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Most of the works accomplished in the optimizatooea in the cement industry are
addressed to solve problems just considering onéy/\ariable, forgetting that it includes

too many variables and they act at the same tinmeory the main variables it can be
mentioned the quality of the final product, the isnmental ones, the costs along the
process and the reduction of the fossil fuels (pryj employed through the use of
alternative fuels (secondary), among others. Thes@nt work intends to build a
mathematical model using optimization tools seekmgmprove the cement production
process foreseeing what can happen with the clinkérthe emissions when the industrial
residues co-processing technology is used as aten or secondary fuel. In the

optimization process a new approach called Parti@earm Optimization (PSO) is

employed, which is based on the Cauchy and Gawussbdition considering several

process restrictions such as the specific fuel eongion, the cement quality and the
environmental impact. The results obtained with R&®e precise and promising and they
were compared with the classical Sequential Quadmtogramming (SQP). It was also

possible to evaluate the levels of primary fuelbssitution through the alternative or

secondary ones.
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Introduction

Nowadays, the Portland cement is the main cemeetuged all
over the world and its production is the largestamount if
compared to the other products produced by ment{€fee, 1993).
The Portland cement is composed of clinker and taahdi. The
clinker is the main component and it is presentaintypes of
Portland cement. The additions can vary from earhent type to
another and they mainly define the different cemimpies. The
production process of the Portland cement is pteden Fig.1. The
clinker, base component of the Portland cemengbisined from
the grinding, homogenization and subsequent burn high
temperatures (1450°C) inside a rotary cement Kanting from a
powdered mixture called raw, originating from tre@ldwing raw
materials: limestone, clay, sand, iron ore, etce Timin chemical
elements that constitute the clinker are the li@ad) and the silica
(Si0,) that react between themselves forming lime silighich is
the main active component of the cement.

However, other materials can be used on the ceReritand
production (Peray and Wadell, 1972). In the sediah lower
production costs, the cement industries have beagmgt to
modernize their industrial plants, through the ¢ardion of new
industrial units, which incorporate new productitethnologies.
The introduction of secondary materials eitheraas materials or in
the co-processing, allows sensitive reduction ie final product
cost. This fact contributes as a partial solution the industrial
waste disposal problems to a large humber of corapaAlso, the
introduction of secondary materials provides addgi revenue for
the cement factories, either due to their low agitjon costs, or due
to the payment received for the service of thenvadte destruction.
However, the introduction of secondary materialsinfue subject to
the desired final product quality, which is the iiogportant control
parameter in the cement Portland production. Maggowhen
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industrial co-processing resigslueparticle swarm

industrial residues are used as secondary fueteinotary kilns, the
generated ashes replace some of the componentheofraw
materials, and therefore these ashes must be noeleatible with

the remaining raw materials, in order to be abgbrive high

percentage in the clinker matrix (Carvalho, 1997).

This work presents a formulation for the mixtureimization of
coal, petroleum coke and used tires. This mixtsriatended for use
in a rotary kiln of clinker production, dry via, thia four stages pre-
heater. However, the problem involving mixture ofiese
components is complex. The optimization procedwakes into
account process restrictions such as specific keasumption,
cement quality and environmental impact. In thisegahe mixture
optimization in cement kilns is a problem with noebr cost
function with linear constraints.

Nomenclature

A,B = constants that depend on the clinker composition
dimensionless

€1,C = positive constants, dimensionless

MS = silica modulus, dimensionless

pi = position of the best objective value on the pétticle,
dimensionless
pc = raw material and fuel cost , U$/t

pe - electricity cost ,U$/MWh
S = specific surface, Ay
ud, UdE= functions for random numbers generation in range

[0.1]
\V = velocity of the i-th particle, dimensionless
w = inertia factor, dimensionless

Cauchy function that generates a random number with Gguc
distribuition for the “social” component

Gauss a random number generated with Gauss distribution
with average zero and unitary variance

Subscripts
X; position of the particle
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Figure 1. Stages of the Portland cement process production

Fuelsin the Cement Industry

Due to the high heat consumption in the process,ctment
industry always worried about using fuels of lowstgdout without
losing the quality of the final product. One of thléernatives found
to obtain the economy of the energy resources ws do-
processing of industrial wastes, also denominatéernative or
secondary fuels (Hansen, 2003). The process cerisistically in
the replacement of a part of the traditional fuel fesidues
generated by other industries such as useless waste oils and
sludge of hazardous and industrial waste treatn@ntgng others
(Kleppinger, 1993). In Brazil, the cement industrigre using the
petcoke as main fuel due to its low cost jointlthahe industrial
residues (alternative fuels), Fig. 2.
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Figure 2. Fuels employed in cement industries.

