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Retrograde Orbits Perturbed by a
Third-Body

This paper develops a semi-analytical study of the perturbation caused to a spacecraft
by a third body involved in the dynamics. There are several important applications for
this research, such as to calculate the effect of lunar and solar perturbations on high-
altitude Earth satellites. In the present research the goal is to study the evolution of
retrograde orbits around the Earth. There is a special interest to see under which
conditions a near-circular orbit remains near-circular. The existence of circular,
equatorial and frozen orbits are also considered, Theresults are valid for any system of
primaries by making a time transformation that depends on the masses of the bodies
involved. Several plots will show the time-histories of the Keplerian elements of the
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Introduction

The majority of papers that considered the thirdybo
perturbation problem studied the perturbation dua¢ Sun and the
Moon in a satellite in orbit around the Earth. Kio4959)
developed the main secular and long-period ternmttefisturbing
function due to the lunisolar perturbations in terof the orbital
elements of the satellite, the Sun and the Moois f@search would
be later expanded by Musen, Bailie and Upton (1961nclude the
parallactic term in the disturbing function. Aftdrat, Kozai (1962)
studied the problem of secular perturbations irragds with high
inclination and eccentricity, considering that theg perturbed by
Jupiter, which is assumed to be in a circular oabitund the Sun.
Blitzer (1959) obtained estimates of the lunisalasturbances using
methods of classical mechanics, however only ferstcular terms.
In the sequence, Cook (1962) used the Lagrangesmefdry
equations to obtain expressions for the variatibalements during
a revolution of the satellite and for the rate afiation of the same
elements. In that same year, Kaula (1962) derivategl terms of
the disturbing function for the lunisolar pertuibat using
equatorial elements for the Moon, but it didn't @ypa definitive
algorithm for the calculations. Again Kozai (196f§)proached that
problem and included indirect terms of the distadeadue to the
alteration of the terrestrial flattening due togbdorces.

In the 1970’s, that subject was studied again. &jka (1973)
obtained the disturbing function for the disturbaraf the Moon
using ecliptic elements for the Moon and equata@ieiments for the
satellite. Secular, long and short period termsewalculated and
expressed in a closed form. Kozai (1973) develauedlternative
method for the calculation of the lunisolar disambes. The
disturbing function was expressed in terms of ttétal elements of
the satellite and the polar geocentric coordinafgke Sun and the
Moon. The secular and long period terms are derbyedumerical
integration and the short period terms are obtaamedytically.

In the following decade, Hough (1981) studied tfieats of the
lunisolar disturbance in orbits close to the inafians 63.4° and
116.6° (critical inclinations with respect to theapotential of the
Earth) and concluded that the effects are sigmificen high
altitudes.

Astrodynamics,

third-body pertutbation, retrograde orbits, space

comparisons. In particular, Prado (2002) studiedpérturbation in
a lunar satellite for direct orbits and the lifetisnof orbits around
the natural satellites of the Solar System.

In this paper several topics related to this probleill be
studied for retrograde orbits around the Eartht ithan important
special case. In particular, the so called "critaragle of the third-
body perturbation,” which is a value for the ineliilon such that any
near-circular orbit with inclination above this raims near-circular,
is discussed in detail. The assumptions of our madesimilar to
the ones made in the restricted three-body probEnthere are
only three bodies involved in the system: one badjy mass
fixed at the origin of the reference system; a heassspacecraft in a
elliptic three-dimensional orbit around this bodyaa third body in
a circular orbit around this same central bodyha plane x-y; b)
The motion of the spacecraft is assumed to beeetlimensional
Keplerian orbit with its orbital elements disturbieythe third body.
The motion of the spacecraft is studied under thebte-averaged
analytical model with the disturbing function exped in Legendre
polynomials up to fourth-order. The double-averigyéaken over
the mean motion of the satellite and over the mmeation of the
disturbing body. The fact that modern computers easily
integrate numerical trajectories using complex noder the
dynamics does not invalidate the use of modelschasanalytical
approximations. The most important reason for ithihat a double-
averaged model, like the one shown here, can dimishort-period
periodic perturbations that appear in the trajéesorin that way,
smooth curves that show the evolution of the meaitad elements
for a long time period can be constructed, whichega better
understanding of the physical phenomenon studiet aiow the
study of long-term stability of the orbits in theepence of
disturbances that cause slow changes in the ordgahents. Note
that the truncated equations of motion could be erigally
integrated much faster than the full equationshefrestricted three-
body problem. The next sections present: the maitieah model
used, the study of circular, near-circular, equatoand frozen
orbits.

