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Retrograde Orbits Perturbed by a 
Third-Body 
This paper develops a semi-analytical study of the perturbation caused to a spacecraft 
by a third body involved in the dynamics. There are several important applications for 
this research, such as to calculate the effect of lunar and solar perturbations on high-
altitude Earth satellites. In the present research the goal is to study the evolution of 
retrograde orbits around the Earth. There is a special interest to see under which 
conditions a near-circular orbit remains near-circular. The existence of circular, 
equatorial and frozen orbits are also considered, The results are valid for any system of 
primaries by making a time transformation that depends on the masses of the bodies 
involved. Several plots will show the time-histories of the Keplerian elements of the 
orbits involved.  
Keywords: Astrodynamics, third-body pertutbation, retrograde orbits, space 
trajectories 
 
 
 

Introduction 

The majority of papers that considered the third-body 
perturbation problem studied the perturbation due to the Sun and the 
Moon in a satellite in orbit around the Earth. Kozai (1959) 
developed the main secular and long-period terms of the disturbing 
function due to the lunisolar perturbations in terms of the orbital 
elements of the satellite, the Sun and the Moon. This research would 
be later expanded by Musen, Bailie and Upton (1961) to include the 
parallactic term in the disturbing function. After that, Kozai (1962) 
studied the problem of secular perturbations in asteroids with high 
inclination and eccentricity, considering that they are perturbed by 
Jupiter, which is assumed to be in a circular orbit around the Sun. 
Blitzer (1959) obtained estimates of the lunisolar disturbances using 
methods of classical mechanics, however only for the secular terms. 
In the sequence, Cook (1962) used the Lagrange’s planetary 
equations to obtain expressions for the variation of elements during 
a revolution of the satellite and for the rate of variation of the same 
elements. In that same year, Kaula (1962) derived general terms of 
the disturbing function for the lunisolar perturbation, using 
equatorial elements for the Moon, but it didn't supply a definitive 
algorithm for the calculations. Again Kozai (1965) approached that 
problem and included indirect terms of the disturbance due to the 
alteration of the terrestrial flattening due to those forces. 1 

In the 1970’s, that subject was studied again. Giacaglia (1973) 
obtained the disturbing function for the disturbance of the Moon 
using ecliptic elements for the Moon and equatorial elements for the 
satellite. Secular, long and short period terms were calculated and 
expressed in a closed form. Kozai (1973) developed an alternative 
method for the calculation of the lunisolar disturbances. The 
disturbing function was expressed in terms of the orbital elements of 
the satellite and the polar geocentric coordinates of the Sun and the 
Moon. The secular and long period terms are derived by numerical 
integration and the short period terms are obtained analytically.   

In the following decade, Hough (1981) studied the effects of the 
lunisolar disturbance in orbits close to the inclinations 63.4° and 
116.6° (critical inclinations with respect to the geopotential of the 
Earth) and concluded that the effects are significant in high 
altitudes.   

All of the preceding references represent fundamental 
contributions in the subject and they possess an analytic focus, 
dedicated to the derivation of equations. In the present work a more 
practical approach is used with the idea of complementing the 
existent literature. Some recent studies have provided numeric 
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comparisons. In particular, Prado (2002) studied the perturbation in 
a lunar satellite for direct orbits and the lifetimes of orbits around 
the natural satellites of the Solar System. 

In this paper several topics related to this problem will be 
studied for retrograde orbits around the Earth, that is an important 
special case. In particular, the so called "critical angle of the third-
body perturbation," which is a value for the inclination such that any 
near-circular orbit with inclination above this remains near-circular, 
is discussed in detail. The assumptions of our model are similar to 
the ones made in the restricted three-body problem: a) There are 
only three bodies involved in the system: one body with mass m

0
 

fixed at the origin of the reference system; a massless spacecraft in a 
elliptic three-dimensional orbit around this body and a third body in 
a circular orbit around this same central body in the plane x-y; b) 
The motion of the spacecraft is assumed to be a three-dimensional 
Keplerian orbit with its orbital elements disturbed by the third body. 
The motion of the spacecraft is studied under the double-averaged 
analytical model with the disturbing function expanded in Legendre 
polynomials up to fourth-order. The double-average is taken over 
the mean motion of the satellite and over the mean motion of the 
disturbing body. The fact that modern computers can easily 
integrate numerical trajectories using complex models for the 
dynamics does not invalidate the use of models based in analytical 
approximations. The most important reason for this is that a double-
averaged model, like the one shown here, can eliminate short-period 
periodic perturbations that appear in the trajectories. In that way, 
smooth curves that show the evolution of the mean orbital elements 
for a long time period can be constructed, which give a better 
understanding of the physical phenomenon studied and allow the 
study of long-term stability of the orbits in the presence of 
disturbances that cause slow changes in the orbital elements. Note 
that the truncated equations of motion could be numerically 
integrated much faster than the full equations of the restricted three-
body problem. The next sections present: the mathematical model 
used, the study of circular, near-circular, equatorial and frozen 
orbits. 

