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Finite Element Simulation of Viscous 
Fingering in Miscible Displacements 
at High Mobility-Ratios 
Numerical simulations of viscous fingering instabilities in miscible displacements at 
high mobility-ratios are presented. Anisotropic dispersion and monotonic viscosity 
profiles are considered. The coupled set of partial differential equations is 
approximated by the semi-discrete SUPG stabilized finite element formulation plus a 
discontinuity capturing technique to improve stability around the moving sharp fronts. 
The pressure equation is discretized by the standard Galerkin method, and a post-
processing scheme is used to improve the numerical evaluation of Darcy’s velocity. In 
the resulting scheme all variables (concentration, pressure and velocity) are 
approximated by equal order linear triangular elements. A homogeneous channel and a 
radial system were studied. Complex nonlinear viscous fingering mechanisms for high 
mobility-ratio miscible displacements were observed. 
Keywords: viscous fingering, miscible displacement, stabilized finite elements 
 
 
 

Introduction 
1Simulation of miscible displacement flows has been widely 

studied in the past years due to its special importance for the 
petroleum industry. Enhanced oil recovery, solute transport in 
aquifers, packed bed regeneration and recovery of heavy oil and 
bitumen are examples of some applications (Homsy, 1987). Such 
processes involve the injection of a displacing material that is 
miscible with the resident fluid. The displacement of a more viscous 
fluid by a less viscous one leads to a mechanical instability known 
as viscous fingering. This instability is essentially governed by the 
mobility-ratio MR, which is defined as the ratio between the 
viscosity of the displaced fluid and that of the injected. However, 
other important factors also influence the severity of viscous 
fingering: heterogeneous permeability fields, gravity, anisotropic 
dispersion, velocity dependence of dispersion, nonmonotonic 
viscosity profiles, etc. High mobility-ratio displacement processes 
present very complex fingering patterns. Besides finger interaction 
mechanisms, already known for low values of mobility-ratio as 
shielding, spreading, tip splitting, coalescence and fading 
(Manickam and Homsy, 1993, 1994, 1995), other mechanisms 
become dominant at high mobility-ratios. These are named double 
coalescence, side-branching, gradual coalescence, single-sided tip-
splitting, stretched coalescence, trailing lobe detachment, alternating 
side-branching, skewering and dense branching. As a non-
Newtonian fluid is more unstable than its Newtonian counterpart, 
for the same low values of mobility-ratio, in miscible displacements 
with non-Newtonian fluids were also observed some of those 
complex fingering mechanisms (Azaiez and Mohamad, 2004). All 
of these are described by Islam and Azaiez (2005). They study high 
mobility-ratio miscible displacements of Newtonian fluids involving 
isotropic dispersion. 

The miscible displacement involving incompressible fluids in a 
rigid porous medium can be described by different systems of 
equivalent equations. Many authors (Manickam and Homsy, 1993, 
1995; Moissis et al., 1987; Singh and Azaiez, 2001; Tan and 
Homsy, 1986, 1988) consider more convenient and efficient to work 
in terms of vorticity and streamfunction. Coutinho and Alves (1996, 
1999), Loula et al. (1999), Dias and Coutinho (2004), Coutinho et 
al. (2004), Juanes and Patzek (2002, 2004) employ primitive 
variables: pressure, velocity and concentration. 
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When simulating miscible displacements a variety of methods 
was employed, such as finite differences, reported by Christie et al. 
(1991) and Waggoner et al. (1991). Other alternative has been the 
pseudo-spectral methods as, for example, a Hartley transform-based 
scheme used by Zimmerman and Homsy (1991) to simulate 
unstable miscible displacement. They examined the effect of 
anisotropic dispersion on nonlinear viscous fingering. Later 
Zimmerman and Homsy (1991, 1992a) extended these methods to 
three dimensions and performed two dimensional isotropic 
simulations in much broader and longer domains. Manickam and 
Homsy (1994, 1995) also used a Hartley transform based spectral 
method to investigate the nonlinear evolution of viscous fingering 
instabilities in miscible displacement flows with nonmonotonic 
viscosity profiles and later they studied vertical miscible 
displacement flows driven by both viscosity and density contrasts. 
Other works that employ pseudo-spectral methods are Ruith and 
Meiburg (2000) and Singh and Azaiez (2001). The modified method 
of characteristics combined with mixed finite elements is other 
interesting method (Moissis et al., 1987, 1988, and 1993). Other 
method was presented by Fast and Shelley (2004). They developed 
a moving overset grid scheme for simulating the dynamics of fluids 
interfaces. They used a thin body fitted grid that conforms to the 
deforming time dependent boundary and is coupled to fixed 
Cartesian grids. In such a way they obtained high accuracy in the 
interface position. Recently, Wang and Zabaras (2006) use a pair-
wise Markov Random Field (MRF) to model source identification 
in miscible displacements, obtaining accurate solutions. 

