed for the 
analysis of the turbulence problem. A particular attention is given to 
the Burgers model of one-dimensional turbulence (Burgers, 1948), 
where an extreme degree of intermittency is observed. 

Operatorial algebras, which became popular in theoretical 
physics, due to the conformal field theory approach to two-
dimensional second order phase transitions (Belavin et al., 1984) 
could play some role in the statistical theory of turbulence, where an 
infinite set of coupled Hopf equations are defined. We briefly 
review Polyakov's attempt to solve two-dimensional turbulence with 
the help of conformal methods (Polyakov, 1993). It should be clear, 
however, that our main interest is not to convince the reader about 
one or other form of the “final theory of two-dimensional 
turbulence”. There are important open problems in the conformal 
approach, which still wait for a more detailed analysis. The message 
of the conformal theory is just to point out an interesting way to 
investigate the Hopf equations, which could yield inspiration for 
alternative analytical attempts to solve them, based on something 
else than the usual closure approximations - the keyword, to be 
discussed in Sec. (3.4), is the “operator product expansion”, 
originally introduced in the context of high energy physics collisions 
and the statistical mechanics of phase transitions (Zinn-Justin, 
1996).

Mathematical Aspects of Turbulence Theory 

Mathematical Preliminaries 

The starting point for the mathematical theory of turbulence are 
the Navier-Stokes equations (NSE). As mentioned in the 
Introduction one attempts to rederive directly from a rigorous 
mathematical theory of the NSE the results obtained heuristically in 
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the classical statistical theory of turbulence. Different settings can 
be considered but let us restrict ourselves to forced periodic NSE, 
with the force mimicking some ficticious mechanism for injecting 
energy into the large scales of motion. In this case, the 
incompressible NSE read 

0..upuuuu ,f.
t

 (1) 

where u = (u1, u2, u3) is the velocity field, p is the kinematic 
pressure,  is the kinematic viscosity, and f is the forcing term. The 
mass density 0 is constant and does not appear explicitly in the 
equation. The spatial variable is denoted x = (x1, x2, x3) and the 
spatial domain is taken to be  = (0. L1) x (0,L2) x (0,L3), where Li, i
= 1, 2, 3 are the periods in each direction xi. The functions u and p
are assumed to be periodic with period Li in each direction. It is 
further assumed that the average of the velocity field and of the 
forcing term in  are zero: 

0.(x)dx,0)( fdxxu  (2) 

In this case, the average of the velocity field is a conserved quantity 
in time and if the initial velocity field has zero average, it remains 
zero.

Two appropriate function spaces for the velocity field are those 
with finite kinetic energy and finite enstrophy (vorticity squared) 
(besides the boundary and divergence-free conditions). These can be 
characterized by inner products  

.d.,,d.,
3,2,1

x
vu

vuxxvxuvu
iii xx

 (3) 

and the associated norms 1/21/2 ,,, uuuuuu . Due to the 

boundary and divergence-free conditions, the .  norm can be 

directly related to the vorticity ux  through 

,22
u  (4) 

hence the concept of enstrophy (“energy of rotation”). Then, finite 

kinetic energy means 2
0 2 u  and finite enstrophy means 

2
0 2 u .
We denote by H the space of -periodic, divergence-free 

velocity fields with finite kinetic energy, and the space V of -
periodic, divergence-free velocity fields with finite enstrophy. Then, 
in an suitable sense the NSE can be written as an evolution equation 
of the form  

),(
d
d

uF
u
t

 (5) 

for an appropriate nonlinear term F. The pressure disapears and can 
be regarded as a Lagrange multiplier associated with the divergence-
free constraint; it can be fully recovered once the velocity field is 
known.

Ensemble Averages and Statistical Solutions of the Navier-

Stokes Equations 

Turbulence is now regarded as associated with a chaotic 
evolution of the nonlinear NSE. It is not simply chaos but a 

particular chaotic motion with some characteristic statistical 
properties. In a chaotic system, two motions in nearly identical 
conditions may lead to completely different behaviors in the future. 
However, some well-defined mean statistical properties appear 
when averages are taken over a number of experiments. This is the 
concept of ensemble average. One imagines a number of 
experiments yielding different velocity fields u(1), ...u(N), and then an 
average is taken to find, e.g. the mean flow 

.),(1,
1

)(N

i

i t
N

xuxU t  (6) 

Other characteristic quantities such as energy, enstrophy, rate of 
energy dissipation, etc., can be represented by some function of the 
velocity field u , and its mean quantity is obtained by 
averaging over the experiments 

.1

1

iN

iN
uu  (7) 

The symbol . is the common notation for such ensemble averages. 
Two major problems are of concern in the statistical theory of 

turbulence. One is evolving turbulence, such as in decaying 
processes of flows past objects. The other is turbulence in statistical 
equilibrium in time. There is also a mathematical framework for 
time-dependent turbulence (see Foias, 1972, Foias et al., 2001) but 
we will restrict ourselves to the case of statistical equilibrium in 
time, also called stationary turbulence.  