Grinding in the Cement Industry

As described previously, the composed cements icoother
added constituents that should be mixed in the eludsclinker
grinding. In this case, the grinded product shdaddnside a certain
granulometry limit in such a way to create bettnditions for the
hardening process (Duda, 1977). Approximately 3% e energy
required to produce a ton of cement is consumetthengrinding.
This is a significant percentage of the total cemoast. The energy
consumed in the mills is in the range of 16,5 5688/Vh/t with an
average of 36 kWh/t (Tokyay, 1999). There is a tiateship
between the required energy in the grinding phasethe specific
surface (Tokyay, 1999). The larger the thinnessth&® cement
(granulomety) is, the bigger will be the specifioface, and as a
consequence, there will be a larger consumptioanefgy (Fig. 3)
(zhang and Napier-Munn, 1995).
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Figure 3. Energy required rate versus specific surface (Tokyay, 1999).

Model Description and M ethodology

Optimization Problem Description

The modeling will use optimization algorithms, ofhish
objective is to assure a better stability of thia kiperation, energy
consumption reduction and environmental impact miz@tion. The
following aspects will be modeled:

a) The effects that the use of alternative fuetsazuse:

- in the clinker quality, through the material ahel chemical
composition;

- in the environment, through the raw material &red emissions of
CO, and SG,

- in the clinker production cost, considering tlaevrmaterial and
fuels costs; obtaining as result a optimum compmsiof raw
material and fuels for the clinker production.

b) The cost and electric power consumption reqdeste the
grinding process for the Portland cement product{@okyay,
1998). The grinded product should be inside a tegenulometry
limit in such a way to create better conditions foe hardening
process (Duda, 1977). The equation that represietselectric
power requested in the grinding process should Xpressed in
function of the specific surface and the mixturatcol modules.

To accomplish the modeling it is necessary to kit input
parameters data (raw materials, fuels, raw masedasts, etc), and
these should be addressed in function of the pexpabjective
getting as results the costs optimization, envirental impact
minimization, among others. In the work of Carpioaé (2005) a
flowchart is presented, which shows the procedba twill be
necessary to accomplish to model the proposedrsy(tig. 4).

Building the M oddl of the Mixture of the Raw M aterials and
Fuels

In order to build the optimization model it is nesary to obtain
data as well as to identify the more important sieci variables that

represent the mixture. These can be obtained regafrtom the raw
material and fuels chemical composition (to see Tadnd Tab. 2).
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Figure 4. Flowchart when the industrial wastes co-processing is employed
(Carpio, 2005).

The mixture optimization should consider the staigeration of
the rotative kiln, the quality of the clinker prozhd, the minimum
cost of the used composition and the electric ppvedir these
variables are considered in the nonlinear modepgsed through
the following objective function, Eq.(1).

Table 1. Meal raw materials chemical composition (% in weight) (Carpio, 2005)

Material | Notation| CaO| Si@ | Al,O; | F&O;3 | MgO | SQ | N&O | K0
Limestone X1 50.66| 5.04 | 1.19 0.67| 0.78 0.1 0.1 03
Clay X 1.23 | 61.62 16.59| 9.01 0.3 0.3 5
Sand % 1.13 | 93.00 2.87 1.20|( 0.10f 0.5 0.5 1
Iron ore X 0.71| 7.60| 1.13| 829}

Table 2. Fuels composition employed as primary and secondary (ABCP, 2002)

Component Mineral. Coal Petcgke Tires gses
% weight % weight | % weight

Notation % Xe X7

C 63.9 80 — 100 72.15

H 3.6 3.5 6.74

S 4.6 05-7.0 1.23

(0] 0.9 9.67

N 1.8 15 0,36

Cl - 0.149

Zinc 0.04 1 -85 ppm

Cadmium 0.001 1 ppm 0.000¢

Lead 0.027 1-10 ppn 0.0065

Thallium 0.0004 1-80ppm 0.00001

Arsenic 0.00017 0.1-10 ppm

LHV [kJ/kg] 25.392 32.447 32.100

Min CostX, +Cost,X, + CostX, + Cost, X, + Cost X +
CostX, - Cost X, + Coste J(5,76(MS)-5,82) M9+ 0985y