Finite differences are used by most of commercial reservoir 
simulators; however, this method presents difficulties to handle 
complex geometries. Pseudo-spectral methods are highly accurate 
and are very efficient in the simulation of the growth of viscous 
fingering in porous media on parallel machines (Mangiavacchi et 
al., 1997). The combination of a finite element modified method of 
characteristics and a mixed finite element method generates a 
method with very little numerical dispersion, but this combined 
method involves different interpolation schemes for pressure, 
velocity and concentration. 

Coutinho and Alves (1996) employed in the simulation of 
miscible displacements in random heterogeneous media a parallel 
finite element method where all variables were approximated by 
equal order interpolations. In this method, pressure is computed by 
the standard Galerkin method, and a global post-processing 
technique (Malta et al., 1995) is used to evaluate velocities. A 
parallel implementation on a distributed memory machine using 
global and also local post-processing techniques to compute higher-
order velocity approximations is described by Loula et al. (1999). 
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When solving the advection dominated concentration equation, the 
interest is in stability and accuracy. Stabilized finite element 
methods are particularly interesting for those cases. Coutinho and 
Alves (1996) adopted the Streamline Upwind Petrov-Galerkin 
(SUPG) formulation, developed by Brooks and Hughes (1982) to 
control spurious numerical oscillations plus a discontinuity 
capturing technique known as Consistent Approximated Upwind 
(CAU), developed by Galeão and do Carmo (1988). The resulting 
semi-discrete equations are approximated in time by a predictor-
multicorrector algorithm with variable time stepping. Coutinho et al. 
(2004) presented a review of the main mathematical results for the 
stabilized solution in both space-time and semi-discrete 
frameworks. Coutinho and Alves (1999) applied the formulation 
described above to simulate viscous fingering in miscible 
displacements. They studied the evolution of viscous fingering in a 
homogeneous media with anisotropic dispersion and also other 
numerical problem with a nonmonotonic viscosity profile. They 
used in both of cases a rectilinear geometry and the same values for 
the aspect ratio, A = 8, the mobility-ratio, MR = 20, and the global 
Peclet number, PeG = 1000. They showed that the formulation is 
able to simulate the evolution of viscous fingering in different 
physical situations achieving good parallel performance. 

In this work, we study the ability of the formulation (Coutinho 
and Alves, 1996; 1999; Dias and Coutinho, 2004; Coutinho et al., 
2004) described above to simulate some very high mobility-ratio 
displacement processes (MR = exp(6)). At this time, we use two 
different geometries: a rectilinear Hele-Shaw cell and a radial case, 
where we use unstructured grids. We considered only anisotropic 
dispersion for both numerical examples. We observed when 
comparing our results with other works, Azaiez and Mohamad 
(2004), Islam and Azaiez (2005) and Sharon et al. (2003) that the 
stabilized finite element method applied here is able to represent 
correctly the mechanisms of viscous fingering related to the case of 
high mobility-ratio miscible displacements. 

The remainder of this paper is organized as follows. In the next 
section, we briefly present the mathematical formulation adopted. 
Section 3 shows the semi-discrete stabilized finite element 
formulation for the spatial discretization of the governing equations. 
Also, in this section, we briefly describe the velocity post-
processing technique and the time integration scheme. Two 
numerical examples are analyzed in the next section. Both are 
miscible displacement flows with monotonic viscosity profiles at 
high mobility-ratios. The first one is a rectilinear Hele-Shaw cell, 
and the other a radial cell. The paper ends with the summary of our 
observations and main conclusions, in section 5. 

