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Underactuated Manipulator Robot 
Control via H2, H∞, H2/H∞, and  
µ-Synthesis Approaches: a 
Comparative Study 
This paper deals with robust control of underactuated manipulator robots. It presents a 
comparative study of four combined controllers H2, H∞ , H2/H∞ and µ-synthesis, plus 
computed torque method. These controllers are applied in an actual underactuated 
manipulator robot with 3 degrees of freedom, of which joints can be configured as active 
or passive ones. The study performed in this paper compares the robustness of each 
controller when different disturbances are considered. 
Keywords: manipulator robot; computed torque method; robust control; µ synthesis; H2, 
H∞ , H2 /H∞  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1Mechanical manipulators have been used for the automation of 

repetitive tasks in industrial environments. These environments 
normally have easy physical access and low risk for the human 
health. However, in the last years, the use of manipulators in 
inhospitable environments of difficult access (such as in the interior 
of nuclear plants, the deep of the oceans and in the space) have 
increased. In this case, the occurrence of electrical or mechanical 
failures makes the maintenance of the manipulators more difficult 
and expensive. After the occurrence of a failure in the actuators, the 
manipulator can be considered an underactuated system. 

This paper focuses on robust control of an underactuated 
manipulator robot of three joints and rigid links (see Bergeman 
(1996), Bergeman and Xu (1994), and references therein). Despite 
several controllers that appear in the literature, there is a lack of 
robust controllers applied to this kind of manipulator. The control of 
an underactuated robot is not trivial, due to uncertainties and 
disturbances present in manipulator robots, and, particularly, due to 
the difficulty in controlling free joints indirectly through active 
joints by dynamic coupling. The main objective of this work is to 
compare the robustness of four types of combined controllers when 
the underactuated system is subject to torque disturbances 
(combined controller means computed torque plus robust 
controller). Even for the control of totally actuated robot, Sage et al. 
(1999) states that the robustness of these combined controllers has 
not been tested in practice. 

One of the most common techniques used in the control of 
manipulators is the partitioned controller or computed torque 
method Craig (1986), whose control law is divided in two parts. One 
of the parts is based on the nominal dynamic model of the plant and 
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it is called model based, and basically transforms the multivariable 
nonlinear plant into a set of detached linear systems. The other part, 
called error driven, is responsible for the adjustment based on the 
error between the desired and real movements, i.e., the position and 
velocity errors. If there is perfect knowledge of all the robot’s 
parameters and if the robot is not subject to external disturbances, 
the computed torque method is capable to provide excellent control 
quality. But model imperfections and external disturbances degrade 
the performance of this control system. To overcome this 
deficiency, this controller can be allied to a robust controller. The 
resulting control scheme consists of an inner loop feedback 
linearization controller, and an outer loop robust controller (see 
Control Methodologies and Design Procedure). Basic references for 
computed torque method can be seen in Craig (1986), and 
references therein, and more details of the robust controllers adopted 
in this work can be seen in Balas et al. (1994), Chiang and Safonov 
(1992), Craig (1986), Doyle et al. (1989), Doyle et al. (1992), 
Safonov et al. (1989), and also Zhou et al. (1994), Zhou et al. 
(1994a), Zhou et al. (1995), Zhou and Doyle (1998). 

Robust control laws aim to keep the error and the output signals 
of the system under pre-specified tolerance levels, despite the effect 
of uncertainties. These uncertainties can be external (disturbances 
and noises) or internal (plant model imperfections) to the system. 
The robust control techniques adopted in this comparative study are 
based on H2, H∞, H2/H∞ and µ-synthesis approaches. The H2 control 
technique is based on the minimization of the quadratic norm of the 
transfer function between the input disturbance signal and the 
plant’s output signal. It is known that H2 control does not present 
guaranteed robustness a priori, when unstructured uncertainties are 
present. This controller is considered here to be used as reference in 
the comparative analysis. The H∞ control has the basic objective to 
minimize the effect of disturbances in the plant output, but, on the 
other hand, it presents limitations in the quality of the system’s 
performance. The H2/H∞ mixed control joins the ability of the H∞ 
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control to minimize the effect of input disturbances on the plant 
output with the performance of H2 technique. In the µ-synthesis 
design, a perturbation matrix ∆ is chosen and through an 
optimization sequence a stabilizing controller for the worst 
perturbation is obtained. 

