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Complexity Control in the Topology 
Optimization of Continuum Structures
A general mesh independent filter as a mean to control the complexity of topology
optimization designed structures is discussed. A new mesh-independent filter, applied over 
the move-limits of the sequential linear programming is proposed, and it is shown that its 
use alleviates common problems in the continuum topology optimization, like
checkerboarding, mesh dependency, as well as effects associated to non-structured
meshes, like numerical anisotropy. The structural optimization formulation adopted in this 
work is the minimization of a penalized function of the volume, with constraints on the
compliance of each load case. Aspects of this penalized objective function are discussed, 
and several numerical examples are shown.
Keywords: Topology optimization, filtering, gradient control, complexity control

Introduction

The main objective of this work is to present a methodology to 
control the complexity of structures designed by topology
optimization. This control is attractive because the cost of a
mechanical part depends on its complexity, and therefore, the
economy achieved in material can be easily overrun with the
increase of the complexity of the part. Addressing this issue, this
work proposes the use of a general gradient control technique
(filtering), which can be used in arbitrary meshes. Also, it is known 
that restricting the spatial variation (gradient) of the density makes 
the problem well-posed (Bendsøe, 1995), prevents the appearance of 
the checkerboard and, as the complexity of the topology is related to 
the number of holes (transition from void to fill), the gradient
control also controls the complexity.1

Studies about gradient controls (spatial variation of the design 
variable) have been done to avoid the checkerboard and to assure 
the existence of solutions (Niordson, 1983; Swan and Kosaka, 1997; 
Peterson and Sigmund, 1998; Fonseca and Kikuchi, 1998; Cardoso 
and Fonseca, 1999 and Bourdin, 2001). Some references (Díaz and 
Sigmund, 1995 and Jog and Haber, 1996) suggested that the
checkerboard is associated to the interpolation order of displacement 
and density fields in the finite element solution, like in the Stokes 
problem. Due to this reason, some researchers use high order finite 
elements with the usual constant interpolation for the density. Other 
approaches are the use of gradient controls, like digital imaging
filtering or the stricter slope control proposed by Niordson, 1983, 
and implemented for the continuum problem by Peterson and
Sigmund 1998 and Cardoso and Fonseca, 1999. The main
advantages of using gradient controls over high order finite elements 
are the complexity control, the fact that the set of the admissible
designs is closed (Bendsøe, 1995), and computational efficiency.

The main objective of the topology optimization problem is to
find a material distribution that extremizes a given functional
(objective function) subjected to a set of constraints. The evolution 
of engineering lead to the necessity of efficient methodologies to
design mechanical parts and structures, thus saving material and
time. This is the reason why topology optimization is becoming a
very important research field.

The basic goal of topology optimization, the material
distribution, is achieved by a consistent parameterization of the
material properties in each part of the design domain. When dealing 
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with isotropic materials, a natural question is whether there exists or 
not material in a given point, which leads to a discrete problem. It is 
well-known that this integer parameterization leads to numerical
problems, associated to the non-uniqueness of solutions (Ambrosio 
and Buttazzo, 1993 and Bendsøe, 1995). To relax the integer
parameterization of the material distribution, Bendsøe and Kikuchi, 
1988, introduced the parameterization of the material distribution by 
means of the homogenization method (Hassani and Hinton, 1998a 
and 1998b), which enlarges the space of admissible solutions
making the problem well-posed. The homogenization method is
simple and useful, however it increases the number of design
variables used in the optimization problem, as it requires deriving a 
model for the dependence of the material properties with respect to 
the geometrical parameters of the cell. 

A different approach to the non-uniqueness of the solution to the 
integer program is to reduce the admissible set by the introduction 
of perimeter constraints, proposed by Ambrosio and Buttazzo, 1993 
and further developed by Beckers, 1997.

The power-law or SIMP is a simpler approach to relax the space 
of admissible solutions without increasing the number of design
variables (Bendsøe and Sigmund, 1999). It has been used as an
alternative to the full homogenization, where the material properties 
are parameterized by 

10,0 ≤ρ≤= EE pñ (1)

where E is the interpolated fourth order elastic constitutive tensor, 
ρ  is the material density or material fraction, E0 is the fourth order 

tensor relative to the material properties of the base material and p is 
used to adjust the degree of nonlinearity of this equation. This
approach is a continuous interpolation of the material properties
with respect to the density (amount of material) in each point of the 
design domain. This continuous parameterization relaxes the
original integer problem, enlarging the design space. Recently,
Bendsøe and Sigmund, 1999, associated this parameterization to the 
use of isotropic composite microstructures. With this result, it is
clear that the use of the SIMP approach enlarges the design domain 
like the use of the homogenization, but it is also clear that the spaces 
obtained are different, because the space spanned by non-isotropic
microstructures is larger than the space spanned by their isotropic
counterparts. Due to this reason, one can achieve better (extreme) 
results using the homogenization instead of SIMP (Park 1995 and 
Bendsøe, 1995).