Nomenclature 

A = aspect ratio, dimensionless 
D// = longitudinal dispersion coefficient, dimensionless 
D⊥ = transversal dispersion coefficient, dimensionless 
H = characteristic width of the domain, dimensionless 
L = characteristic length of the domain, dimensionless 
MR = mobility-ratio, dimensionless 
Pe = Peclet number, dimensionless 
R  = constant used in the definition of the MR, dimensionless 
U = characteristic velocity of the fluid, dimensionless 
Greek Symbols 
Ω = domain 
Γ = boundary 
φ = porosity of the porous medium, dimensionless 
σ  = stability parameter to the post-processed velocity, 

dimensionless 
δ = nonlinear diffusion parameter, dimensionless 

τ = SUPG stability parameter, dimensionless 
η = penetration disturbance, dimensionless 
ζ  = magnitude of the concentration disturbance, 

dimensionless 
Subscripts 
// relative to the longitudinal direction or the parallel 

gradient direction of the solution 
⊥ relative to the transverse direction 
0 relative to initial time 
e relative to the element  

c relative to the concentration magnitude  
t relative to post-processing 
G relative to global 
1 relative to the Cartesian component x 
2 relative to the Cartesian component y 

Governing Equations 

The mathematical model for the miscible displacement of one 
incompressible fluid by another, in a rigid porous medium, can be 
described by a system of partial differential equations (Peaceman, 
1977). These equations in a domain 2Ω R∈  with boundary Γ at a 
time interval [0, T] can be written as: 

 
q∇ ⋅ =v  on Ω × [0, T] (1) 

 
( ).c p= − ∇v A  on Ω × [0, T] (2) 

 

ˆ( ( ) )c c c cq
t

φ ∂
+ ∇ ⋅ − ⋅∇ =

∂
v D v  on Ω × [0, T]  (3) 

 
where v is the total Darcy velocity of the fluid mixture, p its 
pressure, c its concentration and φ the porosity of the porous 
medium. The tensor A(c) is given as 

 

( )
( )

c
cμ

=
KA  (4) 

 
where K is the position-dependent absolute permeability tensor and 

( )cμ  is the viscosity of the fluid mixture, which depends on its 
concentration c. 

 
The anisotropic diffusion-dispersion tensor ( )D v  is 
 

1 2 / / 1 2
2

2 1 2 1

01( )
0

v v D v v
v v D v v⊥

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

D v
v

  (5) 

 
where v1, v2 are the Cartesian velocity components, and / /D  and 
D⊥  are respectively the longitudinal and transverse dispersion 
coefficients. The wells are represented by source and sink terms 
denoted by q. The function ĉ  is specified at the sources and is equal 
to the resident concentration at the sinks.  

We assume the usual no-flow boundary conditions 
 

0  in  , [0, ]t T⋅ = Γ ∀ ∈v n   (6) 
 

where n is the unit outward normal. The initial and boundary 
concentration conditions are known, 

 

0( ,0) ( )   on   c c= Ωx x   (7) 
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( ) . 0   on   , 0,  c t T∇ = Γ ∀ ∈⎡ ⎤⎣ ⎦D v n   (8) 
 
Uniqueness for pressure solution is ensured imposing the 

normalization condition, 
 

( , ) 0,    0,p t d t T
Ω

Ω = ∀ ∈⎡ ⎤⎣ ⎦∫ x   (9) 

 
The viscosity µ(c) in Eq. (4) is assumed, as in Tan and Homsy 

(1992), to vary exponentially with the concentration, that is, 
 

( ) Rcc eμ −=   (10) 
 

where R is a constant such that  
 

RMR e=   (11) 
 

being MR the mobility-ratio, or the ratio between the viscosities of 
the resident and the displacing fluids. It is important to note that 
when MR > 1, nonlinear effects associated to the coupling of the 
equations and the convective term strongly influence stability and 
accuracy of numerical approximations. 

Finite Element Formulation 

Finite Element Discretization 

In this section, we present the semi-discrete stabilized finite 
element formulations applied to the governing equations for 
miscible displacements. The semi-discrete formulation is 
characterized by a finite element discretization in space followed by 
a finite difference discretization in time. The Galerkin formulation 
is applied to the pressure equation and the SUPG formulation 
(Brooks and Hughes, 1982) plus the discontinuity-capturing 
operator CAU (Consistent Approximated Upwind) developed by 
Galeão and do Carmo (1988) is employed in the concentration 
equation. 

We consider the space domain Ω divided in nel elements, Ωe, 
e = 1, 2… nel, where Ω = nel

e 1=U  Ωe and Ωi I Ωj = ø. We associate 
to this discretization the standard conforming set of piecewise trial 
and weighting finite elements spaces. Then, by substituting (2) in 
(1) and introducing the finite element approximation, the classical 
Galerkin formulation for the pressure equation is written as 

 

( )
h hh hw c p d w qd

Ω Ω
∇ ⋅ ∇ Ω = Ω∫ ∫A   (12) 

 

where hw  is the discrete weighting function for pressure and hp  is 
the discrete pressure. 