The Mathematical M odel

This section derives the equations required byntathematical

All of the preceding references represent fundaaientmodel used during the simulations made in this aese It is

contributions in the subject and they possess aly@m focus,
dedicated to the derivation of equations. In thespnt work a more
practical approach is used with the idea of complging the
existent literature. Some recent studies have gdeolvinumeric
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assumed that the main body with magsisfixed in the center of

the reference system x-y. The perturbing body wiies m' is in a
circular orbit with semi-major axis a' and mean o' (given by

the expressiom a® = G[my +m]). The massless spacecraft is in an

elliptic three-dimensional orbit with orbital elents: a (semi-major
axis), e (eccentricity), i (inclination}y (argument of periapsisj)
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(longitude of the ascending node) and the meanomas n (given

by the expressiom2 3= =Gmg). In this situation, the disturbing

potential that the spacecraft has from the actibthe disturbing
body is given by:

p'G(mo + m')
r? +r2-2rr'cods)

R= 1)

where p'=
Mo +m
angle between the line that connects the massieatdody and
the perturbed body (the spacecraft) and the lia¢ ¢bnnects the
massive central body and the perturbing body (ifrd body).
Using the traditional expansion in Legendre polyrasn
(assuming that r' >> r) the following expression ba found:

R= M > [rijn Py (cod9)) @

r n=2
where B, are the Legendre Polynomials.

For the models used in this research it is necgdearalculate
the parts of the disturbing function due tgp, P3 and B (Ry, R3

and Ry, respectively). They are:

M Gl e auit ek

r

Ry M{[%f%(cos(s))} i

r

“4)
S ] ot ot
eyl 1) o)
e
M 1 hscod(5)-a0cn )+

A substitution using the expression?a®=G[my+m| was

made between the first and the second member s&thquations.
The next step is to average those quantities ¢vesthort period of
the satellite as well as with respect to the distmrturbing body.
The standard definition for average used in thiseaech is

2
(F}zzifTF)dM, where M is the mean anomaly, which is
T o

proportional to time.

To perform the average overpRR3 and Ry one proceeds as

follows. First define the quantities = Pi* and B = Qf', wheref"
is the unit vector pointing from the central bodythe disturbing

body andP and é are the usual orthogonal unit vectors, functions

of (i, w, Q), in the plane of the satellite orbit, witR pointing
towards the periapsis. For the special case camsidbere of
circular orbits for the disturbing body the follovg relations are
available:
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, G is the gravitational constant and S is the
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o = codw)codQ — M') - codi)sin(w)sin(Q - M) (6)

B = —sin(w)codQ - M') - codi )coqw)sin(Q - M") (7)

Using this definition and the geometry involvedisipossible to
relate the angle S to the positions of the pemgtland perturbed
bodies. This can be made by the equation (where thé true
anomaly of the satellite):

cos(S) =a cos(f ) + Bsin(f)

Then, combining this equation with equations (3)(%p, the
perturbing potential becomes a function of the tatbélements of
the satellite. Next, it is necessary to replacetthe anomaly (f) by
the eccentric anomaly (E). This is made by the -kmetiwn

relations-sir(f):[\/l-? sir(E))/(l—ecoéE)) codf) = (codE) - e)/(1-ecodE))

r/a=1-ecos(E). Then, the integrations required to obtain the
averages are realized in terms of the eccentrimalyo not in terms
of the mean anomaly. To do that the relatitiv = (1—ecos(E))dE

is also used. After this process, the followingnititees appear
(Prado, 2002):

®)

o
<[gj“cos4(f)> ot o <( A > 0

<[éj4 col(t)sin?( )> e <[i 4COS(f Jsind > 0,
([5] s) =22 (2] ot 22 )
<(%j4 codf )sin(f )> =0, <[£j45in2(f )> = LB_%A ,
<&T> ) 8+4OeZ+15e4 .