The main question addressed in this paper, with the comparison 
of four combined controllers for underactuated manipulators, is 
related with the structure of these controllers; despite the same γ 
parameter to be adjusted in the design of H∞, H2/H∞ and µ 
controllers, the structures of these three controllers are different in 
nature (except when γ goes to the infinity; in this case, these robust 
controllers tend to the H2 control, the robustness of H∞, H2/H∞ , and 
µ controllers increases when γ decreases). Let us suppose that after 
the robust controllers are designed, the respective γ’s obtained are 
almost the same. Considering the performance of each controller, 
what are the differences among them before and after the 
disturbances are applied? 

Underactuated Manipulator Robot 

The system considered in this paper consists basically on a serial 
planar underactuated robot manipulator with 3 rigid links and fixed 
base. The joints and links are numbered from 1 to 3, with joint 1 and 
link 1 being the closest to the base. This underactuated arm showed 
in Fig.1, named UArm II, was designed and built by H. Ben Brown, 
Jr. of Pittsburgh, PA, USA. This 3-link manipulator has special-
purpose joints containing each an actuator and a brake, so that they 
can act as active or passive joints. The manipulator configuration 
can be changed enabling or not the DC motor of each joint. For a 
general underactuated robot manipulator, it is used q to represent the 
robot’s n×1 joint vector, and τ to represent its n×1 torque vector. For 
further details see Bergeman (1996). 

 
 

 
Figure 1. Underactuated manipulator, UArm II. 

 
 
The dynamic equations of a manipulator are found in closed-

form via the classical Lagrangian approach, as in Craig (1986), 
Lewis et al. (1993), and Bergeman and Xu (1994): 

 
( ) ( )qqbqqM &&& ,+=τ  (1)  

 

where M(q) ∈ ℜn×n is the symmetric positive definite inertia 
matrix and b(q, q& ) ∈ ℜn×1 is the vector of Coriolis, centrifugal, 
gravitational, and frictional torques. 

The dynamic equation of an underactuated manipulator can be 
obtained partitioning Eq. (1) into components, corresponding to the 
active and passive joints, as: 
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where b(q, q& ) = C(q, q& )+F(q& )+G(q) and the subscripts a and u denote 
quantities related to the active and unlocked passive joints, respectively. 
It is considered that nu joints of the manipulator are unactuated, and the 
remaining na joints operate normally. When na > nu, one can define the 
following control strategy: in a first control phase, the nu passive joints 
are driven to the set-points via their dynamic coupling with a subset of 
the active joints (nu active joints are used to control and na−nu active 
joints are kept locked), and are locked. In a second control phase, all the 
active joints are controlled. 

For the first phase, factoring out aq&&  in the second line of Eq. (2) 
and substituting it in the first one: 

 
bqM ua += &&τ  (3)  

 
where uuuaaaau MMMMM 1−−= and uuaaaa bMMbb 1−−= . 

Control Methodologies 

This section contains the essential concepts of the computed 
torque, H2, H∞, H2/H∞ and µ-synthesis control theories. See 
Bernstein et al. (1989), Chiang and Safonov (1992), Craig (1986), 
Doyle et al. (1989), Safonov et al. (1989), and also Zhou et al. 
(1994), Zhou et al. (1994a), Zhou et al. (1995), Zhou and Doyle 
(1998) for further details. 

Computed Torque Controller 

The problem of controlling a nonlinear system like Eq. (1) can 
be handled by the computed torque method Craig (1986). The 
control law associated with this technique is given by: 

 
( ) ( )qqbqM estaesta &,´ += ττ  (4)  

 
where ( )qM est

 is an estimated model of the underactuated robot’s 
inertial parameter, ( )qM . Likewise, ( )qqbest &,  is an estimated 
model of the vector of non-inertial elements ( )qqb &, . 