In the mathematical formulation of the long-time statistics of 
chaotic systems one considers averages with respect to the so-called 
invariant  measures. They are supposed to contain all the statistical 
information in the case of equilibrium in time. One mathematical 
problem with the three-dimensional NSE is the lack of any proof of 
well-posedness of the equations. This jeopardizes the use of 
classical dynamical systems tools, such as invariant measures. This 
difficulty has been bypassed with the notion of statistical solution of 
the Navier-Stokes equations, introduced by Foias (1972, 1973). In 
the case of statistical equilibrium, meaningful averages are taken 
with respect to probability measures which are the stationary 
statistical solutions of the NSE, defined essentially as measures  in 
the space H satisfying the Liouville-type equation  

,0d, uuuFH  (8) 

for appropriate test functions , and where  is the functional 
derivative of  in a suitable sense. The reason for this equation can 
be thought in the following way: The evolution of the statistical 
information u  is given by 

.))(),((())(),((1

))(,
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d(1)(
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)()(
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i
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i
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i

N

tNtNt
 (9) 

Then, the flow is in statistical equilibrium if  

.0))(),(( uuF  (10) 
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In the case the averages are taken with respect to the probability 
measure , this relation can be expressed more explicitly by (8}. 
From here on, the mathematical expression of ensemble average is 

,)(d)()( H µ uuu  (11) 

for a given quantity )(u  of the flow, with respect to a given 
stationary statistical solution . The equation (8) assures that such 
probability measures are meaningful objects to express physical 
statistical quantities of real flows governed by the Navier-Stokes 
equations.

Estimates for Some Physical Characteristic Quantities 

Some important characteristic mean quantities can be obtained 
with the help of the ensemble average. For instance, the mean rate 
of energy dissipation is  

.23
0 u  (12) 

The quantity 0 is a characteristic wavenumber for the macroscales. 
For instance, 0 can be taken to be the inverse of the largest period 

0 = 1/L0 = 1/max {L1, L2, L3}. In this way,  is in fact the mean rate 
of energy dissipation per unit mass and unit time; the term 3

0
compensates for the integration in space implicit in the definition of 

2. . Similarly, the mean kinetic energy per unit mass is 

.23
0 u  (13) 

The root-mean-square velocity is  

.2eU  (14) 

The Kolmogorov and Taylor wavenumbers and the Reynolds 
number are respectively 

.Re,
2

,
0

2/14/1

3
U

e
 (15) 

For those quantities, one can obtain the following estimates for large 
Reynolds number: 

.e,c,e, 2/1
0

3/23/1
0

4/3
0

3
0 RcRcUc  (16) 

This are rigorous estimates to be compared with the heuristic 
estimates from Kolmogorov theory: ,e~ 4/3

0R

3/23/1
0~  and .e~ 2/1

0R

Energy Cascade 

One of the main mechanisms in the Kolmogorov theory is the 
cascade of energy from the large, energy-containing scales to the 
small, energy-dissipative scales. This is usually treated formally by 
expanding the velocity field in a Fourier series 

0

,uu  (17) 

where  are the wavenumbers which are discrete in the periodic 
case, and u  is the Fourier component of the flow with wavenumber 

. For two wavenumbers 0 ´ < ´´ , we denote by u ´, ´´ the 
components with wavenumber in the interval [ ´, ´´), i.e. 

.uu ,  (18) 

By multiplying the Navier-Stokes equations with u ´, ´´ for ´´ 
< , and integrating over  one obtains the energy-budget equation 
for those modes: 

)()(),(
d
d

2
3
0

3
0,,

3
0

2
,

3
0

2
,

3
0 uuufuu kkkkkkkkkk ekekkk

t
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 (19) 

where 

).,).(()( ,uuuue  (20) 

The first term in the equation is the rate of change of kinetic energy 
per unit mass per unit time; the second term is the rate of energy 
dissipation per unit mass per unit time; the third term is the rate of 
energy injection per unit mass per unit time; the fourth term is the 
energy flux per unit mass and unit time from wavenumbers below 

 to higher wavenumbers; and the last term is like the fourth but 
for .

In statistical equilibrium, the time-derivative term drops out and, 
in average with respect to a stationary statistical solution  we find 

.)(, 3
0

3
0,,

3
0

2
,

3
0 uuufu ee  (21) 

For the energy cascade, an important quantity is the mean 
energy flux ue3

0 , and it is expected on heuristic grounds that 
within the inertial range the mean energy flux is exactly the mean 
rate of energy dissipation, i.e ue3

0 .
However, a mathematical difficulty appears when we take 

. Formally, one would have an equality, but rigorously it is 
not known whether the so-called global weak solutions of the NSE 
are regular enough and, instead, an inequality appears in the time-
dependent energy-budget equations as well as in the averaged 
equations:

.)(3
0,,

3
0

2
,

3
0 uufu e  (22) 

This inequality is not sufficient for a precise estimate of the 
mean energy flux ue3

0 . A remedy is to recover an equality by 
considering a possible loss of energy “to infinity”. The limit 