After using those quantities, the expressionsqdp} become:

S oese b ] o

(Rp)=
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(Rg)=

8

[rlj{lae(m&z) 25 e(3+4e2) 75a[3e(e2 ]ﬂ (10)

13 12
(Rg)= wa’n?al -z [(8+40e2+15e4)—
64r'
—100(2(4+41e2 +18e4)+ 350(4(1+12e2 + 8e4)—...

...—1032(4—e2 - 3e4)+ 700(2[32(1+ 5e? - 6e4)+35[34(e2 —lﬂ (11)

Next, one takes the second average with respecth¢o
disturbing body to eliminate the variable M'. To tids, it is
necessary to held the Keplerian elements of theespaft constant
during the process of averaging. This is possible do the
hierarchy of time scales: period of satellite <<iqu of disturbing
body << period of slow oscillations in the orbiglements. After
making these assumptions the following identitesjays valid for
circular orbits only, are obtained:

(@)=(a%)=(as")=
<a4> i} 3(0052( )+ cos’(i)sin? (u)))2 ’
8
2 sin?(w) + co(i)co(w
() =37l ool

<02ﬁ2> _ cogfi)cod(w) +3cog(wsint(w) - 4cog(i)cog(wsin’(c) .
8
3cos ()0052( )sm ( )+0052()sm ( )’
8

<B4>: 3(c032()c032( )+sm ( ))2

2 COS2 +CO§ sin“(w
0, (u?) - ool rcodlle)

1

)

, a=r.

Applying those identities in the expressions (6(&)p the results
are:

) 3(30032 1)e +155|n e cos(ZwJ (12)
{(Rg)) =0

<(R4)> = Klel +Cpe? + Cae? cod2w) + C4e* + Coe? cod2w) + Coe? cot{%))] (14)

((R2)) K1[2(3c052

(13)

‘2?2 ou'n' 234
6553612

C, =144+ 320co42i)+560cod4i), C, =5C; ,

where: K, = K

» K=

Cj = 1680 + 2240cos(2i) - 3920cos(4i) , ¢, = %01,05 - %3 ,
Cg = 4410-5880cos(2i ) + 1470cos(4i) ,

The partial derivatives required for the equatiohsotion are:

Ry =M ar® [2(3co§

3co§ ~1)? +15sin? ezcos{Zoo (15)
o 1+ dcod()-2k? )

1)e +5sin ( )ecos(Zm)]

0R, [
= 6K 4|13 16
S 1( cos? (16)
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azz =3K [ 2sin(2i) - 33'”(2')92+5S'“(2')92005(2w] an

0Ry _

_ . 2(\2 .
0 K430sin (|)e sm(Zw)

(18)

0R, _qun?a’
da 16384

[C1 +C,e% + Ce* cof2w) + C,e" + C.6" co2w) + Ce* cos{4u))] (19)
aaie" = 2K2[5C1e+ C,ecod2w) + 1745C1e3 +C,¢e* cod2w) + 2C,€° cos(4w)} (20)

6224 = [C, +C,& +Cye' +C, % cod2u) + C, ' cod2w) + C, 6 cos€4w](21)
i

aai(: =-K 2[203e2 sin(20) + Cae® sin(2w) + 4Cqe? sin(4w)] (22)

where:

C; = -640sin(2i) - 2240sin(4i) ,
Cg = -3200sin(2i) -1120sin(4i),
Cqy = —1200sin(2i) - 4200sin(4i)
Cyo = —4480sin(2i) +15680sin(4i ),
Cy1 = —2240sin(2i) + 7840sin(4i) ,
Cy» =1176Gsin(2i) - 5880sin(4i)

The next step is to obtain the equations of motidnthe
spacecraft. They come from the Lagrange's planeigoations in
the form that depends on the derivatives of theudiing function R
with respect to the Keplerian elements.

da
E—O (23)
N2 e [[_ 2
Z—f =%sin2(i)sin(2m) +f;(aei,w) (24)
di _ —15|J'n'2e2 s .
——sm(Zl)sm(Zw)+f2(a,e,|,w) (25)

dt 16ny1- €2

do__3un?
al-e?

p [(500§| -1+€2 )+501-¢€ —coél)cosew)]ﬁ aei, w)(26)

_ Su‘n'2 cos

8ny1-e?

dMo _ -p'n”
dt an

o}

@7)
dt

[592 cosw) - X2 - 2]+ f4(aei,w)

[(332 +7)@3codi -1) +151+e?)sin?i cod w]+f5(a,e i, (28)

where fi(a,e,i,oo) represents the contribution of the fourth-order
term and they are given by:

- qu'n?a’y1-¢€°
6553@&°n
[2C esin(20) + C.e sin(200) + 4C,€” sin(4o)

fl(a,e, i,oo) (29)
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ou'n?aZ codi)
V1-¢ 65532 nsin(i)
[2C3e2 sin(2w) + C,e* sin(2w) + 4C,e* sin(4w)]

Qp'n'2 a?y1-¢€?

3276@%n

fz(a,e,i,oo) =- (30)

f3(aeiw)=

{SQ +C3 cos(Zw) + 1?5 Ce?+ C3e2 cos(Zw) + 206e2 005(400)} (31)

_ ou'n?a? cos(i)
V1-€?6553@ nsin(i)

[C7 +Cge? + Cge* + Cy e? cod2w) + C; €% cof2w) + C, 6 cos(4w)]

S)u'n'2 a?
V1- € 6553@2 nsin()
[C7 +Cge? + Cqe* + Ce? cos(Zoo) +Cyqe? cos(Zco) +Cppe? cos(4co)]

_ 9p'n'2a2('g:— eZ!

3276&%n

f4(aeiw)= (32)

f5( ae i,oo) =
{SCl +Czcod20) + 17? Cie? + C4e? coq2w) + 2Cge? cos(4w)} (33)
_gun?a?

8192%n
[Cl +Cye? + Cge? cod2w) + C e + Coe® coq2w) + Cee? cos(4co)]

There are some conclusions that come directly fribva
equations of motion: i) the terpi is a constant that multiplies all
the equations of motion, so it is equivalent ténzettransformation

reason, since the time derivative of the inclinatiz also a
polynomial in the eccentricity with no independtarm.

The evolutions of these two quantities (eccentricénd
inclination) are studied under the full restrictbdee-body problem.
The results show that the circular solutions withstant inclination
do not exist in this more realistic model. The etgeity oscillates
with large amplitude. The inclination remains cléseonstant most
of the time, but from time to time it goes to thaue of the critical
inclination and then it returns to its initial valuThis behavior is
similar to the near-circular orbits shown in Figjgo 3. This result is
expected, because there is no physical reason e &astrong
difference in the behavior of orbits with eccentyi®.00 and 0.01.
The general conclusion is that the circular sohgievith constant
inclination appear due to the truncation of thedretye polynomial
and are not a physical phenomenon, at least forctumalitions
simulated in this research.