The Mathematical Model 

This section derives the equations required by the mathematical 
model used during the simulations made in this research. It is 
assumed that the main body with mass m0 is fixed in the center of 
the reference system x-y. The perturbing body with mass m' is in a 
circular orbit with semi-major axis a' and mean motion n' (given by 

the expression [ ]'mmG'a'n 0
32 += ). The massless spacecraft is in an 

elliptic three-dimensional orbit with orbital elements: a (semi-major 
axis), e (eccentricity), i (inclination), ω (argument of periapsis), Ω 
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(longitude of the ascending node) and the mean motion is n (given 

by the expression 0
32 Gman = ). In this situation, the disturbing 

potential that the spacecraft has from the action of the disturbing 
body is given by: 
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=µ , G is the gravitational constant and S is the 

angle between the line that connects the massive central body and 
the perturbed body (the spacecraft) and the line that connects the 
massive central body and the perturbing body (the third body). 

Using the traditional expansion in Legendre polynomials 
(assuming that r' >> r) the following expression can be found: 
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where Pn are the Legendre Polynomials. 

For the models used in this research it is necessary to calculate 
the parts of the disturbing function due to P2, P3 and P4 (R2, R3 

and R4, respectively). They are: 
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A substitution using the expression [ ]'mmG'a'n 0
32 +=  was 

made between the first and the second member of those equations. 
The next step is to average those quantities over the short period of 
the satellite as well as with respect to the distant perturbing body. 
The standard definition for average used in this research is 

( )∫
π

π
=

2

0
dMF

2

1
F , where M is the mean anomaly, which is 

proportional to time.  
To perform the average over R2, R3 and R4 one proceeds as 

follows. First define the quantities 'r̂.P̂=α  and 'r̂.Q̂=β , where $ 'r  
is the unit vector pointing from the central body to the disturbing 

body and P̂  and Q̂  are the usual orthogonal unit vectors, functions 

of (i, ω, Ω), in the plane of the satellite orbit, with P̂  pointing 
towards the periapsis. For the special case considered here of 
circular orbits for the disturbing body the following relations are 
available: 

 

( ) ( ) ( ) ( ) ( )'Msinsinicos'Mcoscos −Ωω−−Ωω=α  (6) 
 

   ( ) ( ) ( ) ( ) ( )'Msincosicos'Mcossin −Ωω−−Ωω−=β  (7) 
 
Using this definition and the geometry involved, it is possible to 

relate the angle S to the positions of the perturbing and perturbed 
bodies. This can be made by the equation (where f is the true 
anomaly of the satellite): 

 
( ) ( ) ( )fsinfcosScos β+α=  (8) 

 
Then, combining this equation with equations (3) to (5), the 

perturbing potential becomes a function of the orbital elements of 
the satellite. Next, it is necessary to replace the true anomaly (f) by 
the eccentric anomaly (E). This is made by the well-known 

relations: ( ) ( ) ( )( )Ecose1Esine1fsin 2 −

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( )Ecose1ar −= . Then, the integrations required to obtain the 

averages are realized in terms of the eccentric anomaly, not in terms 
of the mean anomaly. To do that the relation ( )( )dEEcose1dM −=  
is also used. After this process, the following identities appear 
(Prado, 2002): 
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After using those quantities, the expressions (3) to (5) become: 
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Next, one takes the second average with respect to the 

disturbing body to eliminate the variable M'. To do this, it is 
necessary to held the Keplerian elements of the spacecraft constant 
during the process of averaging. This is possible due to the 
hierarchy of time scales: period of satellite << period of disturbing 
body << period of slow oscillations in the orbital elements. After 
making these assumptions the following identities, always valid for 
circular orbits only, are obtained:  
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Applying those identities in the expressions (6) to (8), the results 

are: 
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The partial derivatives required for the equations of motion are: 
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where: 
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The next step is to obtain the equations of motion of the 

spacecraft. They come from the Lagrange's planetary equations in 
the form that depends on the derivatives of the disturbing function R 
with respect to the Keplerian elements. 
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where ( )ω,i,e,af i  represents the contribution of the fourth-order 