,lim uu ee
k

 (23) 

is rigorously proved to exist. Then, we consider the restricted energy 
flux

.uuu eee  (24) 

For this object, we have 
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.)(3
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3
0

2
,

3
0 uufu e  (25) 

Now, the assumption that the injection of energy is concentrated 
on large-scale wavenumber is usually accomplished by assuming 
that the forcing term f only contains large-scale wavenumber 
components. This means that 0,f  for some large-scale 

wavenumber . Thus, for ,  the forcing terms drops out of 
the energy-budget equation and we are left with 

.)(3
0

2
,

3
0 uu e  (26) 

for . From this equation we find on the one hand 

,)(
2

,0
3
0

2
,

3
0

3
0 uuue  (27) 

and on the other hand 

.122
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2
222
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 (28) 

Thus, we find 

.11
3
0

2
ue

 (29) 

This means that provided the square of the Taylor wavenumber 
is much larger than the square of energy-injective scales, i.e.  

,22  (30) 

then the energy cascade  

,3
0 ue  (31) 

occurs for . For more details, see Foias et al.(2001)and  
Rosa (2002). 

Estimates for Finite-Time Averages 

Physicists and engineers are often taking finite-time averages 
instead of ensemble averages in pratice in laboratories. For this 
reason, mathematical estimates for finite-time average characteristic 
quantities are desirable. These have been obtained in Foias et al. (to 
appear). The estimates mimick those for ensemble averages, except 
that lower bounds for the averaging time are needed. In some cases, 
these lower bounds yield short times, depending only in the 
macroscale wavenumber and the kinematic viscosity. In other cases, 
such as the energy cascade, the averaging time sufficient in theory is 
very large, depending on the forcing term. 

Further Results 

We treated above only the forced periodic cased in three-
dimensions. The two-dimensional periodic case has also been 
treated in detail (see Foias et al., 2002, Foias et al., to appear). 

Estimates for the energy dissipation rate have been proved in three-
dimensional shear flows in Constantin and Doering (1994) and in 
three-dimensional pressure gradient flows in Constantin and 
Doering (1995). Further results can be found in Foias et al. (2001), 
Rosa (2002), Bercovici et al. (1995), Doering and Foias (2002), 
Foias (1997), Foias et al. (2001). 

An Outline of the Field Theory Approach to Turbulence 

Stochastic Hydrodynamics and Turbulence 

It is a challenging problem to find the probability measures 
describying the decay/stationary states of turbulent flows, directly 
from Eq. (8). The idea would be to follow in turbulence the same 
line of reasoning that has been successfully carried out in 
equilibrium statistical mechanics, where the Liouville equation is in 
fact solved, leading to the usual Boltzmann-Gibbs distribution 
(Huang, 1987). However, even though a closed analytical solution 
of turbulent Liouville equations is presently not available, we have 
witnessed in the last ten years or so a considerable progress towards 
a theoretical understanding of intermittency, the hallmark of the 
small scale flow fluctuations - a central issue in turbulence research. 
The stage where these recent studies have been performed is set by 
stochastic and dimensionally reduced models: (i) the Burgers model 
(Burgers, 1948, Polyakov, 1995, Gurarie and Midgal, 1996, 
Cheklov and Yakhod, 1996, Khanin et al., 1997, Eijdnen and 
Eijdnen, 2000, Moriconi and Dias, 2001), (ii) Kraichnan model of 
passive random advection (Kraichnan, 1994, Gawedski and 
Kupianen, 1995, Shraiman and Siggia, 1996, Falko et al., 1996 and 
Balkovski and Lebedev, 1998),(iii) stochastic Navier-Stokes 
equations (Wyld, 1961, Orszag et al., 1996, Moriconi and Nobre, 
2002, Moriconi, 2004, Moriconi and Nobre, 2004 ), and (iv) the 
conformal theory of two-dimensional turbulence (Polyakov, 1993, 
Lowe, 1993 and Moriconi, 1996). As the theory of conformal 
turbulence is related to a somewhat diverse approach, we discuss it 
in a separate section. Let us start by defining models (i), (ii) and 
(iii). 

Burgers Model 

This is a model of “one-dimensional turbulence” where, of 
course, there is no incompressibility constraint and no pressure term 
in the evolution equations. In the stochastic version, the velocity 
field u = u (x, t) evolves according to 

,
2

2
f

x
u

x
uu

t
u  (32) 

where f = f (x, t) is a gaussian stochastic force, with zero mean, and 
two-point correlation function 

.,, ttxxDtxftxf  (33) 

The function D (x-x') is assumed to be correlated at large length 
scales. Usually one defines  

.-exp
2

2

0
L
x-xDxxD  (34) 

A theorem by E. Novikov (1964) tells us that the energy is 
injected into the system at a rate D0/2 (this results holds also for the 
incompressible case in any spatial dimension). The flow is highly 
intermittent due to the presence of shock waves, as formerly noticed 



Theoretical Aspects of Homogenous Isotropic Turbulence 

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright  2004 by ABCM       October-December 2004, Vol. XXVI, No. 4 / 395

by Burgers himself, and corroborated through direct numerical 
simulations (Chekhlov and Yakhod, 1996 and Gotoh and Kraichnan, 
1998).