When the goal is to obtain a mechanical part made of isotropic 
material, the use of continuous parameterization, like
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homogenization and SIMP, leads to the problem of intermediate
(composite) materials in some regions of the design domain. These 
regions are important and, sometimes, cannot be discarded in a
simple threshold post processing procedure. To this end, one should 
obtain a pure integer design after relaxing the original problem with 
discrete material parameterization. Using the SIMP approach, one 
can start with a unitary exponent in Eq. (1) and increment the
exponent as the optimization is carried on. This process, a
continuation approach, enlarges the design space by using a
continuous parameterization and, after that, reduces this space using 
penalization. This is a well-known result of the mixture theory, in 
which a linear relation is an unattainable upper-bound and thus can 
lead to extreme designs, like the one obtained with homogenization. 
In fact, the mixture of two materials has a nonlinear relation
between the properties of each material and the amount of each
material in the mixture. Starting with a unitary exponent in the
SIMP relation provides the upper bound and thus we are looking for 
a solution in a larger design space. This solution is extreme, but
contains large areas with intermediate material. Penalizing the
constitutive relation, the stiffness of the intermediate material is no 
longer attractive and, for some value of the exponent, it is possible 
to achieve an almost black and white design. 

In this work, a linear relation between the properties of the base 
material and the material in each point of the design domain is used. 
The objective function used is a penalized function of the amount of 
material (volume) of the structure. This objective function is used 
because we are concerned with material reduction for a fixed
compliance. The objective function used is not related to the
filtering technique proposed, and can be used with any other kind of 
gradient control or constraints.

Gradient Controls

Gradient controls are used to constrain the spatial variation
(gradient) of the design variable. As shown by Bendsøe, 1995,
constraining the spatial gradient of the density makes the H1 norm 

( )( )
1 / 2

21 2H ρ ρ
Ω

 
= + ∇ 

 
∫ (2)

bounded (H1 < + ∞ ), making it possible to prove that the problem is 
well-posed and has (at least) one solution. This control can be
achieved using digital imaging filtering techniques or an additional 
set of constraints in the optimization formulation (strict gradient
control). Although the strict gradient control allows a better control 
over the gradient of the densities, it is too costly, due to the large 
number of additional constraints imposed to the optimization
algorithm. Filtering means that an approximated gradient constraint 
is being imposed, using some procedure related to image
manipulation, which is faster, but not so precise. Filtering has been 
used in different forms, and the results obtained show that it can
control the checkerboard and, in some cases, control the complexity 
of the topology. In a general form, filtering means applying a
mathematical operator to some value like the density, the gradient of 
the objective function or any other variable. Therefore, if one wants 
to smooth the spatial variation of the design variable, an operator
that prevents fast variations of the filtered variable should be
applied. The simplest operator is the average mean of the value of a 
given patch of elements. The expression for a general filter is

( ) ( ) ( ), , ,g x y f x y h x y= ⊗ (3)

where g is the filtered value of f, due to the convolution operator h.
Filters are classified by the way the neighbor elements are

considered: fixed grid, where only neighbors that share nodes and/or 
sides of the central element are taken into account, and spatial
filters, where neighbors inside a given spatial neighborhood are
considered. As the main objective of the filters is constraining the 
spatial variation of the density (frequency), from now on only low-
pass filters are considered. Avoiding frequencies higher than the
transition from void to fill, in the distance of two elements, makes it 
possible to avoid the checkerboard, and changing the frequency of
the filter, it is possible to control the complexity of the topology. For 
smooth (low frequency) filters, there should be no checkerboards
neither tiny reinforcements. For very weak (high frequency) filters, 
there should be tiny reinforcements and maybe checkerboards.
Therefore, the filter can be used as a complexity control.

Recently, Bourdin, 2001, studied a modified version of the
traditional minimum compliance formulation, where the density
field is regularized by the application of a convolution operator. The 
existence of solutions and the convergence of the finite element
approximations are established.