The vector ´
aτ  is computed as follows: 
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where { }d

u
d
u

d
u qqq &&& ,,  represent the desired trajectory, desired 

velocity and desired acceleration of the controlled joints, and Kp 
and Kυ are n×n diagonal matrices with positive scalar elements. 
The closed-loop equation for the whole system is derived from 
Eqs. (4) and (5): 

 
( ) ( ) ( )( ) ( ) ( )][ qqbqqbqqMqMqMeKeKe estestestp &&&&&&& ,,1 −+−=++ −

υ
 (6) 

 
where 

u
d
u qqe −= . 

In a real case, there exist disturbances that are not modelled 
properly, such as joint friction, torque variation on the actuators, and 
perturbations due to possible loads carried by the manipulator. 
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Defining these disturbances as ( )qqdext &,  and adding them to Eq. (6), 
one has: 
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If all the robot’s parameters are known with absolute precision 

( ) ( )qMqM est=  and ( ) ( )qqdqqb extest && ,, = , and in the absence of 
disturbances ( )( )0, =qqdext & , the right size of Eq. (7) is zero, and the 
computed torque method is able to provide excellent quality of 
control. The dynamic equation for this ideal system, driven by a 
control signal u(t) is: 
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H2, H∞ and H2/H∞ Controllers 

The control systems presented in this section are described by 
the block diagram displayed in Fig. 2. This diagram contains two 
main blocks, the plant P(s) and the controller K(s) (the operator s 
will be omitted in the equations). The plant has two sets of input 
signals, the internal input u and the external input w, and two sets 
of output signals, the measured signal y and the regulated output z. 
The transfer function matrix P(s) and its realization are given by 
Zhou et al. (1995): 
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and 

 
uPwPz 1211 +=      uPwPy 2221 +=     Kyu =  (10)  

 
 

 
 

Figure 2. Block diagram for the H2, H∞ and H2/H∞  control systems. 

 
 
Combining the equations in Eq. (10), one obtains the closed 

loop transfer function Tzw(s) between the external inputs w and 
regulated outputs z, which is given in terms of linear fractional 
transformation (LFT): 

 
( ) =sTwz
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1) H2 Control: The H2 control approach aims to find a real, 

rational and proper controller K(s), which internally stabilizes P(s) 
and minimizes the H2 norm of the transfer matrix Tzw(s). The 
solution of the H2 control problem involves the resolution of two 
Algebraic Riccati Equations (ARE’s) associated to the 
Hamiltonian matrices given by H2 and J2: 
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Defining: 
 

( ) ( ) 22222211222112222 :ˆ:: CLFBAA    DBCYL    CDXBF TTTT ++=+−=+−=  
 

where X2 = Ric(H2) and Y2 = Ric(J2), there exists an optimal and 
unique H2 controller given by Zhou et al. (1995): 
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2) H∞ Control: The H∞ control approach aims to find a real, 

rational and proper controller K(s), which internally stabilizes P(s) 
and minimizes the H∞ norm of the transfer matrix Tzw(s), which is 
defined as: 
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where { }  .supσ  denotes the supremum of the maximum singular 
value. The H∞ solution involves the resolution of two ARE’s 
associated to the Hamiltonian matrices given by H∞ and J∞, and 
can be seen in details in Zhou et al. (1995): 
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and the Riccati equation solutions related to the Hamiltonians are 
denoted by 

 
( )∞∞ = HRicX : ,    ( )∞∞ = JRicY : . 

 
The feedback and output injection gains are given by 
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and can be partitioned with D as follows: 
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All the rational internally stabilizing controllers K(s) such that 

γω ≤∞)s(Tz  are given by ( )Q,MFK l ∞=  for arbitrary Q∈RH∞ 

such that ||Q|| < γ, where 
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12D̂ and 21D̂ are any matrices (Cholesky factors) satisfying: 
 

( )
( ) TTT

TTT

DDDIDIDD

DDDIDIDD

1112
1

11111111
2

11212121

1121
1

11111111
2

11211212

ˆˆ

ˆˆ
−

−

−−=

−−=

γ

γ  

 
and 

 
( )

( )

( ) 12

2
1

211

2
1

211121

11
1

12221

122212

121222

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆ

ˆˆ

−

∞∞
−

∞

−
∞

−
∞

−
∞∞

∞

∞∞

−=

++=

+=

+−=

+−=

+=

XYIZ

CDBBFAA

CDDFC

DDBLZB

FCDC

DLBZB

γ

 

 
where [ ] [ ]( )1112111111121111 , DDDDmax TT σσγ >  and ρ(X∞Y∞) < γ2. 

