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Alternative Fuels Mixture in Cement 
Industry Kilns Employing Particle 
Swarm Optimization Algorithm  
Most of the works accomplished in the optimization area in the cement industry are 
addressed to solve problems just considering only one variable, forgetting that it includes 
too many variables and they act at the same time. Among the main variables it can be 
mentioned the quality of the final product, the environmental ones, the costs along the 
process and the reduction of the fossil fuels (primary) employed through the use of 
alternative fuels (secondary), among others. The present work intends to build a 
mathematical model using optimization tools seeking to improve the cement production 
process foreseeing what can happen with the clinker and the emissions when the industrial 
residues co-processing technology is used as alternative or secondary fuel. In the 
optimization process a new approach called Particle Swarm Optimization (PSO) is 
employed, which is based on the Cauchy and Gauss distribution considering several 
process restrictions such as the specific fuel consumption, the cement quality and the 
environmental impact. The results obtained with PSO were precise and promising and they 
were compared with the classical Sequential Quadratic Programming (SQP). It was also 
possible to evaluate the levels of primary fuels substitution through the alternative or 
secondary ones. 
Keywords: portland cement, industrial co-processing residues, particle swarm 
optimization (PSO), sequential quadratic programming (SQP). 

 
 
 
 
 
 
 
 

Introduction 

Nowadays, the Portland cement is the main cement type used all 
over the world and its production is the largest in amount if 
compared to the other products produced by men (Chatterjee, 1993). 
The Portland cement is composed of clinker and additions. The 
clinker is the main component and it is present in all types of 
Portland cement. The additions can vary from each cement type to 
another and they mainly define the different cement types. The 
production process of the Portland cement is presented in Fig.1. The 
clinker, base component of the Portland cement, is obtained from 
the grinding, homogenization and subsequent burn in high 
temperatures (1450ºC) inside a rotary cement kiln starting from a 
powdered mixture called raw, originating from the following raw 
materials: limestone, clay, sand, iron ore, etc. The main chemical 
elements that constitute the clinker are the lime (CaO) and the silica 
(SiO2) that react between themselves forming lime silica, which is 
the main active component of the cement. 

1However, other materials can be used on the cement Portland 
production (Peray and Wadell, 1972). In the search for lower 
production costs, the cement industries have been trying to 
modernize their industrial plants, through the construction of new 
industrial units, which incorporate new production technologies. 
The introduction of secondary materials either as raw materials or in 
the co-processing, allows sensitive reduction in the final product 
cost. This fact contributes as a partial solution for the industrial 
waste disposal problems to a large number of companies. Also, the 
introduction of secondary materials provides additional revenue for 
the cement factories, either due to their low acquisition costs, or due 
to the payment received for the service of thermal waste destruction. 
However, the introduction of secondary materials must be subject to 
the desired final product quality, which is the most important control 
parameter in the cement Portland production. Moreover, when 
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industrial residues are used as secondary fuels in the rotary kilns, the 
generated ashes replace some of the components of the raw 
materials, and therefore these ashes must be made compatible with 
the remaining raw materials, in order to be absorbed in high 
percentage in the clinker matrix (Carvalho, 1997). 

This work presents a formulation for the mixture optimization of 
coal, petroleum coke and used tires. This mixture is intended for use 
in a rotary kiln of clinker production, dry via, with a four stages pre-
heater. However, the problem involving mixture of these 
components is complex. The optimization procedure takes into 
account process restrictions such as specific heat consumption, 
cement quality and environmental impact. In this case, the mixture 
optimization in cement kilns is a problem with nonlinear cost 
function with linear constraints. 

Nomenclature 

A,B = constants that depend on the clinker composition, 
dimensionless  

c1,c2 = positive constants, dimensionless 
MS = silica modulus, dimensionless 
pi = position of the best objective value on the i-th particle, 

dimensionless 
pic = raw material and fuel cost , U$/t 
pE = electricity cost ,U$/MWh 
S = specific surface, m2/g 
ud,  Ud= functions for random numbers generation in range 

[0,1] 
vi = velocity of the i-th particle, dimensionless 
w = inertia factor, dimensionless  
Cauchy= function that generates a random number with Cauchy 

distribuition for the “social” component 
Gauss= a random number generated with Gauss distribution 

with average zero and unitary variance 

Subscripts 

xi position of the particle 
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Figure 1. Stages of the Portland cement process production 

Fuels in the Cement Industry 

Due to the high heat consumption in the process, the cement 
industry always worried about using fuels of low cost, but without 
losing the quality of the final product. One of the alternatives found 
to obtain the economy of the energy resources was the co-
processing of industrial wastes, also denominated alternative or 
secondary fuels (Hansen, 2003). The process consists basically in 
the replacement of a part of the traditional fuel for residues 
generated by other industries such as useless tires, waste oils and 
sludge of hazardous and industrial waste treatment, among others 
(Kleppinger, 1993). In Brazil, the cement industries are using the 
petcoke as main fuel due to its low cost jointly with the industrial 
residues (alternative fuels), Fig. 2. 
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Figure 2. Fuels employed in cement industries. 