term and they are given by: 
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There are some conclusions that come directly from the 

equations of motion: i) the term µ’ is a constant that multiplies all 
the equations of motion, so it is equivalent to a time transformation 
in the system of the type µ’t = t*. So, all the results based in those 
equations are valid for any system of primaries in a proportional 
time scale. The same is true for the semi-major axis (that is present 
in the equations in the term “n”) in the second-order model; ii) the 

ratio 
2

2

2

1

a

'a4096

K

K
=  gives an idea of the relative importance of the 

second and fourth-order terms. The importance of the fourth-order 
terms increase when the semi-major axis of the perturbed body 
increases. This importance also increases with the eccentricity of the 
perturbed body due to the terms that depend on the eccentricity; iii) 
The difference between the analytical solutions and the full 
numerical simulations also increases with those variables, what is 
confirmed by numerical integrations and by the fact that the 
expansions are made in terms of the eccentricity. 

Results 

In this section some results are shown related to the third body 
perturbation problem for retrograde orbits. This section is divided in 
several sub-sections to show clearly several aspects of the problem.  

The Circular Orbits and the Critical Inclination 

Directly from the equations of motion for the averaged models it 
is possible to identify the existence of circular solutions for both 
second and fourth-order models. It means that, in the ideal case of 
an orbit that starts with zero eccentricity, its eccentricity remains 
always zero. This occurs because the right-hand side of the equation 
for the time derivative of the eccentricity is zero (it is a polynomial 
in the eccentricity with no independent term). Another property of 
those orbits is that the inclination is also constant for the same 

reason, since the time derivative of the inclination is also a 
polynomial in the eccentricity with no independent term. 

The evolutions of these two quantities (eccentricity and 
inclination) are studied under the full restricted three-body problem. 
The results show that the circular solutions with constant inclination 
do not exist in this more realistic model. The eccentricity oscillates 
with large amplitude. The inclination remains close to constant most 
of the time, but from time to time it goes to the value of the critical 
inclination and then it returns to its initial value. This behavior is 
similar to the near-circular orbits shown in Figs. 1 to 3. This result is 
expected, because there is no physical reason to have a strong 
difference in the behavior of orbits with eccentricity 0.00 and 0.01. 
The general conclusion is that the circular solutions with constant 
inclination appear due to the truncation of the Legendre polynomial 
and are not a physical phenomenon, at least for the conditions 
simulated in this research. 

Another important question in this problem is the existence of a 
critical value for the inclination between the perturbed and the 
perturbing bodies. This critical inclination is related to the stability 
of near-circular retrograde orbits. The problem is to find under what 
conditions a spacecraft that starts in a near-circular retrograde orbit 
around the main body remains in a near-circular orbit after some 
time. The answer for this question depends on the initial inclination 
i0. There is a specific critical value such that if the inclination is 
lower than that the eccentricity increases and the near-circular orbit 
becomes very elliptic. Alternatively, if the inclination is higher than 
this critical value the orbit stays nearly circular. So, only retrograde 
orbits with inclination higher than that are useful for practical 
purposes. The problem of near-circular orbits is very important 
because usually a spacecraft that is nominally in circular orbit 
experiences perturbations from other sources that make its 
eccentricity become non-zero. In the double-averaged second-order 

model this critical value is i = 140.7685 degree (cos2(i) = 0.60). 
This critical value also represents the highest inclination that allows 
the existence of orbits with eccentricity, inclination and argument of 
periapsis constant under the second-order model. The behavior of 
the inclination and the eccentricity with time is studied for near-
circular retrograde orbits covering a large range of initial inclination 
(95° < i0 ≤ 175°). For those simulations the initial orbits used 

always have Keplerian elements a0 = 0.1 (38440 km), e0 = 0.01, ω0 

= Ω0 = 0. The initial inclination i0 vary as shown in the figures. 

Remember that the time is defined such that the period of the 
disturbing body is 2π. In that way 1000 units of time in those figures 
correspond to about 160 orbits of the disturbing body (in the case of 
the Earth-Moon system). The figures are divided in three parts only 
to make the observation of the time evolution easily: values of i0 

above the critical value (i0 ≥ 150°), in the region of the critical value 

(140° ≤ i0 ≤ 144°) and below the critical value (i0 ≤ 140°). The sizes 

of those regions are chosen to avoid unclear figures due to the 
different scales involved and are not subject to a detailed study. Fig. 
1 shows the behavior of the inclination. Fig. 2 shows the behavior of 
the eccentricity. In both figures, only the results for the fourth-order 
model are shown. The second-order expansion gives very similar 
results and the restricted three-body problem gives a series of 
scattered points the follows around the lines shown here, similar to 
what is shown in Prado (2002) for direct orbits.  
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Figure 1. Time-histories for the inclination. 
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Figure 2. Time-histories for the eccentricity. 