@

5.04X, +61.62X, +93X, +7.6X,, +9.32X +1.93X,
1.86X, +25.6X, +4.07X, +84.1X, +12.29X +0.92X,

where MS =

Subject to:

50.60X, +1.23X, +1.13X, +0.71X, +1.03X, +0.93X, > 63.76 (3)

50.60X, +1.23X, +1.13X, +0.71X, +1.03X, +0.93X, < 70.14 (4)

n
C =Y pic-X; +pe.Aexg®S )
i=1 5.04X, +61.62X, + 93X, +7.6X, +9.32X, +1.93X, 219.71 ()
The objective function (C) of the model should toyobtain a 6
minimum cost in the clinker production, consideritige raw 5.04X +61.62X; +93X, +7.6X, +9.32X, +1.93%, < 24.25 ©)
materials costs as well as the consumption of tieegy required for
grinding. 1.19X, +16.59X, +2.87X, +1.13X, +5.08X, +0.79X, >3.76 ™
The first term (linear) represents the raw matsriahd fuels
(primary and alternative) costs used in the clink@duction (p is  1.19X, +16.59X%, +2.87X, +1.13X, +5.08X, +0.79X, <6.78 (8)
the raw materials and fuels costs i = 1,2.....that participate in the
burn with their respective p.ercentagels ) I Xo)- o 0.67X, +9.01X, +1.2X, +82.97X, +7.21X; +0.13X, 21.29 9)
The second term (nonlinear) represents electraost (g) and
the energy consumption required in kWh/t for thedjng process 10
of a certain specific surface (S is the area ofgecific surface in 0.67X+9.01% +1.2X, +82.97X +7.21X +0.13X, <4.64 (10)
cnf/g, A and B are constants that depend on the dlinke
composition). Based on Tab.1 and Tab. 2 valuesoarttie Eq. (1), 0.78X +0.10X,+0,44X, +0.12X, <6.5 (1)
an objective function was set up, which representsts
minimization problem, considering the operationalnda 0.762X, +2.74X, +83.64X, —185.83X, —18.96X, —0.186X, 20 (12)
environmental costs presented as it follows:
-0.018X, +7.5X, -82.011X, +219.47X, +23.88X, +0.554X, 20 (13)
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0.319X, +4.877X, +1.31X, —106.73X, —4.29X, +0.621X, 20  (14)
0.619% +7.737% +0.37X, +222.88% +14.387%-0.439% >0  (15)
38.24X, —155.67X, —173.6X, —164.34X, —37.86X, —4.2X, 20  (16)

-3548X, +19065X, +21243X, +2010X, +4651X, + 534X, 20(17)

25392X, +34436X, +32100X, = 3600 (18)
0.046X, +0.07X, +0.0123X <0.05 19)
0.1X, +3X, +0.5X, =0.20 (20)
0.1X, +3X, +0.5X, <2.07 (21)
0.1X, +0.3X, +0.5X, = 0.03 (22)
0.1X, +0.3X, +0.5X, < 0.33 (23)
0.3X, +5X, + X, 20.31 (24)
0.3X, +5X, +X,<1.76 (25)
AX, +A X, +A,X,<0.10 (26)
B,X, +B X, +B,X, <0.35 (27)
CeX,<0.05 (28)
DX, + DX, +D,X, <0.10 (29)

The Equations from 3 to 10 represent the operdtion
restrictions, where the amount of CaO should s&twéen 62 and
67% Eq.(3) and Eq.(4), Sihetween 19 and 25% Eq.5 and Eq.(6)
Al,O3; between 2 and 9% Eq.(7) and Eq.(8) angdOrdetween 1
and 5% Eq.(9) and Eq.(10). The maximum amount afmasium
should be limited in 6.5% Eq.(11). Equations (12)(17) are the
restrictions of the mixture control modules regagdto the clinker
quality (Carpio et al., 2004). The total fuels feedshould assist the
heat specific consumption presented in Eq. (18) Téstriction
regarding to the sulfur is presented in Eq. (1@ud&ions (20) and
(21) represent the limits for the trioxide of sul{$0;) contained in
the raw material. The restrictions of the Equati(2®) to (25) are
referred to the alkalis in the raw material. Therengolatile and
dangerous heavy metals, such as the cadmium, meatury and
thallium, are controlled by the restrictions of tBgquations (26) to
(29). More details about the restrictions can bentbin Carpio
(2005).