Fixed Grid Filters

Fixed grid filters are the simplest ones. Basically, the only
difference among these filters is the way the average value is
considered. Another advantage of this type of filter is the closed
relation to the image manipulation filtering techniques, where each 
element corresponds to a pixel (or a voxel). The main disadvantage 
of fixed grid filters is its dependency on the finite element
discretization, which limits its best performance to structures
meshes. The first attempt to avoid the checkerboard was made by
Bendsøe and Kikuchi (Bendsøe, 1995), using a four elements patch, 
previously used for incompressible problems. It is a fixed grid filter, 
and it is applied over the density field. 

Other very simple fixed grid filter is the 3x3 neighborhood
filter,

( )
2

2
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b

H b b b
b

b
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 =  +   
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where H is the discrete convolution operator. The weighting factor b
can be selected within the interval [1, + ∞ ], and smaller the b,
weaker is the filter. This filter is usually applied over the density
field, over some sensitivity field, with the form 

( ) ( ) ( )
3 3

1 1

, , , ,
m n

G i j F m n H m i C n j C
= =

= + − + −∑∑ (5)

where C=(c+1)/2 is used, c=3 for a 3 x 3 filter and m and n are the 
(relative) centroidal positions of each neighbor element.

The filter proposed by Fonseca and Kikuchi, 1998, can be seen 
as the first attempt to implement a strict gradient control in the
topology optimization of continuum structures. This filter is a fixed 
grid filter, where the weight factors are evaluated in advance to
impose, approximately, a gradient constraint. The filter is applied 
over the upper and the lower move limits of the SLP, and using this 
filter, one can control the complexity of the result. 

All of these filters are restricted to structured meshes made of 
rectangular finite elements. One very interesting fixed grid filter is 
the one proposed by Swan and Kosaka, 1997, where node and side 
neighbors are selected. Each class of neighbor has a fixed weight, 
and the volume of the neighbor is taken into account in the
averaging process. The expression for this filter is 
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where a is the variable being filtered, â is the filtered value, W1 and 
W2 are weighting factors and Vi is the volume of an element of the 
mesh. Using this filter, one can have different finite elements in the 
same mesh, which is a great advance when compared to other fixed 
grid filters. Swan and Kosaka filter is inadequate to impose strict 
bounds on the spatial variation of the density field; however it is
effective in preventing checkerboards and keeping some control on 
the complexity of the design.

Spatial Filters

A serious drawback of fixed grid filters, as the one proposed by 
Swan and Kosaka, is that its area of influence is spanned by finite 
elements neighborhood. Thus, refining the mesh reduces the spatial 
area of influence of the filter, and leads to more complex designs.

 Therefore, it is necessary to introduce spatial filters to avoid
mesh dependency. Another advantage of the spatial filters over most 
of the fixed grid filters is that controlling the area of influence of the 
spatial filter, it is possible to control the complexity of the topology. 
This control is not a very strict control. The mesh dependency is
alleviated with the use of these filters, as for a constant area of
influence, refining the mesh increases the number of elements
considered, avoiding reinforcements smaller than some scale. 

Figure 1 illustrates the concept of spatial filter. In this figure, the 
element being filtered has a neighborhood, selected by the radius of 
the filter. Elements with centroids inside the area of influence of the 
filter (circle) are considered in the averaging process.

Figure 1. Concept of spatial filter. The central element (darker) has an area 
of influence (circle) which spans the elements with centroid inside the
circle (gray).

The simplest spatial filter is the linear filter, with weights given 
by

{ }max max, ,i ij i i ijW R R j CV CV j I R R= − ∈ = ∈ ≤ (7)

where Rmax is the radius of the filter, Rij is the distance between the 
centroids of elements i and element j and CVi  is the set containing 
the neighbors of the element i. The average value is given by 
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where nv is the number of neighbors. As can be seen in the previous 
equations, this filter does not take into account the size of the
neighbors, making it adequate to be used with regular meshes. 

Sigmund, 1997, uses a spatial filter on the gradients of the
optimization problem. The filter proposed by Sigmund has the
following form
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As discussed before, this filter is mesh independent, but does not 
take into account the size of the neighbors.

 In order to use a spatial filter with any kind of mesh it is
proposed a spatial version of the filter proposed by Swan and
Kosaka. In this filter, the weights are evaluated by the relative
position of the neighbor to the central element. So, there are two
possibilities, using an average weight or using individual weights
for each neighbor. From these two possibilities, two filter definitions 
are proposed: the first filter will be referenced as AWSF (average 
weight spatial filter) 
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and the second formulation as IWSF (individual weight spatial
filter)
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In the above equations, a is the value of the variable being
filtered, â is the filtered value, Vi is the volume of the element i, W is 
a weighting factor, iW  is an averaged value of the weighting factors 

and nv is the number of elements in CVi. This filter can be applied 
to any variable, like density field or the gradient field. In this work, 
the filter is applied over the upper and lower move limit fields of the 
SLP. Doing this, the density field and gradient fields are not
disturbed in an artificial way. The only function of the filter it to
guide the possible values obtained by the SLP at each iteration.