Kraichnan's Model of Passive Advection 

We have, here, the problem of a passive scalar t,x
(temperature, dye density, etc.), defined in d-dimensional space, 
which, besides diffusing, is advected by a random velocity field u = 
u (x, t), and is intensified/depleted along lagrangian trajectories by 
an external stochastic agent f = f (x, t): 

.2 f
t

u.  (35) 

Observe that there is no back reaction of the scalar field on the 
velocity field. The u and f functions are regarded to be independent 
gaussian stochastic fields. The velocity structure function 

2
2 )x(-)x t,t,S uu(  has the general scaling form, 

1
2 ~)( rrS where xxr , devised to mimick the advection 

produced at inertial range length scales, as it happens in a realistic 
turbulent flow (Kolmogorov phenomenology gives 3/1 .
Alternatively, 0  corresponds to the advection produced by a 
smooth velocity field). The external agent   f = f (x, t), on the other 
hand, is correlated in a way similar to (34). 

Stochastic Navier-Stokes Equations 

In order to study the inertial range properties of homogeneous 
isotropic turbulence, which are conjectured to have a universal 
scaling behaviour, we regard the external force in Eq. (1) as a 
gaussian stochastic field, with zero mean and a large scale two-point 
correlation function  

.xx,x,x ttDtftf  (36) 

The Field Theoretical Framework 

Let us consider the following ordinary stochastic differential 
equation:

).(tcxx  (37) 

where c > 0 and the random function of time  (t)  is a gaussian 
noise defined by  (t)  = 0 and  (t)  (t´)  =  (t – t´). Assume that           
x (0) = 0. The straightforward integration of the above differential 
equation gives  

T ttctdcTTx 0 ).()exp()exp()(  (38) 

It is clear that x (T) is a gaussian random variable, with 
vanishing mean value, since it is a linear functional of  (t). The 
probability density function (pdf) for x (T) has, as usual, the normal 
form 

),
2

exp(
2
1)(

2xxT  (39) 

where 2)(Tx . We get, from (38), 

.2exp1
2

exp2exp 0
2

cT
c

D

ttttctdcTTx T

 (40) 

The same results can be obtained through a more laborious 
method, the Martin-Siggia-Rose functional formalism (Martin et al.,
1973), which is in fact worth of consideration when one does not 
know how to solve exactly the stochastic differential equation, as in 
turbulence models. We have, introducing the characteristic function 

TxiZT exp ,

.exp
2
1 xiZdx TT  (41) 

Let now )(tx  be the solution of (37), with the initial conditon 

)0(x . We may write (up to a normalization factor which assures 

that )0(Tx  the path-integral expression 

,)(exp)(

)(exp)()(

TxixJtcxxDx

TxitxtxDxZT
 (42) 

where, in a time-discretized representation, 

.)()()(

,,...,,...lim

1

2121

N

i
ii

NN
N

txxtxtx

xxxFdxdxdxxDxF

 (43) 

In our particular problem, there is no need to worry with the 
jacobian J[x], since it is independent of x (t). Actually, it is possible 
to prove that J = 1 holds if time is discretized, for general stochastic 
differential equations of the form )(xLx  (Zinn-Justin, 
1996).To proceed, we rewrite the Dirac delta functional as an 
integration over an auxiliary field )(ˆˆ txx :

.)(ˆ
2

ˆexpˆ

)ˆexp()(ˆexpˆ

)(ˆexpˆ)(

0
2

00

0

T

TT

T
T

TxixDicxxxdtixDxD

xdtiTxicxxxdtixDxD

TxicxxxdtixDxDZ

 (44) 

Following the traditional notation, inspired by quantum physics 
concepts, we write )](exp[ˆ)( TxiiSxDxDZT , where 

]ˆ
2

)(ˆ[ 2
0 xDicxxxdtS T  is the so-called Martin-Siggia-Rose 

(MSR) action. Since the MSR action turned to be a simple quadratic 
functional, we may exactly integrate over )(ˆ tx  to obtain 

],
2

exp[),(
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2

)(
2
1exp[

)]()(
2
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2

222
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D
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D

DxZ

T

T
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 (45) 

where  
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TxTx
x xcxdt

D
DxTxG 0

222)(
0)0( )].(

2
1exp[),(  (46) 

Taking the Fourier transform of ZT ( ) given in (45), we find 

),
2

exp(),()( 2x
D
cTxNGxT  (47) 

where N is the normalization factor which guarantees that 
1)(xdx T . The good news is that G (x,T) is nothing more than 

the imaginary-time propagator for the quantum harmonic oscillator 
(Feynman and Hibbs, 1963, Moriconi, 2004b). Up to an unimportant 
normalization factor, we have 

].)coth(
2

exp[,( 2xcT
D
cTxG  (48) 

We find, thus, 

),
2

exp(})coth(1[
2

exp{)(
2

2 xNxcT
D
cNxT  (49) 

with )]2exp(1)[2/()coth(1)[/( 1 cTcDcTcD , precisely 
as given by Eq. (40). 