Another important question in this problem is théstence of a
critical value for the inclination between the pebed and the
perturbing bodies. This critical inclination isatgdd to the stability
of near-circular retrograde orbits. The problertoi§ind under what
conditions a spacecraft that starts in a neardaraetrograde orbit
around the main body remains in a near-circulait @fter some
time. The answer for this question depends onrttialiinclination
io. There is a specific critical value such thathé tinclination is
lower than that the eccentricity increases anchtra-circular orbit
becomes very elliptic. Alternatively, if the incdition is higher than
this critical value the orbit stays nearly circul8p, only retrograde
orbits with inclination higher than that are usefat practical
purposes. The problem of near-circular orbits isy vienportant
because usually a spacecraft that is nominally ifoular orbit
experiences perturbations from other sources thakemits
eccentricity become non-zero. In the double-avetageond-order

model this critical value is i = 140.7685 degree%(j) = 0.60).

in the system of the typegt = t*. So, all the results based in thoseThis critical value also represents the highedtriation that allows

equations are valid for any system of primariesiproportional
time scale. The same is true for the semi-majos @kiat is present
in the equations in the term “n”) in the secondeorthodel; ii) the

2
ratio 11 = 409&

2 a
second and fourth-order terms. The importance effthurth-order
terms increase when the semi-major axis of theugmtl body
increases. This importance also increases witked¢bentricity of the
perturbed body due to the terms that depend oedbentricity; iii)
The difference between the analytical solutions ahd full
numerical simulations also increases with thoseéakbs, what is
confirmed by numerical integrations and by the féat the
expansions are made in terms of the eccentricity.

Results

In this section some results are shown relatetheécthird body
perturbation problem for retrograde orbits. Thistisa is divided in
several sub-sections to show clearly several aspéthe problem.

TheCircular Orbits and the Critical Inclination

Directly from the equations of motion for the a.gzd models it
is possible to identify the existence of circulatusions for both
second and fourth-order models. It means thathénideal case of
an orbit that starts with zero eccentricity, itcaaricity remains
always zero. This occurs because the right-hareldfithe equation
for the time derivative of the eccentricity is zditois a polynomial
in the eccentricity with no independent term). Avest property of
those orbits is that the inclination is also constéor the same

J. of the Braz. Soc. of Mech. Sci. & Eng.
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the existence of orbits with eccentricity, inclioatand argument of
periapsis constant under the second-order mode. bEfavior of
the inclination and the eccentricity with time imdied for near-
circular retrograde orbits covering a large ranfymitial inclination

>— dives an idea of the relative importance of thegse < j < 175). For those simulations the initial orbits used

always have Keplerian elementg=0.1 (38440 km),#= 0.01,0q
= Qg = 0. The initial inclination @ vary as shown in the figures.

Remember that the time is defined such that théogenf the
disturbing body is & In that way 1000 units of time in those figures
correspond to about 160 orbits of the disturbindyb@n the case of
the Earth-Moon system). The figures are dividethiee parts only
to make the observation of the time evolution gasialues of §

above the critical valuedi= 15C°), in the region of the critical value
(140 <ig< 144) and below the critical valugg(k 14C°). The sizes

of those regions are chosen to avoid unclear figuhge to the
different scales involved and are not subject detailed study. Fig.
1 shows the behavior of the inclination. Fig. 2whohe behavior of
the eccentricity. In both figures, only the restittsthe fourth-order
model are shown. The second-order expansion giees similar

results and the restricted three-body problem gia@eseries of
scattered points the follows around the lines shbere, similar to
what is shown in Prado (2002) for direct orbits.

October-December 2005, Vol. XXVII, No. 4 / 367
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around the critical value (14& ig < 144) it is possible to see that
the eccentricity oscillates with a larger amplitdbout 0.30) that
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Figure 1. Time-histories for the inclination.
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increases withg. The inclination has a very characteristic behavio 0.018—
in this region of ¢. For values ofg slightly above the critical angle
the inclination stays close tg.iFor values ofg slightly below the

critical value the inclination starts g, iincreases until the critical
value and then it returns to its original valge Those results show .
that the critical angle is not a sharp separatietwbeen stable and
unstable near-circular retrograde orbits. For \&lofeig well below