Strict Gradient Controls

Strict gradient controls have been used since Niordson, 1983. 
The approach proposed by Niordson was in the opposite direction of 
the solution proposed by Cheng and others. While Cheng, 1981,
relaxed the set of possible solutions, using microstructures,
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Niordson restricted this set, restricting the possible variation of the 
thickness, and also solved the ill-posed problem of thickness
optimization of a plate. After that, Bendsøe, 1995, studied this
restriction, associating it to bounds on the H1 norm. Therefore, even 
if the goal of using a filter is to control the checkerboard, it also
controls the spatial variation of the density, bounding its norm.
Using this information, Fonseca and Kikuchi, 1998, proposed a
fixed grid filter whose weights are evaluated to restrict the spatial 
variation of the density. Doing this, one can restrict the set of
admissible solutions (by bounding the norm), and also control the 
complexity of the solution. Petersson and Sigmund, 1998, proposed 
a strict gradient control, where the variations of the densities are
constrained directly in the SLP problem, as a new set of constraints. 
This gradient control is very expensive, but allows a very strict
constraint on the H1 norm, controlling the checkerboard and the
complexity of the topology. This gradient control was implemented 
for regular meshes. Cardoso and Fonseca, 1999, proposed a more
general implementation for this gradient control, allowing its use
with non regular meshes. The large number of constraints
introduced to bound the variation of the density filed from each
element to its neighbors make this approach too expensive for
practical applications. Also, the use of filtering techniques is much 
cheaper and leads to similar results

Volume Minimization with Compliance Constraint

Clearly the effects of a strict gradient control and the effect of 
filtering are the same: constrain the spatial variation of the design 
variable. Controlling the variation of the density field is actually a 
control on the spatial variation of the material properties. Therefore 
it makes no sense to adopt a nonlinear relation of the material
properties with respect to the density. For example, using a strict
gradient control does not allow 0-1 designs, so "gray" areas are
always created (areas with intermediary densities). To further
penalize the appearance of gray areas, Petterson and Sigmund, 1998, 
increased the penalty exponent of the constitutive relation up to 5. 
Doing this, the result is not related to the spatial variation of the
base material, especially for a very smooth spatial variation of the 
density. It is practically impossible to build a part with large areas of 
intermediate material, even though it is possible to associate this
SIMP "gray" material to a particular isotropic microstructure.
Consequently, one can use a slightly different approach. Instead of 
penalizing the material properties, one can penalize the cost
(objective) function. Therefore, if one wants to minimize the amount 
of material used in a particular design, constraining the compliance 
of the part, the following formulation can be used

lim. . 1..
k

T
k k

Min Volume

S t F k nlc≤ =f u (14)

where Flimk is the maximum compliance for a particular load case k,
and nlc is the number of load cases. Considering the following
relation between the volume and the design variable 

( ) ,V dρ ρ
Ω

= Ω∫ (15)

the objective function and the set of constraints are convex, so the 
solution may be unique, depending on the material interpolation. If a 
linear relation (upper bound) between the effective properties and 
the base material is used, this problem is convex and has a unique 
solution. As this parameterization represents an upper bound for the 
parameterized material properties, the result usually has large
extents of gray areas, due to the artificially high stiffness of the

intermediate material. For this reason, some researches penalize the 
stiffness of intermediate densities using a nonlinear relation (SIMP). 

If instead of penalizing the material properties, the cost of the 
intermediate densities is penalized, we also avoid large areas of
intermediate densities in the result. The following relation

( ) ](, , 0,1nV n d nρ ρ
Ω

= Ω =∫ (16)

also penalizes the intermediate densities. This relation makes the
cost (volume) larger for intermediate densities, so the optimizer tries 
to avoid intermediate densities. As can be seen, this new objective 
function is non-convex, so using n different than one makes the
problem non-convex, like when penalizing the constitutive relation. 
Therefore, a continuation approach can be used. The original convex 
problem (no penalization) is taken as the starting point. Once in the 
global minima (it depends on the optimizer) of the design set (which 
also depends on the gradient control) the problem is penalized,
changing the objective function. This new objective function is non-
convex, so the problem will converge to some local minima, which 
contains fewer intermediate densities, as the penalization prevents it. 