Particle Swarm Optimization M ethod (PSO)

PSO is an approach of collective intelligence (swar
intelligence) and it was developed initially by Kexly and Eberhart
(Kennedy and Eberhart, 1995; Eberhart and Kenndd®g5;
Kennedy et al., 2004) based on the studies of dloéalsbiologist
Edward Osborne Wilson. The proposal of PSO algeritiias put
forward by several scientists who developed conijmrtal
simulations of the movement of organisms such edsHlocks and
fish schools. Such simulations were heavily basednanipulating
the distances between the individuals, i.e., tharswbehavior
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synchrony is seen as an effort to keep an optinstarnce between
them.

In theory, at least, individuals of a swarm mayédférfrom the
prior discoveries and experiences of all the meslméra swarm
when foraging. The fundamental point of developiR§O is a
hypothesis in which the exchange of information agioreatures of
the same species offers some sort of evolutiondvgreage.

PSO presents characteristics similar to the ewwlaty
computation techniques (Goldberg, 1989), which laased on a
population of solutions. However, PSO is motivatbyg the
simulation of social behavior and cooperation amagents instead
of the most capable individual's survival as in #helutionary
algorithms. In PSO, each candidate solution (denatad particle)
has an associated velocity. The velocity is adfudterough an
updating equation that considers the experience tloé
corresponding particle and the experience of thHeerofpresent
particles in the population.

The concept of PSO consists of, to each iteratiep, £hanging
the velocity of each particle towards thbest(personal best) and
gbest(global best) locations. The velocity of the segococedure is
pondered through a generated term in a random imégd in a
separate way of thebestand of thegbestlocations.

The procedure for PSO implementation is governedthey
following stages:

(i) begin a population (matrix) of particles, withositions and
velocity in a space problem af dimensional, randomly with
uniform distribution.

(i) for each particle, evaluate the fitness fuonti (objective
function);

(iif) compare the evaluation of the particle apigfunction with the
pbestof the particle. If the average value is bettantithepbest
then thepbestvalue becomes the value of the aptitude functimsh a
the pbestlocation becomes the same of the current locatiaghen
dimensional space;

(iv) compare the aptitude function evaluation wtle best previous
value of the population aptitude. If the currentueais better than
5he gbest update thebestvalue for the index and current particle
value;

(v) modify the velocity and the position of the fiele in agreement
with the equations (Shi and Eberhart, 1998; Kenretdy., 2001):

Vi =Wy +c ldl{p —x;)+c, Wdlpg —x) (30)
X, = (X +Atlv,) (31)
whereAt is 1.

(vi) go to the stage (ii) until a stop criterionf@und. It is usually
used a pre-defined error or a maximum number ofatittns
(generations).

The used notations are; =[x, x,...x;,|' Which stores the i-th
position of the particle, v, =[vi;, v,,...v,,]t Which stores the i-th
velocity of the particle andy, =[p,,pp....p,]" Which represents the

position of the best fitness value of the i-th jzéet The indexg
represents the index of the best value among ahefparticles of
the group. The variablev is the inertia factor, ,cand ¢ are the
cognitive and social components, respectively, twhire the
acceleration constants responsible for varying pheticle speed
towardspbestandgbest respectively; ud and Ud are two functions
for random numbers generation with uniform disttiba in the
interval [0,1], respectively. The particles velgaitf each dimension
is limited to a maximum value of velocity ¥

The first part in the Eq. 30 is a term of the pdetimoment. The
weighted inertiaw represents the particle moment degree. The
second part consists of the "cognitive" part, whiepresents the

ABCM
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independent "knowledge" of the particle. The thpdrt is the
"social" one, which represents the co-operationragribe particles.

where Cauchy is a function that generates a randiomber with
Cauchy distribution for the "social" component &auss generates

The g and ¢ represent the weighted of the "cognition" anda random number with Gauss distribution with averagro and

"social" parts that influence each particle towpittbstand gbest
These constants are usually adjusted by try anor dreuristics
attempts. The population size is also selected ritipg on the
dimension of the approached problem.