 
The figures shows that for values of the initial inclination i0 

above the critical angle (i0 ≥ 150°) the eccentricity oscillates with a 
very small amplitude (less than 0.025) that increases rapidly when i0 
decreases and the inclination remains constant. For values of i0 

around the critical value (140° ≤ i0 ≤ 144°) it is possible to see that 
the eccentricity oscillates with a larger amplitude (about 0.30) that 
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increases with i0. The inclination has a very characteristic behavior 
in this region of i0. For values of i0 slightly above the critical angle 
the inclination stays close to i0. For values of i0 slightly below the 
critical value the inclination starts at i0, increases until the critical 
value and then it returns to its original value i0. Those results show 
that the critical angle is not a sharp separation between stable and 
unstable near-circular retrograde orbits. For values of i0 well below 

the critical value (i0 < 130°) the eccentricity oscillates with 
increasing amplitudes that go close to 1.0. The inclination keeps its 
characteristic behavior of starting at i0, increasing to the critical 
value and then returning to its original value i0. The figure also 
shows that this behavior repeats itself in an endless cycle. The time 
required to reach the critical value increases when i0 increases. This 
region has a gradual transition where the eccentricity oscillates with 
an amplitude that increases fast with i0, reaching the value 1.0 only 

in the case i0 = 90°. Fig. 3 shows the results in the phase diagram 
that plots the eccentricity vs. the inclination. The region above the 
critical value shows straight lines. Note that the different scales of 
the plots show different aspects of the comparison.  
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Figure 3. Inclination and Eccentricity in the i-e plane. 
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Figure 3. (Continued). 

 
It is possible to understand those behaviors by examining the 

second-order equations of motion, since the comparisons showed 
that this model adequately represents the system. The magnitude of 
the time derivative of the eccentricity is dependent on the term 

2e1e − , so it increases when the eccentricity has lower values due 
to the presence of e, but after a value close to 0.71 is reached, it 

starts to decrease due to the term 2e1− . Its sign is determined 
exclusively by sin(ω) and it imposes the oscillatory behavior shown 
in the plots, since ω has a secular variation. For the time derivative 
of the inclination the same analysis can be applied. The magnitude 

is influenced by the term 22 e1e − , which causes the curious 

behavior of showing regions of almost constant inclination 
alternated with sharp decreases and increases. The explanation is 

that for lower values of the eccentricity the term 2e  forces the time 
derivative to stay close to zero and the inclination remains almost 
constant. When the eccentricity increases and reaches values close 

to 1.0, the term 2e1−  present in the denominator forces the time 
derivative to increase fast, tending to infinity, which causes the fast 
motion of the inclination. The alternation of the sign is caused 
exclusively by the term sin(ω), as explained before. The argument 
of periapsis has a secular variation, because its time derivative is 
always positive in the situations considered, alternating large 
regions of slow and short regions of fast increases. The fast increase 

is also explained by the term 2e1−  in the denominator that goes 
close to zero when the eccentricity approaches 1.0. 

The practical application of those results is that only near-circular orbits 
with inclination higher than the critical value are stable in the long range, 
since above this value the orbit looses its characteristics of near-circularity.  

The Equatorial Orbits 

Another property of the second-order system that comes directly 
from the inspection of the equations of motion is the existence of 
stable equatorial orbits. It means that if an orbit starts with i0 = 

180°, the inclination and eccentricity remain constant and the orbits 
remain in the equatorial plane. In the second-order model this 
property is evident from the equations of motion. If i0 = 180°, then 
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the right-hand sides of the expressions for 
dt

de
 and 

dt

di
 are also zero, 

because they are proportional to sin2(i) and sin(2i), respectively. For 
the fourth-order model, the expression for the time derivative for the 
inclination has a singularity, due to the sin(i) present in the 
denominator. The expression for the time derivative of the 
eccentricity is not zero, because the coefficients C3 and C6 that 
appear in the equation for ( )ω,i,e,af1 , do not vanish when the 

inclination is zero. The numerical integration of the full restricted 
three-body problem model shows the existence of equatorial 
solutions (zero inclination all the time) also in this more general 
model, as expected due to the symmetry of the system. But, opposite 
to the second-order model, the eccentricity has short-period 
oscillations with an amplitude that depends on the initial 
eccentricity, but it can reach values large enough to destroy 
completely the circularity of the orbits. 