Grinding in the Cement Industry 

As described previously, the composed cements contain other 
added constituents that should be mixed in the phase of clinker 
grinding. In this case, the grinded product should be inside a certain 
granulometry limit in such a way to create better conditions for the 
hardening process (Duda, 1977). Approximately 30% of the energy 
required to produce a ton of cement is consumed in the grinding. 
This is a significant percentage of the total cement cost. The energy 
consumed in the mills is in the range of 16,5 - 63,5 kWh/t with an 
average of 36 kWh/t (Tokyay, 1999). There is a relationship 
between the required energy in the grinding phase and the specific 
surface (Tokyay, 1999). The larger the thinness of the cement 
(granulomety) is, the bigger will be the specific surface, and as a 
consequence, there will be a larger consumption of energy (Fig. 3) 
(Zhang and Napier-Munn, 1995). 
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Figure 3. Energy required rate versus specific surface (Tokyay, 1999). 

Model Description and Methodology 

Optimization Problem Description  

The modeling will use optimization algorithms, of which 
objective is to assure a better stability of the kiln operation, energy 
consumption reduction and environmental impact minimization. The 
following aspects will be modeled: 
a) The effects that the use of alternative fuels can cause:   
- in the clinker quality, through the material and fuel chemical 
composition; 
- in the environment, through the raw material and fuel emissions of 
CO2 and SO2; 
- in the clinker production cost, considering the raw material and 
fuels costs; obtaining as result a optimum composition of raw 
material and fuels for the clinker production. 
b) The cost and electric power consumption requested in the 
grinding process for the Portland cement production (Tokyay, 
1998). The grinded product should be inside a certain granulometry 
limit in such a way to create better conditions for the hardening 
process (Duda, 1977). The equation that represents the electric 
power requested in the grinding process should be expressed in 
function of the specific surface and the mixture control modules. 

To accomplish the modeling it is necessary to know the input 
parameters data (raw materials, fuels, raw materials costs, etc), and 
these should be addressed in function of the proposed objective 
getting as results the costs optimization, environmental impact 
minimization, among others. In the work of Carpio et al. (2005) a 
flowchart is presented, which shows the procedure that will be 
necessary to accomplish to model the proposed system (Fig. 4). 

Building the Model of the Mixture of the Raw Materials and 

Fuels 

In order to build the optimization model it is necessary to obtain 
data as well as to identify the more important decision variables that 
represent the mixture. These can be obtained starting from the raw 
material and fuels chemical composition (to see Tab. 1 and Tab. 2). 
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Figure 4. Flowchart when the industrial wastes co-processing is employed 
(Carpio, 2005). 

 
The mixture optimization should consider the stable operation of 

the rotative kiln, the quality of the clinker produced, the minimum 
cost of the used composition and the electric power; all these 
variables are considered in the nonlinear model proposed through 
the following objective function, Eq.(1). 

 

∑
=
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Eici .A.expp.Xp C  (1)  

 
The objective function (C) of the model should try to obtain a 

minimum cost in the clinker production, considering the raw 
materials costs as well as the consumption of the energy required for 
grinding.  

The first term (linear) represents the raw materials and fuels 
(primary and alternative) costs used in the clinker production (pi,  is 
the raw materials and fuels costs i = 1,2....... n, that participate in the 
burn with their respective percentages X1, X2,......Xn). 