The previous computational steps, from equation (37) to (44), 
may be generalized to deal with stochastic turbulence models. It is 
instructive to focus our attention on the Burgers model, which is a 
prototypical example for the application of the MSR field theory 
formalism to the turbulence problem. Let O(x,t, ) be an arbitary 
observable defined at position x and time t, and which depends on a 
length scale . It could be given, for instance, by the velocity 
differences utxutxutxO ),(),(),,( . In order to 
compute the pdf for u, denoted ( u), in the asymptotic stationary 
statistical state (assumed to be homogeneous in time and space 
variables), we define the characteristic function 

.exp)( uiZ  (50) 

Using now (32) and (33), we will have, for (50), 

}.),(ˆ)(),(ˆ

][ˆexp{ˆ
2

2

uitxuxxDtxuxdtdxd
x

uv
x
uu

t
uudtdxiDuuDZ

 (51) 

Above, the characteristic function is computed at time t = 0, 
which is a physically meaningful average, if we assume that the 
flow's initial state is defined at t . The MSR action is then 
written as 

).,(ˆ)(),(ˆˆ
2

2
txuxxDtxuxidtdxd

x
uv

x
uu

t
uudtdxS  (52) 

Instantons and Intermittency

We are aware, since the fundamental work of Batchelor and 
Townsed (1949), of the existence of intermittent, non-gaussian  
fluctuations revealed by some physical observables in turbulence. 
While the velocity field is not an intermittent variable in general 
(Tabeling et al., 1996), velocity differences at inertial and viscous 
scales are. The choice of the observables O (x, t, ) depends on the 

details of the model under consideration. Laboratory experiments 
and numerical simulations are of crucial importance here, in order to 
guide our choices, which, hopefully could bring some light in the 
understanding of the underlying mechanisms of turbulence 
generation. In Kraichnan's model of passive advection it is usual to 
take ),(),ˆ(),,( txtxtxO , i.e, scalar differences along 
some direction ˆ . In three-dimensional, realistic flows, several 
works have been devoted to the analysis of statistical fluctuations of 
powers of transverse/longitudinal velocity differences (or powers of 
gradients) [see Frisch's book (1995) for a review]. 

In Burgers turbulence, the flow can be depicted as a gas of 
dilute shock waves (Saffman, 1971), which explicitly break the 
parity symmetry xx  of the flow configurations (as it could be 
guessed from the form of the static shock solution 

)/tanh()( UxUxu  of Eq. (32) for the case of a vanishing 
external force). It turns that the velocity structure functions for 
small enough (within inertial range scales) are given by (Saffman, 
1971)

,~q
q uS  (53) 

while the usual K41 phenomenology would predict 3/~ q
qS .

Such a strong deviation from the standard K41 theory renders the 
Burgers model one of the most attractive systems for theoretical 
study. In particular, one would be interested to describe the pdf tails 
of u, supposedly asymmetric. There is a compelling evidence that 
the left and right tails are given by 2/7~ u  and 

)exp(~ 3uc , respectively. These results have been rigorously 
proved (under some plausibility assumptions) by E and Eijnden. The 
instanton strategy, a general method to approach the intermittency 
problem in turbulence models, which we describe now, works well 
for the burgers right tail pdf, while the left tail is still an open 
problem within this line of research. The essential idea of the 
method is to extend the definition of the characteristic function to 
the complex plane, through the mapping i . If the pdf decay 
at the right tail is faster than any simple exponential, we could get 
its precise form from the knowledge of Z (-i ) for large values of .
On the other hand, the functional integration (51) could be 
computed in the large  limit with the help of the saddle point 
technique. The saddle-point equations are straightforwardly 
obtained from the functional derivatives of the MSR action with 
respect to the fields û  and u. The solutions of this set of equations 
are dubbed “instantons” (a name identical to the one for analogous 
gauge theory saddle-point configurations). Gurarie and Migdal 
(1996) were able to find the Burgers instanton, which led in fact to 
the correct asymptotic form of the velocity difference pdf at the 
right tail. It is interesting to note that there is a scaling symmetry in 
the saddle-point equations which necessarily leads to the right tail 
pdf )exp(~ 3uc  in the limit of vanishing viscosity.  

The existence of a scaling symmetry for the saddle-point 
equations, which  is an advantage for the Burgers model, becomes 
the source of great difficulties in other models, like the ones defined 
in Sec. (3), where faster-than-gaussiandecaying pdfs are not 
observed for the intermittent variables. Nevertheless, it is worth 
mentioning that the instaton method can be applied to these models 
as well (Balkovski and Lebedev, 1998 and Moriconi, 2004), in 
reasonable agreement with numerical, experimental, and alternative 
analytical studies.  
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Conformal Turbulence 

In the real world, approximately two-dimensional motion may 
be observed in many systems, like soap films, stratified flows, or 
rotating fluids. The later, in particular, have been receiving much 
atention due to their relevance to oceanic and atmospheric sciences. 
One of the advantages of lower-dimensional turbulence is that 
higher Reynolds numbers may be achieved in numerical 
simulations. Also, as a general rule, intermittency effects are more 
pronounced here than in the three-dimensional case, making it 
easier, in principle, to study their generation mechanisms.   