If the convex formulation is changed directly to a highly non-
convex problem, the change in the result can be dramatic, so it is a 
good idea changing slightly the non convexity of the objective
function. Doing this, it is also possible to investigate the influence of 
the non-convexity of the objective function in the complexity of the 
result. This is the same behavior encountered in the modification of 
the constitutive relation, where the exponent of the constitutive
relation can be related to some special kind of microstructure and 
the penalization of the objective function can be related to some
economic features, like the price of the intermediate densities (so
constructing the isotropic microstructure can be related to an
increase in the cost of the process). An additional penalization term 
can be considered in Eq. (16), like the one used by Fernandes,
Guedes and Rodriges, 1999, resulting in 

( ) ( ) ( ], 1 , 0,1 , 0nV n d nρ ρ β ρ ρ β
Ω Ω

= Ω + − = ≥∫ ∫ (17)

which can be used to further penalize the design. The algorithm
starts with a convex objective function (n=1 and β =0), changes to 

a non-convex objective function (n<1 and β =0) and, if needed,

makes it even more non-convex ( β >0). This process can be

automatic, changing the parameters after the convergence of each
level. The need for additional penalization appears when the
gradient of the design variable is constrained, so large gray areas, 
corresponding to the transitions from fill to void, can be reduced. 

Mathematical Programming

Among several optimizers, the sequential linear programming
was chosen, due to its simplicity and because the reliable public
domain SLATEC library is freely available (Hanson and Hirbert,
1981). The linear approximation for the proposed problem is 
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where 0iρ  is the actual density value for element i, Fk is the

compliance of load case k, minα  and maxα  are the minimum and 

maximum values for the move limits and iα  is the move limit

offset factor. This local approximation of the objective function and 
constraints requires some first order sensitivities with respect to the 
design variables. The objective function in Eq. (17) is an explicit
function of the design variable, so the sensitivity is very easy to
obtain:

( )
1

1

0 0
0

1
1 2 .

i i

i

n
i

dV
V

d n
ρ β ρ

ρ
− 

= + − 
 

(19)

The flexibility constraint is an implicit function of the design
variable, so the sensitivity with respect to the density is more
involved, but has a closed form. Differentiating the definition of
flexibility,

T
T

i i i

dF d d

d d dρ ρ ρ
= +f u

u f (20)

where the sensitivity of the displacements can be obtained directly
from the equilibrium equation, gives 

2 .
T

T

i i i

dF d d

d d dρ ρ ρ
= −f K

u u u (21)

The last set of constraints in Eq. (18) are known as move limits. 
They are added to keep the linear approximation valid at the current 
point. The move limit strategy is crucial to the success of an SLP
implementation and many researches have proposed different
strategies (Wujek and Renaud, 1998a and 1998b; Chen, 1993). One 
of the simplest strategies is avoiding the zigzag (Bazaraa and Shetty, 
1979), which means that, if in the last two iterations the sign of the 
change in one design variable changes, the move limit of this design 
variable is decreased by a factor of (1-α ) and if there is no change
in the sign then the move limit of this variable is increased by a
factor of (1+α ). However this scheme tends to be unstable in this 
application and was modified to consider the last three iterations.
After the evaluation of the moving limits, one of the proposed filters 
is applied separately, on the upper and on the lower moving limits. 
This assures that the possible range of density for each design
variable is related to the surrounding elements. After the LP,
elements densities cannot differ much from its neighbors, avoiding 
the checkerboard. As discussed before, as the number of elements 
used in the averaging process increases, simpler is the topology.
One drawback of the LP method, as pointed by Bruns and Tortorelli, 
2001, is the loss of symmetry, due to the nature of the LP
approximation. It was observed that the use of the filters proposed in 
this work also alleviate this effect.

Solution of the Equilibrium Equations

Using the strong form of the equilibrium equations of the
elasticity,

0,∇ ⋅ + =ó b (22)

where ó  is the Cauchy stress tensor and b is the body force vector, 
and considering a linear relation between the stress tensor and the 
strain tensor

( )0 ,ρ=ó E L u (23)

it is possible to express Eq. (22) using the material properties and 
the continuum material parameterization of Eq. (1), with p=1, which 
gives

( )( )0 0.ρ∇ ⋅ + =E L u b (24)

Here the small displacement strain tensor is used 

( ) ( )1
,

2
T= ∇ + ∇L u u u (25)

so the results are valid only for small displacements (it is important 
to emphasize that both the filtering technique and the objective
function can be used in non-linear problems). The weak form of Eq. 
(22) is 

( ) ( ) ,d d dρ
Ω Ω Γ

Ω = ⋅ Ω + ⋅ Γ∫ ∫ ∫0vL u E L u u b v t v (26)

where v is an arbitrary test function.
In this work, the equilibrium problem is solved using the finite 

element method. The design domain is divided in ne finite elements, 
and it is assumed a local interpolation of the displacements and
densities. Using the usual finite element procedures used (Bathe,
1996), the well known element stiffness matrix is obtained

( ) 0: :
i

T
i i i i i idρ ρ

Ω

= Ω∫K B E B (27)

where a constant interpolation for the design variables is used for all 
elements in the mesh. This result is very important, because the
density is a simple scaling factor for the usual stiffness matrix. The 
procedure to obtain the global stiffness matrix is the subject of any 
finite element book (Bathe, 1996).