 
3) Mixed H2 /H∞ Control: The mixed H2 /H∞ control aims to 

provide to the closed loop system H2 performance with H∞ 
constraint for attenuation of input disturbances, which can be 
formulated as follows: given the system P of Eq. (9) stabilizable 
and detectable, find a controller of same dimension of P 
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that satisfies the following design criteria: 
(i) the closed loop system is asymptotically stable; 
(ii) the transfer function Tzw satisfies the constraint 
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The (Ak,Bk,Ck) controller presented in Bernstein and Haddad 

(1989) that satisfies these design criteria is given by: 
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where X2/∞, Y2/∞, Z2/∞ are semi-definite positive matrices. It is 
adopted here R1∞ = R1, the root square of this matrix defines the 
output matrix of the transfer function to be minimized in the H∞ 
criterion. Further details can be seen in Bernstein and Haddad 
(1989), Zhou et al. (1994), and Zhou et al. (1994a). 

µ-Synthesis 

µ-Synthesis aims to solve the following optimization problem: 
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where K(s) and D(s) are found iteratively. This procedure is called 
D-K iteration that can be summarized in the following steps: 

1) Fix an initial estimate of the scaling matrix D∈ωD  
pointwise across frequency; 

2) Find scalar transfer functions di(s), di
-1(s)∈RH∞ for  

i = 1, 2, ..., (F −1) such that ⏐di(jω)⏐≈ di
ω. 

This step can be done using the interpolation theory Youla 
and Saito (1967); 

3) Let D(s) = diag(d1(s)I, ..., dF−1(s)I, I). Construct a state 
space model for the system: 
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4) Solve an H∞  – optimization problem to minimize: 
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over all stabilizing K’s. Note that this optimization 
problem uses the scaled version of P(s). Let its minimizing 
controller be denoted by ( )sK̂ ; 

5) Minimize ( )[ ]1ˆ, −
ωωσ DKPFD l

 over Dω, pointwise across 
frequency. Note that this evaluation uses the minimizing 

( )sK̂  from the last step, but that P(s) is unscaled. The 
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minimization itself produces a new scaling function. Let 
this new function be denoted by 

ωD̂ ; 

6) Compare 
ωD̂  with the previous estimate Dω. Stop if they are 

close, otherwise replace Dω with 
ωD̂ and return to step (2). 

 
Details of how this controller can be designed are presented in  

Balas et al. (1994), and Zhou et al. (1995). 

Combined Controller 

It is well known that modelling imperfections and external 
disturbances degrade the computed torque control performance 
Kang et al. (1999). To overcome this problem, the computed 
torque technique can be improved  

The combined controller, Fig. 3, basically has the same 
structure of a robust controller for a linear system. The weighting 
function We(s) is used to shape the system performance on the 
frequency domain, and W∆(s) shapes the multiplicative 
unstructured uncertainties in the input of the plant, representing 
possible errors in the manipulator’s actuators, unmodelled high 
frequency dynamics, or uncertain zeros on the right half plane, 
Zhou and Doyle (1998).  

 
 

 
Figure 3. Block diagram of the complete control structure scheme. 

 
 
The portion of Fig. 3 delimited by the dotted line (computed 

torque, parametric uncertainties representation, weighted 
performance) is the augmented plant P(s), used to calculate the 
linear H2 , H∞ , H2/H∞ and µ controllers. The controller designs 
consist of two steps. In the first step the computed torque method 
is used to pre-compensate the dynamics of the nominal plant. In 
the second step the controllers H2 , H∞ , H2/H∞ and µ are used to 
post-compensate the residual error which is not completely 
removed by the computed torque method. Thus, the combined 
controller is able to perform robust tracking control (we include 
the H2 control in this category to facilitate our presentation, 
though it is known the robustness limitations of this controller).  