Defining the stream function  by the relation u

and the vorticity 2 , the two-dimensional N-S. equations for 
 may be written as 

.22 ft  (54) 

In the inviscid case (v = 0) and in the absence of external forces, 
the above equation implies that there is, besides energy, an infinite 
number of conserved quantities, given by 

,2 n
n xdI  (55) 

where n is a positive integer. I2 is known as “enstrophy”,having an 
important role in the cascade picture of two-dimensional turbulence. 
Kraichnan (1967) advanced the hypothesis that not only energy, but 
also these additional conserved quantities would flow across the 
inertial range. A careful analysis of the energy and enstrophy fluxes 
leads to a surprising result. Energy is transported now to larger 
length scales, while enstrophy flows towards smaller ones, in such a 
way that both fluxes cannot coexist in the same range of wave 
numbers. Regarding the energy spectrum, if the system is forced at 
wave number k0, the energy transport to wave numbers k < k0 is 
characterized by E (k) ~ k-5/3, as in the Kolmogorov's theory, and the 
constant enstrophy flux towards k > k0 is associated with E (k) ~ k-3.
It is believed that Kraichnan's idea of the enstrophy cascade is 
physically correct, but numerical simulations (Legras et al., 1998) 
show that the energy spectrum decay is given by exponents close to 
-3.5, varying according to the nature of the large scale external 
forcing.

Polyakov has suggested a conformal field theory approach to 
two-dimensional turbulence (Polyakov, 1993), from which the 
exponents describing the energy spectrum decay may be found 
exactly. Conformal methods have been very important in the 
understanding of critical phenomena in two dimensions, where 
specific models were seen to correspond to different realizations of 
the Virasoro algebra. Among the conformal theories, the “minimal 
models” play a special role, since they have a finite number of 
scaling operators. These models (Belavin et al.), 1984) are 
generically defined by a pair of relatively prime numbers, (p,q), with 
p < q. They contain a subset of (p-1)(q-1)/2 scalar primary 
operators, (m,n), labelled by 1 m < p and 1 n  (q – 1)/2 if p is 
even, or m  (p – 1)/2 and 1 n < q, otherwise, having 
dimensions (m, n) = ((pn – qm)2 – (p – q)2) /4pq. The reason for the 
choice of scalar operators is that we deal with isotropic correlation 
functions in the turbulence problem. The operator product expansion 
(OPE) of two primaryoperators )()1,1( zsr  and )()2,2( zsr , with 

0zz  is written as  
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where 
)1212,121min(312s-1s),1212,121min(3121 ssqsssrrprrrrr

 and we have introduced, in (56), the Virasoro generators of 
conformal transformations, nL  and nL . The interest in these 
models is related not only to their finite number of primary 
operators, but also to the fact that their dimensions and the form of 
short distance products are completely known. 

Let us now apply the above operator structures in the problem of 
two-dimensional turbulence. We may write Hopf's equations for the 
vorticity correlation functions, 

,0),()...,(),( 21 txtxtx nt  (57) 

where time derivatives are expressed through equations (54). In the 
inertial range, as discussed in the previous section, both forcing and 
viscosity terms may be neglected in order to formulate a simplified 
set of Hopf equations. Considering, furthermore, the convection 
term in (54) as a vanishing point-split product of fields, that is, 

0)()()/( 2 zzazdazz , when 0zz

we would have, then, an exact solution of (57). A concrete 
realization of this possibility may be achieved if we regard the 
stream function  as a primary operator of some conformal minimal 
model. In this case, we may use all the available information on 
operator dimensions and OPE's to obtain physical results. According 
to this assumption, let be the primary operator which has the 
lowest dimension, , appearing in the OPE , between fields 
with the same dimension .

Taking iaa exp , we will have, thus, 
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 (58) 

as the dominant contribution in this short distance product. It is 
important to note that in order to get (58}) it was necessary to set 

1;22;1 CC  and 1;1,11,1;1 CC , as it follows from the 
pseudoscalar nature of the  factor above. We see, then, that (58) 
vanishes with 0a  if 

,2  (59) 

which is one of the constraints that the chosen minimal model has to 
satisfy. An additional constraint comes from the condition of a 
constant enstrophy or energy flux through the inertial range. In the 
energy cascade case this means (Frisch, 1995) that 

0~)0()( xuxu . Analogously, it may be proved that the 

condition for a constant enstrophy flux is 0~)0()( xx , which 
gives
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.)0()]()[()(~)0()( 22
12

2
12

)2( xLLLLaax (60)

The correlation function at the RHS of (60) is now evaluated by  
means of a purely dimensional argument, as )3(2L , which 
makes sense if one thinks that there is an effective infrared cutoff in 
the theory at the length scales given by L, where random forces act. 
Imposing (60) to be independent of L, we get 

.03  (61) 

In the case of an energy cascade, the argument is the same and the 
constraint turns out to be 