the critical value @ < 130) the eccentricity oscillates with

increasing amplitudes that go close to 1.0. Thénation keeps its
characteristic behavior of starting @, increasing to the critical

value and then returning to its original valge The figure also

shows that this behavior repeats itself in an essdégcle. The time 0.010- '
required to reach the critical value increases whencreases. This

region has a gradual transition where the eccémtiascillates with

0.016

0.014—

0.0124

Eccentricity

an amplitude that increases fast wighreaching the value 1.0 only 0.008 — T T
in the caseg = 9C°. Fig. 3 shows the results in the phase diagram 2.6 2.7 2.8 2.9 3.0 3.1
that plots the eccentricity vs. the inclination.eTiegion above the Inclination (Rad)

critical value shows straight lines. Note that diéerent scales of

. . Figure 3. (Continued).
the plots show different aspects of the comparison.

It is possible to understand those behaviors bynaiag the
second-order equations of motion, since the commpasi showed
that this model adequately represents the systam.niagnitude of
the time derivative of the eccentricity is deperiden the term

10— e ——

0.84
ev1-€? , so it increases when the eccentricity has lowkres due
to the presence of e, but after a value close 7t & reached, it

starts to decrease due to the tetl{h—_e2 . Its sign is determined
exclusively by sin) and it imposes the oscillatory behavior shown
in the plots, sinceoy has a secular variation. For the time derivative
of the inclination the same analysis can be appliég magnitude

is influenced by the termez/xu—e2 , Which causes the curious

behavior of showing regions of almost constant imation
alternated with sharp decreases and increaseseXfianation is

0.6

Eccentricity

0.4

0.2

that for lower values of the eccentricity the teefn forces the time
™ derivative to stay close to zero and the inclimatiemains almost
1.6 1.8 20 29 24 26 constant. When the eccentricity increases and esachlues close

Inclination (Rad) to 1.0, the termy1-e? present in the denominator forces the time

derivative to increase fast, tending to infinityhish causes the fast
motion of the inclination. The alternation of thers is caused

4 exclusively by the term sioi), as explained before. The argument
of periapsis has a secular variation, becausanits terivative is
0.16 always positive in the situations considered, mfiéng large

i regions of slow and short regions of fast increashe fast increase

0.0

0.20

0.124 is also explained by the terrv/ul—e2 in the denominator that goes

close to zero when the eccentricity approaches 1.0.

The practical application of those results is thrdy near-circular orbits
with inclination higher than the critical value atable in the long range,
since above this value the orbit looses its charatics of near-circularity.

Eccentricity

0.08-

The Equatorial Orbits
0.04+

{ Another property of the second-order system thatesodirectly
1 l from the inspection of the equations of motiontie existence of
0.00 ——TTT7— stable equatorial orbits. It means that if an ogtérts with § =
244 2.46 248 250 252 254 180, the inclination and eccentricity remain constamd the orbits
Inclination (Rad) remain in the equatorial plane. In the second-ontedel this

property is evident from the equations of motidrigl= 18C, then

Figure 3. Inclination and Eccentricity in the i-e plane.
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the right-hand sides of the expressions%efr and% are also zero,

because they are proportional to2$i)1and sin(2i), respectively. For
the fourth-order model, the expression for the titagvative for the
inclination has a singularity, due to the sin(i)egent in the
denominator. The expression for the time derivatiok the
eccentricity is not zero, because the coefficigbisand G that
appear in the equation fof;(ae i,w), do not vanish when the

inclination is zero. The numerical integration betfull restricted
three-body problem model shows the existence ofategal

solutions (zero inclination all the time) also imist more general
model, as expected due to the symmetry of thersy®et, opposite
to the second-order model, the eccentricity hasrtgfesiod
oscillations with an amplitude that depends on tinéial

eccentricity, but it can reach values large enoughdestroy
completely the circularity of the orbits.