The second term (nonlinear) represents electricity cost (pE) and 
the energy consumption required in kWh/t for the grinding process 
of a certain specific surface (S is the area of the specific surface in 
cm2/g, A and B are constants that depend on the clinker 
composition). Based on Tab.1 and Tab. 2 values and on the Eq. (1), 
an objective function was set up, which represents costs 
minimization problem, considering the operational and 
environmental costs presented as it follows: 

 
 

Table 1. Meal raw materials chemical composition (% in weight) (Carpio, 2005) 

Material Notation CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O K2O 

Limestone X1 50.66 5.04 1.19 0.67 0.78 0.1 0.1 0.3 

Clay X2 1.23 61.62 16.59 9.01  0.3 0.3 5 

Sand X3 1.13 93.00 2.87 1.20 0.10 0.5 0.5 1 

Iron ore X4 0.71 7.60 1.13 82.97 - - - - 

 
 

Table 2. Fuels composition employed as primary and secondary (ABCP, 2002) 

Component 
Mineral Coal 

% weight 
Petcoke 

% weight 
Tires uses 
% weight 

Notation X5 X6 X7 

C  63.9 80 – 100 72.15 

H  3.6 3.5 6.74 

S  4.6 0.5 – 7.0 1.23 

O 0.9  9.67 

N 1.8 1.5 0,36 

Cl -  0.149 

Zinc  0.04 1 – 85 ppm  

Cadmium  0.001 1 ppm 0.0006 

Lead  0.027 1 – 10 ppm 0.0065 

Thallium  0.0004 1 – 80 ppm 0.00001 

Arsenic  0.00017 0.1 – 10 ppm  

LHV [kJ/kg] 25.392 32.447  32.100 
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Subject to: 

 

63.760.93X1.03X0.71X1.13X1.23X50.60X 754321 ≥+++++  (3) 

 

70.140.93X1.03X0.71X1.13X1.23X50.60X 754321 ≤+++++  (4) 

 

19.711.93X9.32X7.6X93X61.62X5.04X 754321 ≥+++++  (5) 

 

24.251.93X9.32X7.6X93X61.62X5.04X 754321 ≤+++++  (6) 

 

3.760.79X5.08X1.13X2.87X16.59X1.19X 754321 ≥+++++  (7) 

 

6.780.79X5.08X1.13X2.87X16.59X1.19X 754321 ≤+++++  (8) 

 

1.290.13X7.21X82.97X1.2X9.01X0.67X 754321 ≥+++++  (9) 

 

4.640.13X7.21X82.97X1.2X9.01X0.67X 754321 ≤+++++  (10) 

 

6.50.12X0,44X0.10X0.78X 7531 ≤+++  (11) 

 

00.186X18.96X185.83X83.64X2.74X0.762X 754321 ≥−−−++  (12) 

 

00.554X23.88X219.47X82.011X7.5X0.018X 754321 ≥+++−+−  (13) 
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00.621X4.29X106.73X1.31X4.877X0.319X 754321 ≥+−−++  (14) 

 

00.439X14.387X222.88X0.37X7.737X0.619X 754321 ≥−++++  (15) 

 

04.2X37.86X164.34X173.6X155.67X38.24X 754321 ≥−−−−−  (16) 

 

034.551.460.20143.21265.19048.35 754321 ≥+++++− XXXXXX  (17) 

 

360032100X34436X25392X 761 =++  (18) 

 

0.050.0123X0.07X0.046X 765 ≤++  (19) 

 

0.200.5X3X0.1X 321 ≥++  (20) 

 

2.070.5X3X0.1X 321 ≤++  (21) 

 

0.030.5X0.3X0.1X 321 ≥++  (22) 

 

0.330.5X0.3X0.1X 321 ≤++  (23) 

 

0.31X5X0.3X 321 ≥++  (24) 

 

1.76X5X0.3X 321 ≤++  (25) 

 

0.10XAXAXA 776655 ≤++  (26) 

 

0.35XBXBXB 776655 ≤++  (27) 

 

0.05XC 66 ≤  (28) 

 

0.10XDXDXD 776655 ≤++  (29) 

 
The Equations from 3 to 10 represent the operational 

restrictions, where the amount of CaO should stay between 62 and 
67% Eq.(3) and Eq.(4), SiO2 between 19 and 25% Eq.5 and Eq.(6), 
Al 2O3 between 2 and 9%  Eq.(7) and Eq.(8) and Fe2O3 between 1 
and 5% Eq.(9) and Eq.(10). The maximum amount of magnesium 
should be limited in 6.5% Eq.(11). Equations (12) to (17) are the 
restrictions of the mixture control modules regarding to the clinker 
quality (Carpio et al., 2004). The total fuels feeding should assist the 
heat specific consumption presented in Eq. (18). The restriction 
regarding to the sulfur is presented in Eq. (19). Equations (20) and 
(21) represent the limits for the trioxide of sulfur (SO3) contained in 
the raw material. The restrictions of the Equations (22) to (25) are 
referred to the alkalis in the raw material. The more volatile and 
dangerous heavy metals, such as the cadmium, lead, mercury and 
thallium, are controlled by the restrictions of the Equations (26) to 
(29). More details about the restrictions can be found in Carpio 
(2005). 