.02  (62) 

It is known that there is an infinite number of minimal models 
compatible with (59) and (61) or (62) (Lowe, 1993). The  general 
belief, and still an open problem, is that there may be universality  
classes, associated to the statistical properties of the forcing terms, 
which would single out one or another of the possible solutions. Let 
us note that the minimal models found in this way are non-unitary, 
since the short-distance product )()( zz  goes to zero when 

zz .
The connection of the conformal approach with real experiments 

or numerical simulations is made through the computation of inertial 
range exponents, which describe the decrease of energy in the 
region of higher Fourier modes. In the situation where VEV's of 
single operators vanish, the inertial range exponents are given by 

14  and, in the opposite case, by 124 . A good 
agreement has been reached between the former possibility, for the 
direct enstrophy cascade case, and numerical simulations (Legras et
al., 1998, Babiano et al., 1995 and Benzi et al., 1995) of the two-
dimensional Navier-Stokes equations. 

Conclusions 

The field theory approach, in the path-integral version, provides 
a general framework for the investigation of the intermittency 
phenomenon. Probability density functions and expectation values 
of intermittent observables can be computed in asymptotic regimes, 
clearly exhibiting deviations from gaussian statistics and the 
Kolmogorov phenomenological predictions. Alternatively, the 
existence of closed operatorial structures, as the two-dimensional 
conformal field theories, suggest interesting clues in the study of 
non-perturbative solutions of the Hopf equations. The concept of the 
“operator product expansion”, for instance, which has been 
historically restricted to the realm of high-energy physics and the 
statistical mechanics of second order phase transitions, is likely to 
have a crucial place in the future theoretical investigations of 
turbulence. 

References 

C. Foias, O. P. Manley, R. Rosa, and R. Temam, “Estimates for the 
energy cascade in three-dimensional turbulent flows”, Comptes Rendus 
Acad. Sci. Paris, Série I, f333, 499 (2001). 

C. Foias, M. S. Jolly, O. P. Manley, R. Rosa, and R. Temam, 
Kolmogorov theory via finite time averages,to appear. 

J.M. Burgers, Adv. in Appl. Mech. 1, 171 (1948). 
A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov, Nucl. Phys. 

B241, 33 (1984). 
A.M. Polyakov, Nucl. Phys. B396, 367 (1993). 
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena}, Oxford 

University Press, Oxford (1996). 

C. Foias, Statistical study of the Navier-Stokes equations I, Rend. Sem. 
Mat. Univ. Padova 48, 219 (1972). 

C. Foias, O. P. Manley, R. Rosa, and R. Temam, Navier-Stokes 
Equations and Turbulence,} Encyclopedia of Mathematics and its 
Applications, Vol. 83, Cambridge University Press, Cambridge, 2001. 

C. Foias, Statistical study of the Navier-Stokes equations II, Rend. Sem. 
Mat. Univ. Padova 49, 9 (1973). 

R. Rosa, Some results on the Navier-Stokes equations Applications of 
Mathematics, 47, 485 (2002). 

C. Foias, M. S. Jolly, O. P. Manley, and R. Rosa, Statistical estimates 
for the Navier-Stokes equations and the Kraichnan theory of 2-D fully 
developed turbulence, J. Stat. Phys. 108, 591 (2002). 

C. Foias, M. S. Jolly, and O. P. Manley, Kraichnan turbulence via finite 
time averages, {to appear}. 

G. K. Batchelor, The theory of homogenous turbulence, Cambridge 
University Press, Cambridge, 1953. 

P. Constantin and C. R. Doering, Variational bounds on energy 
dissipation in incompressible flows: shear flow, Phys. Rev. E 49, 4087 
(1994). 

P. Constantin and C. R. Doering, Variational bounds on energy 
dissipation in incompressible flows II: channel flow, Phys. Rev. E 51 3192 
(1995). 

H. Bercovici, P. Constantin, C. Foias, and O. P. Manley, Exponential 
decay of the power spectrum of turbulence, J. Stat. Phys. 80, 579 (1995). 

P. Constantin and C. Foias, Navier-Stokes Equation, University of 
Chicago Press, Chicago, 1989.  

C. R. Doering and C. Foias, Energy dissipation in body-forced 
turbulence, J. Fluid Mech. 467, 289 (2002). 

C. Foias, What do the Navier-Stokes equations tell us about turbulence?, 
in Harmonic Analysis and  Nonlinear Differential Equations (Riverside, CA, 
1995), Contemp. Math. 208, 151 (1997). 

C. Foias, O. P. Manley, R. Rosa, and R. Temam, Cascade of energy in 
turbulent flows, Comptes Rendus Acad. Sci. Paris, Série I, 332, 509 (2001). 

C. Foias, O. P. Manley, and R. Temam,   Bounds for the mean 
dissipation of 2-D enstrophy and 3-D energy  in turbulent flows, Phys. Lett. 
A 174 (1993), 210. 

A. N. Kolmogorov, The local structure of turbulence in   incompressible 
viscous fluid for very large Reynolds numbers,  C. R. (Doklady) Acad. Sci. 
URSS (N.S.) 30 (1941), 301--305. 