Design Procedure 

The MATLAB Robust toolbox was utilized to design the H2 , 
H∞ , and µ controllers. The H2/H∞ is computed following the 
algorithm given in Section Control Methodologies. To synthesize 
the controllers, the first step is to find the state space realization of 

the augmented plant P(s). Thus, the Kp, Kv, We(s) and W∆(s) values 
must be defined. Given Kp and Kv of the computed torque method, 
it is obtained the linearized system given by Eq. (8). The 
following state equations define this system: 
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The vector mx ℜ∈  represents the states of the plant, and it is 

defined as: 
 

d

d

e q q
x

e q q
⎡ ⎤−⎡ ⎤

= = ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦& & &
 (22) 

 
and the matrices mm

gA ×ℜ∈ , nm
gB ×ℜ∈ , mn

gC ×ℜ∈  and nn
gD ×ℜ∈  

as: 
 

[ ]
0 0

             0g g
p v

I
A B C I

K K I
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

 (23) 

 
and Dg = 0. For a manipulator with three joints totally actuated, 
n = 3 and m = 6, with only two actuated joints, n = 2 and m = 4, 
and with one actuated joint, n = 1 and m = 2. The Kp and Kv 
gains are n×n diagonal matrices adjusted iteratively following an 
heuristic criterion. 

The performance objectives We(s) and W∆(s) are related to the 
frequency response of the sensitivity function ( ) ( ) ( )( ) 1−+= sKsPIsS . 
Defining the natural frequency 

nω , the damping ratio ε , the 
bandwidth 

bω and the peak sensitivity Ms, the following performance 
weighting function can be determined: 

 

( ) ( ) ( ){ } ( ),1 , ,,...,
b

s
e e e n e i

b

s
MW s diag F s F s F s
s

ω

ω ε

+
= =

+  
 

where i = 1, ..., n. Choosing the maximum gain Mu of K(s)S(s) 
(controller and sensibility function), the controller bandwidth 

bcω  

and a small ε1 > 0, the following control weighting function W∆(s) 
can be selected: 

 

( ) ( ) ( ){ } ( ),1 , ,
1

,...,

bc

u
n i

bc

s
MW s diag F s F s F s

s

ω

ε ω∆ ∆ ∆ ∆

+
= =

+  
.
 

 
The weighting functions We(s) and W∆(s) are selected such that 

 

( ) ( )1
eW j S jω ω

−
≥  (24) 

 

( ) ( ) ( )1
 ;      .W j K j S jω ω ω ω

−

∆ ≥ ∀  (25) 
 

The state space matrices of the augmented system are given by: 
 

1

0 0 0 0 0
0 0 0

         
0 0 0 0 0

0 0 0
e e e

p v

W W W

I
K K I

A B
Aw

B A B
∆

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  
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0
0 0 0

         
0 0 0

0
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W

W W W

CI
B C

B D C
∆

∆

⎡ ⎤
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D
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D
∆

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
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[ ] [ ]21 220     and     0D I D= =  
 

where (AW∆ , BW∆ , CW∆ , DW∆) is the state space realization for the 
weighting function W∆(s), and (AWe , BWe , CWe , DWe) for We(s). 

Finally, the state space realization of the augmented plant, 
P(s), used for the design of the H2 , H∞ , and µ controllers, is: 

 
0 0 0 0 0 0

0 0 0
0 0 0 0 0

0 0 0 0 .
0 0 0 0 0

0 0 0 0

0 0 0 0 0
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e e e
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W W
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W W
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A B

B A BP
C D
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I I
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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Experimental Results 

All combined robust control techniques presented in Section 
Control Methodologies were implemented in the experimental 
underactuated manipulator UArm II, see Fig.1. To check the 
robustness of these combined controllers, torque disturbance tests 
were implemented considering the APA configuration, i.e., the 
first and third joints are actives and the second is passive. For this 
configuration, two control phases are necessary to control all 
joints to the set-point. In the first phase, the passive joint qu = q2 is 
controlled by the active joint 1, i.e., qa = q1 in 3. The joint 3 is 
kept locked in this phase. In the second phase, the active joints are 
controlled and qa = [q1 q3]T . The passive joint 2 is kept locked, 
since it has already reached the set-point. 