The non conforming four nodes element (Kasper and Taylor,
2000a and 2000b), the 3D non conforming eight nodes element, and 
the GT9 triangular element with drilling degrees of freedom
(Yuquin and Yin, 1994) are used in this work. These are low order 
elements, so the checkerboard instability is not avoided. The use of 
these elements, however, implies in a better displacement solution in 
the equilibrium problem, with a small increase in the computational 
time. The nonconforming formulation alleviates the parasitic shear, 
so the final result is not corrupted by this kind of finite element
error, especially in tiny reinforcements in bending, so usual in
topology optimization. The GT9 has a behavior between the 6 node 
triangular element and the constant strain triangle, with a small
increase in the computational time when compared to the latter.
Another advantage of the incompatible elements is the stress
recovery, allowing a better description of the stress field when the 
stress is of interest (especially in non-linear problems).

Results

In the following, some results obtained with the use of the
proposed formulation are shown. The non-conforming
bidimensional four node element and the non-conforming three
dimensional eight node are used. The triangular element considered 
is the GT9. For all examples, the material is assumed as isotropic 
and elastic, with E=1*107Pa and Poisson's ratio equal to 0.3. All the 
applied loads have a value of 1N. In all figures, a gray scale is used 
to represent the density field, where white means void ( ρ =1*10-3)
and black means base material.
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Influence of the Penalization

As explained before, instead of penalizing the constitutive
relation, one can penalize the objective function. To show the
influence of the penalty exponent in Eq. (16) it is used the
traditional  8 x 5 short cantilever beam (See Bendøe, 1995,  for this 
and other standard problems) discretized by 2160 (60 x 36) finite 
elements. The limit compliance is equivalent to 120% of the
compliance obtained for 100% of volume. Four different values of 
the penalization exponent are used: 1, 1/2, 1/6 and 1/8, and the
volume fractions obtained for those exponents are 62.3%, 62.95%, 
64.53% and 64.16%, respectively. When the exponent is equal to
one, there is no penalization, so the result contains large areas with
intermediate densities. As the exponent is decreased, the relation
becomes non-convex, penalizing intermediate densities. Figure 2
shows the topology obtained with these exponents. Smaller the
exponent, fewer the gray areas. This is a good feature, but the non-
convexity also makes the discrete solution non-unique.

Figure 2. Influence of the penalization in equation Eq. (16). The
penalization is increased from top left to bottom left, clockwise (n=1, 2, 6 
and 8).

To show the effects of the non-convexity of the penalized
objective function, the previous example is considered again, but
with a mesh of 3525 (75 x 47) finite elements. The limit compliance 
is set to 125% of the compliance obtained for 100% of volume
fraction and the penalization exponent is set to 1/8. The two filters 
proposed are used, with a radius of 1.66*10-1 m, (equivalent to
select eight neighbors for each element). Two different initial
density distributions are used, as shown in Fig. 3 (first column), a 
homogeneous with ρ =0.5 and a random distribution. The second 
column in Fig. 3 shows the results obtained with the use of the
IWSF filter and the third with the use of the AWSF filter.

Figure 3. Non convexity of the objective function, Eq. (16), for exponent
1/8 and different initial density distributions.

The final volume fractions are shown in Tab. 1.

Table 1. Volume fractions obtained for the second example, Fig. 3.

Filter / Initial density distribution Volume Fraction (%)

IWSF / Homogeneous 59,74
IWSF / Random 60,04
AWSF / Homogeneous 59,52
AWSF / Random 59,78

To avoid this dependency with respect to the initial density
distribution, we used a continuation approach. First, the linear
problem is solved until convergence. After that, the exponent n is
decreased and the problem continues until the new convergence is 
reached. This approach needs more iterations, but it is effective and 
we also observed that it is more stable than starting with a non-
convex problem. For the same problem of the Fig. 3, the same
solution for the random and homogeneous initial density distribution 
is obtained, as shown in Fig. 4. No assumption on the initial
densities distribution was made, so it can be an infeasible point.
Table 2 shows the volume fractions obtained with this procedure. 
Two volume fractions are shown: the first corresponds to the
converged convex solution and the second to the converged
penalized solution. As in the previous example, the second column 
in Fig. 4 is obtained with the use of the IWSF filter and the third 
with the used of the AWSF filter.