O. Ladyzhenskaya, The Mathematical Theory of Viscous   
Incompressible Flow, Revised English edition, Translated   from the Russian 
by Richard A. Silverman Gordon and Breach   Science Publishers, New 
York-London, 1963. 

L. Landau and E. Lifshitz, M\'ecanique   des Fluids, Physique 
Théorique, Tome , Editions Mir, Moscow, 1971. 

M. Lesieur, Turbulence in Fluids, 3rd. Edition,  Fluid Mechanics and its 
Applications, Vol 40, Kluwer Academic,   Dordrecht, 1997. 

A. S. Monin and A. M. Yaglom, Statistical  Fluid Mechanic: Mechanics 
of Turbulence, MIT Press, Cambridge, MA, 1975. 

H. A. Rose and P.-L. Sulem, Fully developed turbulence  and statistical 
mechanics, Journ. de Physique 39 (1978), 441-484. 

R. Temam Navier-Stokes Equations. Theory and Numerical  Analysis, 
Studies in Mathematics and its Applications,   3rd edition, North-Holland 
Publishing Co., Amsterdam-New York,  1984. Reedition in 2001 in the AMS 
Chelsea series, AMS, Providence. 

R. Temam, Infinite Dimensional Dynamical Systems  in Mechanics and 
Physics, Applied Mathematical Sciences 68, (2nd  Edition, 1997) Springer 
Verlag, New York, 1988. 

K. Huang,  Statistical Mechanics, John Wiley & Sons, Inc., New York 
(1987). 

A.M. Polyakov, Phys. rev E 52, 6183 (1995). 
V. Gurarie and A. Migdal, Phys. Rev. E 54, 4908 (1996). 
A. Chekhlov and V. Yakhot, Phys. Rev. Lett. 77, 3118 (1996). 
W. E, K. Khanin, A. Mazel, and Ya.G. Sinai, Phys. Rev. Lett. 78, 1904 

(1997). 
T. Gotoh and R.H. Kraichnan, Phys. Fluids f 10, 2859 (1998). 
W. E and E.V. Eijnden, Comm. Pure and Appl. Math. Vol. LIII, 0852 

(2000). 
L. Moriconi and G.S. Dias, Phys. Lett. A 287, 356 (2001). 
R.H. Kraichnan, Phys. Rev. Lett. 72, 1016 (1994). 
K. Gawedzki and A. Kupianen, Phys. Rev. Lett. 75, 3608 (1995). 
B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett. 77, 2463 (1996). 
G. Falkovich, I. Kolokov, V. Lebedev and A. Migdal, Phys. Rev. E 54, 

4896 (1996). 
E. Balkovski and V. Lebedev, Phys. Rev. E 58, 5776 (1998). 
H.W. Wyld, Ann. Phys. 14, 143 (1961). 



Theoretical Aspects of Homogenous Isotropic Turbulence 

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright  2004 by ABCM       October-December 2004, Vol. XXVI, No. 4 / 399

S. Orszag, I. Staroselsky, W.S. Flannery, and Y. Zhang in Simulation 
and Modeling of Turbulent Flows, Edited by T.B. Gatski, M.Y. Hussaini, 
and J.L. Lumley, Oxford University Press, Oxford (1996). 

L. Moriconi and F.A.S. Nobre, Phys. Rev. E 65, 036302 (2002). 
L. Moriconi, Phys. Rev. E 70, 025302(R) (2004). 
L. Moriconi and F.A.S. Nobre, Phys. Rev. E 70, 056309 (2004). 
D. Lowe, Mod. Phys. Lett. A 8, 923 (1993). 
L. Moriconi, Phys. Rev. E 54, 1550 (1996).  
E.A. Novikov, Zh. Exper. Teor. Fiz. f 47, 1919 (1964). 
P.C. Martin, E.D. Siggia and H.A. Rose, Phys. Rev. A 8, 423 (1973). 
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals 

(McGraw-Hill, New York, 1965), pp. 71-73 and 273-279. 
L. Moriconi, Am. J. Phys, 72, 1258 (2004b). 

G.K. Batchelor and A.A. Townsed, Proc. R. Soc. Lond. A 199,238 
(1949). 

P. Tabeling, G. Zocchi, F. Belin, J. Maurer, and H. Willaime, Phys. Rev. 
E  53, 1613 (1996). 

U. Frisch, Turbulence -- The Legacy of A. N. Kolmogorov, Cambridge 
University Press, Cambridge (1995). 

P.G. Saffmann, Stud. Appl. Math. 50, 277 (1971). 
R.H. Kraichnan, Phys. Fluids 10, 14177 (1967). 
B. Legras, P. Santangelo and R. Benzi, Europhys. Lett. 5, 37 (1988). 
A. Babiano, B. Dubrulle, and P. Frick, Phys. Rev. E 52, 3719 (1995). 
R. Benzi, B. Legras, G. Parisi, R. Scardovelli, Europhys. Lett. 29, 203 

(1995). 