The tests are performed adding external torque disturbances in 
the first joint, during the first control phase, at different times 

 
( ) ( )( )1

1 1

30.5 sin 4t d
d de t tτ π− −= −

 (26) 
 

where td1 = 0.25s, and 
 

( )

( )( )
2

2
2

2 2

20.3 sin 0.8
t d

d de t tµτ π
− −

= −
 (27) 

 
where µ = 0.3 and td2 = 1.0 s. In order to establish common criteria 
to compare these combined controllers (the robust controllers were 
deduced taking into account different control problems; H2 , H∞, 
mixed H2/H∞, and µ-synthesis, plus a PD controller), two 
measurements are used: total applied torque and total position 
error, see Logan (1994), and Yao and Tomizuka (1994). These 
measurements are defined as follows: 

 

( )
1
2

2
2 20 0

1,           .f fT T

f

E t dt e dt
Tτ τ

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫L

 (28) 

Table 1. Robot parameters. 

Link mi 
(kg) 

Ii 
(kgm2) 

li 
(m) 

lci 
(m) 

1 0.850 0.0075 0.203 0.096 
2 0.850 0.0075 0.203 0.096 
3 0.625 0.0060 0.203 0.077 

 

Table 2. Kp and Kv values for all controllers. 

Configuration Kp Kv 

APA, phase 1 [ ]20  [ ]20  

APA, phase 2 
10 0
0 20

⎡ ⎤
⎢ ⎥
⎣ ⎦

 5 0
0 20

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

Table 3. Ms, ωb and ε values for all controllers. 

Configuration Ms 
ωb  

(rad/s) 
ε 

(%) 
APA, phase 1 1.1 1 0.01 
APA, phase 2 1.5 1 0.01 

 

Table 4. Mu, ωbc and ε1 values for all controllers. 

Configuration Mu 
ωbc  

(rad/s) ε1 

APA, phase 1 20 106 1 
APA, phase 2 50 106 1 

 
 
 
The parameters utilized to determine M(q) and ( )qqb &,  of Eq. (1) 

are displayed in Table 1. For all combined controllers are used the 
same Kp and Kυ (see Table 2). They were chosen heuristically in 
the middle of the interval, where these gains are adjusted to 
guarantee the stability of the real system. The weighting functions 
We(s) and W∆(s) were defined using the parameters of Tables 3 and 
4, respectively. The parameters to the H2/H∞ controller design 
were defined as 

 

[ ]1 2

1 0 0 1
         0 0.01

0 0 0 0
TE E

−⎡ ⎤
= =⎢ ⎥

⎣ ⎦  
 
for the first control phase, and 

 

[ ]

1

2

1 0 0 0 1000 1 0
0 1 0 0 0 1000 0 1
0 0 0 0 0 0 0 0

0 0 10 T

E

E

− − −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

=  
 

for the second control phase and β = 0.1 for both control phases. It 
is defined also, to the H2/H∞  controller design, C2 = E1, this 
choice was motivated by the necessity of the controller to satisfy 
the performance criteria defined in Eq.(24) and Eq.(25); and also 
to satisfy numerical convergence requirements. The γ values 
obtained from the robust controllers are shown in Table 5. 

 

Table 5. H∞ , H2 /H∞ and µ controllers. 

Configuration H∞ H2 /H∞  
µ 

iteration 1 
µ 

iteration 2 
APA, phase 1 1.43 1.05 1.43 0.99 
APA, phase 2 0.94 0.999 0.94 0.92 
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For all experiments, the initial position and the desired final 
position were q(0) = [0º 0º 0º]T and q(T1,T2) = [30º 20º 10º]T, 
respectively, where T1 = [0.5]s and T2 = [2.0 4.0]s are respectively the 
desired trajectory times for the control phases 1 (when only the joint 
2 is controlled) and 2 (when the joints 1 and 3 are controlled). Note

that for the first control phase there is no trajectory reference for the 
joints 1 and 3 (the joint 3 is locked in this phase). The joint positions 
and torques for all controllers are shown in Figs. 4 to 7. 

 
 
 
 

 
Figure 4. Joint positions and torques, H2 controller. 