Particle Swarm Optimization Method (PSO) 

PSO is an approach of collective intelligence (swarm 
intelligence) and it was developed initially by Kennedy and Eberhart 
(Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995; 
Kennedy et al., 2004) based on the studies of the social-biologist 
Edward Osborne Wilson. The proposal of PSO algorithm was put 
forward by several scientists who developed computational 
simulations of the movement of organisms such as birds flocks and 
fish schools. Such simulations were heavily based on manipulating 
the distances between the individuals, i.e., the swarm behavior 

synchrony is seen as an effort to keep an optimal distance between 
them.  

In theory, at least, individuals of a swarm may benefit from the 
prior discoveries and experiences of all the members of a swarm 
when foraging. The fundamental point of developing PSO is a 
hypothesis in which the exchange of information among creatures of 
the same species offers some sort of evolutionary advantage. 

PSO presents characteristics similar to the evolutionary 
computation techniques (Goldberg, 1989), which are based on a 
population of solutions. However, PSO is motivated by the 
simulation of social behavior and cooperation among agents instead 
of the most capable individual's survival as in the evolutionary 
algorithms. In PSO, each candidate solution (denominated particle) 
has an associated velocity. The velocity is adjusted through an 
updating equation that considers the experience of the 
corresponding particle and the experience of the other present 
particles in the population.   

The concept of PSO consists of, to each iterative step, changing 
the velocity of each particle towards the pbest (personal best) and 
gbest (global best) locations. The velocity of the search procedure is 
pondered through a generated term in a random way linked in a 
separate way of the pbest and of the gbest locations. 

The procedure for PSO implementation is governed by the 
following stages: 
(i) begin a population (matrix) of particles, with positions and 
velocity in a space problem of n dimensional, randomly with 
uniform distribution. 
(ii) for each particle, evaluate the fitness function (objective 
function); 
(iii) compare the evaluation of the particle aptitude function with the 
pbest of the particle. If the average value is better than the pbest, 
then the pbest value becomes the value of the aptitude function and 
the pbest location becomes the same of the current location in the n 
dimensional space; 
(iv) compare the aptitude function evaluation with the best previous 
value of the population aptitude. If the current value is better than 
the gbest, update the gbest value for the index and current particle 
value;   
(v) modify the velocity and the position of the particle in agreement 
with the equations (Shi and Eberhart, 1998; Kennedy et al., 2001): 

 
)x(p  Ud c  )x(p udc vwv ig2ii1ii −⋅⋅+−⋅⋅+⋅=  (30) 

 

 )v∆t(xx iii ⋅+=  (31) 
 

where ∆t is 1. 
(vi) go to the stage (ii) until a stop criterion is found. It is usually 
used a pre-defined error or a maximum number of iterations 
(generations). 

The used notations are: [ ]Tini2i1i x,..., x,x x = which stores the i-th 

position of the particle, [ ]Tini2i1i v,..., v,v v = which stores the i-th 

velocity of the particle and [ ]Tini2i1i p,...,p ,p p = which represents the 

position of the best fitness value of the i-th particle. The index g 
represents the index of the best value among all of the particles of 
the group. The variable w is the inertia factor, c1 and c2 are the 
cognitive and social components, respectively, which are the 
acceleration constants responsible for varying the particle speed 
towards pbest and gbest, respectively; ud and Ud are two functions 
for random numbers generation with uniform distribution in the 
interval [0,1], respectively. The particles velocity of each dimension 
is limited to a maximum value of velocity, Vmax. 

The first part in the Eq. 30 is a term of the particle moment. The 
weighted inertia w represents the particle moment degree. The 
second part consists of the "cognitive" part, which represents the 
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independent "knowledge" of the particle. The third part is the 
"social" one, which represents the co-operation among the particles. 

The c1 and c2 represent the weighted of the "cognition" and 
"social" parts that influence each particle toward pbest and gbest. 
These constants are usually adjusted by try and error heuristics 
attempts. The population size is also selected depending on the 
dimension of the approached problem. 