Frozen Orbits 

From the equations of motion for the second-order model it is 
possible to detect the existence of a family of special orbits that 
have constant semi-major axis, eccentricity, inclination and 
argument of periapsis called "frozen orbits." To obtain this family it 
is necessary to find the solutions of the equations: 
de

dt

di

dt

d

dt
= = =ω

0, since the time derivative for the semi-major 

axis is always zero. To satisfy the equation for the time derivative of 
the eccentricity the condition is sin(2ω) = 0, which implies that 
cos(2ω) = ±1. Analyzing the solution cos(2ω) = +1 in the equation 
for the time derivative of the argument of periapsis, it is seen that its 
only possible solution is e = 1.0. So, only the solution cos(2ω) = -1 
is taken and it implies that ω = 90° or ω = 270°. The vanishing of 
the time derivative for the inclination does not add any new 
condition, since sin(2ω) = 0 used above implies in di/dt = 0.  From 

the equation 0
dt

d =ω
 and the assumed solution cos(2ω) = -1 one 

more condition is found: 
 

( ) ⇒=−−−+−    0)i(cose15e1)i(cos5 2222 )i(cos
3

5
1e     22 −=  (34) 

 
This is a relation between the eccentricity and the inclination 

that allows frozen orbits. From this equation the condition 

53)i(cos2 <  is also obtained. This condition sets a minimum value 

for the inclination, that is the critical value discussed before, due to 

the restriction 
2e  > 0. Those conditions are valid only for the 

second-order model. When submitted to the fourth-order and to the 
full restricted problem model a frozen orbit is destroyed and it 
shows periodic oscillations in all the three orbital elements. The 
difference between the fourth-order and the restricted models are in 
the amplitude of the oscillations. The amplitudes are about ten times 
larger when the restricted problem is used. As an example, the 
frozen orbit with eccentricity 0.3 and inclination 137.63934 degrees 
was simulated and the oscillations for the fourth-order model were: 
0.01 rad in inclination, 0.03 in eccentricity and 0.08 rad in the 
argument of periapsis. For the restricted model the oscillations were: 
0.14 rad in inclination, 0.3 in eccentricity and the argument of 
periapsis assumed all values in the interval [0,2π] rad. Examining 
the equations of motion for the fourth-order model, it is seen that 

( )ω,i,e,af1  = ( )ω,i,e,af 2  = 0, but ( )ω,i,e,af 3  ≠ 0. It means that 

the eccentricity and the inclination keep their time derivatives null 
for the fourth-order model. The destruction of the frozen orbits 

comes from the argument of periapsis, because its time derivative is 
not null, so the argument of periapsis deviates from the frozen 
condition, which makes sin(2ω) ≠ 0 and it implies that all the time 
derivatives deviate from zero. Another application of the frozen 
orbits in the second-order model is to test the accuracy of the 
numerical integration of this model. 

Effects of the Semi-Major Axis 

The next step is to study the effects of the initial semi-major axis 
in the behaviour of the trajectories. Figure 4 shows the variation in 
the inclination for trajectories starting with initial inclination equals 
to 120 degrees and semi-major axis assuming the values 0.02, 0.06, 
0.10, 0.12 and Fig. 5 shows the evolution of the eccentricity for the 
same trajectories. 
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Figure 4. Effects of the semi-major axis in the inclination of  the 
trajectories. 
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Figure 5. Effects of the semi-major axis in the eccentricity of the 
trajectories. 
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Conclusions 

This paper develops a mathematical model to study the third-
body perturbation in a retrograde orbit: the double-averaged 
expanded to the fourth-order in Legendre polynomials. The results 
show in detail the behavior of retrograde orbits with respect to its 
initial inclination and the role of the critical inclination in the 
stability of near-circular orbits. They show that this critical value is 
a transition region where the eccentricity has an oscillation that 
increases in amplitude. It has also shown the existence of equatorial 
solutions (but with the eccentricity oscillating) and the non-
existence of circular solutions under the dynamics given by the 
restricted three-body problem. The "frozen orbits" found in the 
double-averaged second-order model are studied in the fourth-order 
and the full restricted models. It is shown that they have their 
Keplerian elements disturbed by a small periodic oscillation in the 
fourth-order model and a large periodic oscillation in the restricted 
problem. 
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