 
 

 
Figure 5. Joint positions and torques, H∞ controller. 

 



Adriano A. G. Siqueira et al. 

286 / Vol. XXXI, No. 4, October-December 2009   ABCM 

 
Figure 6. Joint positions and torques, H2/H∞ controller. 

 
 

 
Figure 7. Joint positions and torques, µ controller. 

 
 
 
In order to compare these controllers it is adopted two analysis 

references: H2 controller and γ parameter. 

H2 as Reference 

It is considered first the H2 controller as reference. This choice is 
motivated by the fact that when γ goes to the infinity, the robust 

controllers tend to H2 control. The robustness of H∞ , H2/H∞, and µ 
controllers increases when γ decreases. Table 6, with the results without 
external disturbances, shows that the smallest total torque Eτ(.), see Eq. 
(28), is given by the H∞ controller; the smallest position error L2(.) is 
given by the H2/H∞ controller (this index effectively determines the 
robustness of these controllers). Only the model uncertainties define the 
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differences between the robust controllers and the H2 controller. One can 
observe that there exists some equivalence among the position error 
indexes L2(.) of the robust controllers and that the performance indexes 
of the H2 controller are bigger than the values of the robust controllers. 

In presence of external disturbances, the µ controller presents the 
best robustness, as it was expected, see Tables 7 and 8, the smallest L2(.) 
is given by the µ synthesis. Also from Tables 7 and 8, the smallest Eτ (.) 
is given by the H∞ controller. For these cases, the performance indexes 
of the H2 controller are two times bigger than the values of the robust 
controllers. 

 
 

Table 6. Performance Indexes – without disturbance. 

Configuration Eτ 
(Nms) 

L2 
([°]2) 

H2 1.78 4.9 
H∞ 1.09 3.6 

H2 /H∞  1.41 3.1 
µ-synthesis 1.31 3.8 

 
 

Table 7. Performance Indexes – disturbance τd1, Eq. (26). 

Configuration Eτ 
(Nms) 

L2 
([°]2) 

H2 2.54 12.6 
H∞ 1.13 6.8 

H2 /H∞  1.70 6.1 
µ-synthesis 1.20 4.6 

 
 

Table 8. Performance Indexes – disturbance τd2, Eq. (27). 

Configuration Eτ 
(Nms) 

L2 
([°]2) 

H2 2.76 14.9 
H∞ 1.34 7.7 

H2 /H∞  1.80 7.2 
µ-synthesis 1.36 6.7 

 
 

γ Parameter as Reference 

The second comparison performed takes into account the γ 
parameter as reference. This parameter indicates the disturbance 
rejection level of the robust controllers. It is compared firstly the γ 
effect for the controllers H2/H∞ and µ with the data of Table 5. 
They are close for both control phases: 1.05 and 0.99, for the first 
control phase; 0.999 and 0.92, for the second control phase, 
respectively. However, one can observe from Tables 6, 7, and 8, 
that position errors L2(.) for these controllers are not equivalent. 
Hence, the values of γ do not indicate properly the differences 
between the robustness of both controllers. 

Even in comparison with H∞ controller, the γ parameter does 
not display exactly how much the µ controller is more robust 
(despite the apparent proximity of both structures, µ is derived 
from the H∞ controller via D scaling). The H∞ controller is 
minimized for both control phases with γopt = 1.43 and γopt = 0.94, 
respectively. One can observe, mainly for the first disturbance, the 
differences between the disturbance rejections, for the µ controller 

and for the H∞ controller. γ indicates how much each controller is 
robust, but it does not indicate how much one controller is more 
robust than other one. 

Conclusions 

In this paper, three robust controllers based on computed torque 
and H∞,, H2/H∞, and µ-synthesis techniques were implemented in an 
actual underactuated robot manipulator. These controllers are 
compared with the non-robust H2 controller. The results presented in 
section “Experimental Results” along with the computed 
performance indexes show the differences of robustness among 
these combined controllers. From the results, the best performance, 
as it was expected, was presented by the µ-synthesis approach. 
However, a disadvantage of the µ-synthesis controller is the extra 
computational effort necessary to design it. 
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