In classical PSO approaches, a uniform probability distribution 
is used to generate random numbers to update the velocity equation. 
However, the use of other probability distributions may improve the 
ability to fine-tune or even escape from local optima. In the 
meantime, it has been proposed that the Gaussian and/or Cauchy 
probability distributions be used to generate random numbers to 
update the velocity equation (Miranda and Fonseca, 2002; Wei et 
al., 2002, Secrest et al., 2003; Stacey et al., 2003; Esquivel and 
Coello, 2003; Higashi and Iba, 2003; Coelho and Krohling, 2005; 
Ting et al., 2006; Krohling and Coelho, 2006, Coelho and Alotto, 
2008; Coelho and Lee, 2008).  

The PSO approach proposed in this work, denominated of PSO-
CG, seeks to modify the equation (30) of the conventional PSO for: 

 

)x(p  Gauss c  )x(pCauchyc vwv ig2ii1ii −⋅⋅+−⋅⋅+⋅=  (32) 

where Cauchy is a function that generates a random number with 
Cauchy distribution for the "social" component and Gauss generates 
a random number with Gauss distribution with average zero and 
unitary variance for the "cognitive" component of PSO. 

The use of Cauchy distribution in PSO can be useful to avoid 
local minima when the search space is small, while the Gauss 
(normal) distribution (truncated in [0,1] in this paper) can supply a 
faster convergence in local searches when the search space is big 
(Chellapilla, 1998). 

Results and Analysis 

Simulation Results 

The results for the optimization nonlinear evaluation using 
conventional PSO, PSO-CG and Sequential Quadratic Programming 
(SQP) are summarized in Table 3 (run 30 experiments with each 
optimization technique). In this case, the required chemical 
composition is sought for a cement type produced in a rotative kiln, 
dry via, with heat specific consumption of 3600 clinker kJ/kg. 

 

 
 

Table 3. Equation 2 (30 experiments) objective function optimization results 

Optimization method Best Worst Average Standard deviation Time* 

SQP 4.761624 4.761624 4.761624 0.000000 0.023 

PSO 4.731781 10.66206 6.177593 2.329706 14.33 

PSO-CG 4.713311 5.477078 4.713310 0.316630 22.84 
* time (in seconds) to run each experiment in a PC computer (1,09 GHz AMD 4, 124 MB RAM with Matlab 6.5) 

 
 

Table 4. Optimization model results employing PSO-CG 

Objective Function 

C = US$4.713311/ton 

Oxides compositions in Clinker (%) Modulus Specific heat consumption = 3600 

(kJ/kg clk*) 
Compositions (kg/kg Clk*)   Consumption of fuels (kg/tonclq*) 

X1 = 1.2175 CaO  = 62.07   
X2 = 0.2007 SiO2  = 20.13 MS =2.50 Petroleum Coke = 74.1 
X3 = 0.0161 Al2O3= 5.22 MA =1.82 Used tires = 28.0 
X4 = 0.0000 Fe2O3= 2.86 MH =2.20 * Clk: Clinker 
X5 = 0.0000 MgO = 0.95   

X6 = 0.0741    

X7 = 0.0280    

 
 
Table 3 presents the medium, minimum, maximum and the 

standard deviation values results. The parameters of PSO and PSO-
CG used a population of 30 particles; c1 = c2 = 2.05; initial weighted 
w of 0.729 with linear decline up to 0.400; search space of the 
variables to be optimized in the interval 0 < Xn < 3, where n=1,..,7; 
Vmax: 20% of the search space of each variable; and maximum 
number of generations (stop criterion): 500 generations. SQP uses a 
Hessian matrix approach (of the function Lagrange) and it uses a 
Quasi-Newton's method and line search for minimization of the cost 
function (Fletcher, 1987; Nash and Sofer, 1996; Boggs and Tolle, 
2000). 

It is noticed that the obtained results using PSO-CG and SQP is 
quite close, with a little advantage of PSO-CG in terms of answer 
quality. However, SQP, in spite of not finding the optimum value, is 
faster in terms of computational cost and with smaller standard 
deviation than PSO and PSO-CG.  

 

Conclusion and References 

Through the optimization model presented, it is possible to 
foresee the raw composition when it is decided to burn residues as 
secondary fuels in cement industries rotary kilns. It is also possible 
to calculate the substitution levels of the primary fuel by alternative 
fuel derived from industrial wastes, being considered the acceptable 
pollutant emissions levels (sulfur for example). This model was 
shown satisfactory based on the presented results, either for keeping 
the values of chemical composition inside the quality parameters or 
finding smaller production costs. Regarding the optimization 
procedure, the results with PSO-CG and SQP were precise and 
promising. The disadvantage of PSO-CG in relation to SQP was the 
largest computational cost for the convergence. 
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