Table 2. Volume fractions obtained with the continuation approach, Fig. 4.

Filter / Initial density distribution Volume fraction n = 1/ n = 8(%)

IWSF / Homogeneous 56.43 / 59.56
IWSF / Random 56.39 / 60.00
AWSF / Homogeneous 56.32 / 59.43
AWSF / Random 56.33 / 59.60

Table 3. Volume fractions obtained for topologies in Fig 5.

Filter / Initial density distribution Volume fraction for n=8 (%)

IWSF / Homogeneous 23.35
IWSF / Random 23.35
AWSF / Homogeneous 25.30
AWSF / Random 25.33

Figure 4. Results obtained with the continuation approach. The first
column shows the initial density distributions, the second row shows the 
results obtained with the IWSF filter and the third column shows the
results obtained with the AWSF filter.

Figure 5 shows the solution of another common problem in the 
literature, with the use of the continuation method. The domain is a 
unitary square and the limit compliance is set to 130% of the
compliance obtained with a volume fraction of 100%. In this
example, 1800 (30 x 60) finite elements are used and the radius of 
the filters is 2.6*10-2m (equivalent to 8 neighbors). The third row in 
Fig. 5 is obtained with the use of the AWSF filter and the fourth 
with the use of the IWSF filter. Table 3 shows the volume fractions 
obtained for this example.
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Figure 5. Results obtained with the continuation approach. The first
column shows the geometry and boundary conditions for this example.
The second column shows the initial density distribution, the third column 
the results obtained with the AWSF filter and the fourth column the results 
obtained with the use of the IWSF filter.

Influence of the Filter

The results shown above were obtained with filtering otherwise 
checkerboard would have been present. For the same problem and 
discretization, it is possible to vary the radius of the filter to obtain a 
simpler topology or to obtain a more complex one. If one chooses a 
very small radius, checkerboard can appear, so there is a lower limit 
on the value of the radius. For a coarse mesh, the filter can blur the 
result and many levels of penalization would be required, so there is 
a minimum resolution to apply the filter, as observed before by
Fonseca and Kikuchi, 1998. This is not a problem, because the finite 
element solution requires a mesh good enough to represent the
problem and one can think in the finite element solution and in the 
optimization problem when doing the mesh. Figure 6 shows the
influence of the size of the filter for a fixed mesh. As the radius of 
the filter is increased, thin reinforcements are no longer present in 
the topology. This is very important, because the number of holes 
usually increases the cost of the part. Another important thing is that 
the finite element solution for these thin reinforcements can be
inaccurate because they are usually one or two elements wide,
especially when low order finite elements are used in bending.
Therefore, with the use of the filter, one can assure a minimum
mesh size for some parts of the topology. This is not a strict control, 
but as shown it works and with some experience the designer can 
estimate the radius of the filter to fit the characteristics of the design.

For the short clamped beam, with a mesh of 6300 finite
elements, we changed the radius of the filter, to show its influence 
in the complexity of the topology. Figure 6 shows the topology
obtained for increasing values of the radius of the filter. The values 
correspond to a maximum number of 4, 8 and 12 neighbors. It is
clear that the larger the number of elements inside the radius of the 
filter, simpler is the topology.

Figure 6. Results obtained for three different filter radiuses. The radius is 
increased from left to right.

The proposed filters can also minimize the influence of the mesh 
pattern on the topology. It is well known that the way the finite
elements are disposed in the mesh can influence the result. This is 
known as numerical anisotropy. Most of the papers dealing with
topology optimization use a regular quadrilateral mesh, so the mesh 
quality is not considered. To show the influence of the proposed
filtering technique, the short clamped beam is used. The limit
compliance is set to 120% of the compliance obtained for 100%
volume fraction and different mesh patterns are used. The mesh

patterns are shown in the first column of the Fig. 7. The second
column shows the solutions obtained without filtering. It is clear that 
the mesh pattern changes the checkerboard, showing how strong the 
effects of the mesh quality in the topology optimization are. When 
using the filter, the same result is obtained, independent of the mesh 
pattern (third column). The filter used in this example is the IWSF 
and the radius is fixed for the three meshes (2*10-1m). It must be 
observed that the meshes in Fig. 7 have a different number of finite 
elements. The volume fractions obtained for this example are
63.36% for the first pattern, 63.03% for the second pattern and
65.57% for the last pattern.