Frozen Orbits

From the equations of motion for the second-ordedehit is
possible to detect the existence of a family ofcepeorbits that
have constant semi-major axis, eccentricity, iralon and
argument of periapsis called "frozen orbif6d' obtain this family it
is necessary to find the solutions of the equation

de _di _da =0, since the time derivative for the semi-majo

dt dt dt
axis is always zero. To satisfy the equation ferttme derivative of
the eccentricity the condition is simf = 0, which implies that
cos(2v) = *1. Analyzing the solution cosgd = +1 in the equation
for the time derivative of the argument of periapdiis seen that its
only possible solution is e = 1.0. So, only thausoh cos(2) = -1

is taken and it implies thab = 9C° or w = 270. The vanishing of
the time derivative for the inclination does notdadny new

condition, since sin@) = 0 used above implies in di/dt = 0. From

the equation(?j—‘:)=0 and the assumed solution casg(2= -1 one

more condition is found:
5cos(i) —1+€° - 5(1—e2 —cos?(i)): 0> & =1—gcos2(i) (34)

This is a relation between the eccentricity and itt@éination
that allows frozen orbits. From this equation thendition

cosz(i) < 3/5 is also obtained. This condition sets a minimutuea
for the inclination, that is the critical value dissed before, due to

the restriction € > 0. Those conditions are valid only for the
second-order model. When submitted to the fourtteoend to the
full restricted problem model a frozen orbit is weged and it
shows periodic oscillations in all the three orbigéements. The
difference between the fourth-order and the restliecnodels are in
the amplitude of the oscillations. The amplitudesabout ten times
larger when the restricted problem is used. As sample, the
frozen orbit with eccentricity 0.3 and inclinatid37.63934 degrees
was simulated and the oscillations for the founttieo model were:
0.01 rad in inclination, 0.03 in eccentricity and® rad in the
argument of periapsis. For the restricted modebgu#llations were:
0.14 rad in inclination, 0.3 in eccentricity andetlrgument of
periapsis assumed all values in the intervalriDrad. Examining
the equations of motion for the fourth-order modeis seen that
f1(aei,w) = fo(agi,w) =0, butfz(aei,w) # 0. It means that
the eccentricity and the inclination keep theirdiaterivatives null
for the fourth-order model. The destruction of tiezen orbits
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comes from the argument of periapsis, becauseriesderivative is
not null, so the argument of periapsis deviatesnfritne frozen
condition, which makes sin¢® # 0 and it implies that all the time
derivatives deviate from zero. Another applicatioihthe frozen
orbits in the second-order model is to test theummty of the
numerical integration of this model.

Effects of the Semi-Major Axis

The next step is to study the effects of the ihg@mi-major axis
in the behaviour of the trajectories. Figure 4 shake variation in
the inclination for trajectories starting with iiaidtinclination equals
to 120 degrees and semi-major axis assuming theeyd.02, 0.06,
0.10, 0.12 and Fig. 5 shows the evolution of theertricity for the
same trajectories.
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Figure 4. Effects of the semi-major axis in the inclination of the
trajectories.
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Figure 5. Effects of the semi-major axis in the eccentricity of the
trajectories.
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Retrograde Orbits Perturbed by a Third-Body

Conclusions

This paper develops a mathematical model to stheythird-
body perturbation in a retrograde orbit: the dowleraged
expanded to the fourth-order in Legendre polynosnihe results
show in detail the behavior of retrograde orbitshwiespect to its
initial inclination and the role of the critical dlination in the
stability of near-circular orbits. They show thhistcritical value is
a transition region where the eccentricity has anillation that
increases in amplitude. It has also shown the endst of equatorial
solutions (but with the eccentricity oscillatinghda the non-
existence of circular solutions under the dynangesen by the
restricted three-body problem. The "frozen orbifstind in the
double-averaged second-order model are studidukirfiourth-order
and the full restricted models. It is shown thagytthave their
Keplerian elements disturbed by a small periodidliasion in the
fourth-order model and a large periodic oscillatinrthe restricted
problem.
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