In classical PSO approaches, a uniform probaldligyribution
is used to generate random numbers to update theityesquation.
However, the use of other probability distributionay improve the
ability to fine-tune or even escape from local pi In the
meantime, it has been proposed that the GaussidtoraGauchy
probability distributions be used to generate ramdmumbers to
update the velocity equation (Miranda and Fons2682; Wei et
al., 2002, Secrest et al., 2003; Stacey et al.32@3quivel and
Coello, 2003; Higashi and Iba, 2003; Coelho andhikng, 2005;
Ting et al., 2006; Krohling and Coelho, 2006, Coelind Alotto,
2008; Coelho and Lee, 2008).

The PSO approach proposed in this work, denominat&50-
CG, seeks to modify the equation (30) of the cotiveal PSO for:

v, =wy, +c, [Cauchyp —x, )+c, [GausHp, —x;) (32)

unitary variance for the "cognitive" component &®.

The use of Cauchy distribution in PSO can be ugefidvoid
local minima when the search space is small, wttile Gauss
(normal) distribution (truncated in [0,1] in thisyper) can supply a
faster convergence in local searches when the lsesrace is big
(Chellapilla, 1998).

Resultsand Analysis

Simulation Results

The results for the optimization nonlinear evalomtiusing
conventional PSO, PSO-CG and Sequential Quadredgr&mming
(SQP) are summarized in Table 3 (run 30 experimeitts each
optimization technique). In this case, the requiredemical
composition is sought for a cement type produced iiatative kiln,
dry via, with heat specific consumption of 360Gkér kJ/kg.

Table 3. Equation 2 (30 experiments) objective function optimization results

Optimization method Best Worst Average  Standardad®n | Time*
SQP 4.761624 4.761624 4.7616R4 0.000000 0.023
PSO 4.731781 10.66206 6.177593 2.329706 14.33
PSO-CG 4.713311 5.477078 4.713310 0.316630 22.84

*time (in seconds) to run each experiment in a PC computer

(1,09 GHz AMD 4, 124 MB RAM with Matlab 6.5)

Table 4. Optimization model results employing PSO-CG

Objective Function Oxides compositions in Clinker (%9)  Modulus  Spechigat consumption = 360D
C = US$4.713311/ton (kJ/kg clk*)
Compositions (kg/kg Clk*) Consumption of fuelg(tonclq*)
X1=1.2175 CaO =62.07
X2 =0.2007 Si@ =20.13 MS =2.50 Petroleum Coke 74.1
X3=0.0161 AJOs= 5.22 MA =1.82 Used tires = 28.0
X4 =0.0000 FgOs= 2.86 MH =2.20 * Clk: Clinker
Xs=0.0000 MgO = 0.95
X =0.0741
X7=0.0280

Table 3 presents the medium, minimum, maximum arel t
standard deviation values results. The paramefd?S©® and PSO-
CG used a population of 30 particles=cc, = 2.05; initial weighted
w of 0.729 with linear decline up to 0.400; searglace of the
variables to be optimized in the interval Xs< 3, where n=1,..,7;
Vmax: 20% of the search space of each variable; and musmi
number of generations (stop criterion): 500 gemamat SQP uses a
Hessian matrix approach (of the function Lagranged it uses a
Quasi-Newton's method and line search for mininoradf the cost
function (Fletcher, 1987; Nash and Sofer, 1996; d¥ognd Tolle,
2000).

It is noticed that the obtained results using PS®aBd SQP is
quite close, with a little advantage of PSO-CGeamts of answer
quality. However, SQP, in spite of not finding thgtimum value, is
faster in terms of computational cost and with $enastandard
deviation than PSO and PSO-CG.

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright O 2008

Conclusion and Refer ences

Through the optimization model presented, it issfus to
foresee the raw composition when it is decidedumbesidues as
secondary fuels in cement industries rotary kilhgs also possible
to calculate the substitution levels of the primfargl by alternative
fuel derived from industrial wastes, being considiethe acceptable
pollutant emissions levels (sulfur for example).isTimodel was
shown satisfactory based on the presented resithgr for keeping
the values of chemical composition inside the dqualarameters or
finding smaller production costs. Regarding the imjation
procedure, the results with PSO-CG and SQP wereisereand
promising. The disadvantage of PSO-CG in relatmB8®QP was the
largest computational cost for the convergence.

by ABCM October-December 2008, Vol. XXX, No. 4 / 339
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