Multiple load cases

The proposed formulation can be used for multiple load cases. 
As shown in Eq. (14), each load case represents one constraint. The 
computational cost associated to each constraint is very low and it is 
possible to use as many load cases as needed. To exemplify the
solution of multiple load cases problems, it is considered the two
load cases short beam (Bendsøe et al., 1995), discretized with 6400 
finite elements. The continuation method is used, with final
exponent equal to 1/8. Figure 8 shows the results obtained using the 
IWSF filter and Fig. 9 shows the results obtained using the AWSF 
for the same value (8.8*10-2m) of the radius. Table 4 shows the
volume fractions obtained for this example.

Table 4. Volume fractions obtained for the two-load cases example.

Filter / Initial density distribution Volume fraction for n=8 (%)

IWSF / Homogeneous 52.26
IWSF / Random 52.27
AWSF / Homogeneous 52.27
AWSF / Random 52.27

Figure 7. Influence of the mesh pattern. The first column shows the mesh 
patterns, the second column shows the results obtained without filtering 
and the third column shows the results obtained with filtering. The
proposed filter technique alleviates the mesh influence.

Figure 8. Short clamped beam with two load cases. The first column
shows the initial density distributions and the second column shows the 
results obtained with the IWSF filter.
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Figure 9. Short clamped beam with two load cases. The first column
shows the initial density distributions and the second column shows the 
results obtained with the AWSF filter.

Three-dimensional Results

The proposed formulation can be applied to three-dimensional
problems, with no modifications. To illustrate three-dimensional
results, it is used as design domain a unitary cube, clamped in one 
face. In the first example, a point load is applied in the bottom of the 
opposite face. The result is shown in Fig. 10. Due to the symmetry 
of the problem, only half domain is discretized with 4000 elements. 
The AWSF filter is used with a radius equivalent to take into
account each edge neighbor of each element. The limit compliance 
is set to 2.06*10-5Nm.

Figure 10. Three dimensional short clamped beam. Just half of the result 
is shown due to the symmetry of the problem.

Figure 11 illustrates the result obtained for the same geometry, 
but with the load applied in the center of the opposite face. The
same mesh is used and the limit compliance is 5.5*10-6Nm (140% 
of the compliance for 100% volume fraction). Both results where
obtained with the continuation method, with a penalization exponent
of 1/8. The results where exported to the ANSYS format, using a 
threshold value of 0.9 (no element with density less than 0.9 is
considered). The compliance evaluated by ANSYS differs less than 
1% for all examples.

Figure 11. Three dimensional short clamped beam. Just half result is
shown due to the symmetry of the problem.

The results obtained are very close to the results obtained in
references where a perimeter constraint is used (Fernandes, Guedes 
and Rodriges, 1999). It is very interesting verifying that simpler
topologies, obtained with filtering, have smaller perimeter than the 
complex ones, as predicted by the perimeter control theory.
Although different, these approaches lead to similar results in terms 
of complexity.

Conclusions

A new spatial filter was proposed, together with a penalized
version of the traditional formulation for volume minimization. The 
spatial filter (in two different formulations) can prevent the
checkerboard instability and also controls the complexity (number 
of holes) of the topology. It is shown that using this filter, mesh
influence can be alleviated. This is important, due to the minimum 
requirements of mesh quality to ensure a good finite element
approximation for the response of the structure. Low order elements 
have a poor behavior in bending, so it is advisable to use improved 
formulations, like some nonconforming and subintegrated finite
elements in structural optimization, especially when designing low 
fraction or very flexible structures. The objective function used in 
this work allows reducing gray areas, increasing the cost of the
intermediate densities, which are expensive to build. A continuation 
method was used to further penalize the intermediate densities,
when it is convenient. Some results with multiple load cases and 
some 3D results were shown indicating that this formulation is very 
general and can be used with any kind of mesh or finite element. 
Like other formulations based on mathematical programming
methods, other types of constraints, like displacement constraints, 
can be added with little effort. As shown in some examples the use 
of non-regular meshes can induce very strong influence of the finite 
element solution on the final topology. In these cases, the use of
mesh independent filters can alleviate this influence and also control 
the complexity of the topology.

It is important to notice that the introduction of the filter restricts 
the possible solutions, because the set of admissible solutions is
modified by the filter. Therefore, it is pointless to compare the
results obtained with different filtering techniques, because they
may not belong to the same set of admissible solutions. Features to 
be compared are the mesh independence, checkerboard control and 
complexity control. 
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