The weak variational approximation for the concentration 
equation is written as 

 

1

1

( )

( )

ˆ( )

e

e

h h
c

nel
h h e h

c
e
nel

h h h h h
c c

e

w L c d

w R c d

c w c d w c qd

τ

δ

Ω

Ω
=

Ω Ω
=

Ω +

⋅∇ Ω +

∇ ⋅∇ Ω = Ω

∫
∑∫

∑∫ ∫

v

  (13) 

 

where h
cw  is the weighting function for concentration and hc  is the 

discrete concentration. The differential operator ( )hL c  is given by 
 

( ) ( ( ) )
h

h h h h hcL c c c
t

φ ∂
= + ∇ ⋅ − ∇

∂
v D v   (14) 

 
and the element level discrete residual is defined as, 

 

ˆ( ) ( )e h h hR c L c c q= − .  (15) 
 
The first integral in Eq. (13) is the Galerkin term, the first 

summation of element-level integrals is the SUPG advection 
stabilization term and the second is the discontinuity-capturing term, 
needed to add stability around the moving sharp concentration 
fronts. In the case of advection-dominated flows with no gravity 
effects and using linear elements, the particular form of the SUPG 
parameter τ  (Brooks and Hughes, 1982) is defined below: 

 

1 ,1.0
2 3

e e

h
e

h Peminτ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠v

  (16) 

 

where ePe  is the local Peclet number defined as 
 

( )

3
1
2

h
ee e
Th h

e e

Pe h=
v

v Dv
  (17) 

 

being eh  an estimate of the element size 
 

2e eh A=   (18) 
 

where eA  is the element area, and h
ev  the velocity in the element. 

The form of the nonlinear diffusion parameter δ  (Coutinho and 
Alves, 1999) in the CAU operator is as follows: 

 

/ /
( )1 ,0.7

2 3

e he
e

h

R cPeh min
c

δ
⎛ ⎞
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  (19) 
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/ / / /

1
2

h
ee e
Th h

e e

Pe h=
v

v Dv
  (20) 

 

/ / 2

h h
h he
e

h

c c
c

⋅∇
= ∇

∇

vv   (21) 

 

where / /
ePe  is the local Peclet number correspondent to / /

h
ev  

which is the velocity projected in the parallel gradient direction of 

the solution, hc∇ . Note that δ = 0 when hc∇  is zero. 

 
 
 



Finite Element Simulation of Viscous Fingering in Miscible Displacements at High Mobility-Ratios 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2010 by ABCM July-September 2010, Vol. XXXII, No. 3 / 295 

Velocity Post-Processing  

When simulating miscible displacements the velocity computed 
directly from Darcy’s law is less accurate than the other variables. 
Post-processing schemes may be used to obtain better 
approximations. Here, we adopted the global post-processing 
scheme of Malta et al. (1995). This scheme is based on the 
combination of Darcy’s law variational formulation and the residue 
of the mass conservation equation. Given the pressure ph and the 
concentration ch and defining 

 
1 1{ ( ) ( ), 0h h h h hU H H∈ ∈ Ω × Ω ⋅ =w w n  in }Γ   (22) 

 

where 2Ω R∈  is a domain with boundary Γ , the velocity post-

processing consists in finding h h
t U∈v%  such as h hU∀ ∈w  we 

have 
 

1

1

( ) ( ) 0
nel

h h h e h h e
t n t

e
ep d q dσ−

Ω Ω
=

⋅ + ∇ Ω + ∇ ⋅ ∇ ⋅ − Ω =∑∫ ∫w A v w v% %

  (23) 
 

where H1h(Ω) is the usual finite elements space of finite dimension 
functions, the magnitude h

tv%  is the post-processed velocity and 
 

1
2e MRσ τ=   (24) 

 
This technique gives higher order rates of convergence for the 

recovered velocity, which are even better than those obtained with 
mixed formulations (Arbogast and Wheeler, 1995), Douglas et al. 
(1983). Using this approach, the problem variables, pressure, 
velocity and concentration are approximated by standard equal 
order interpolations. Stable and accurate finite element 
approximations are obtained for the concentration combining this 
post-processing technique to compute velocity with the SUPG 
formulation for the transport equation. It is also important to note 
that other alternative techniques can also be employed. Loula et al. 
(1999) employed both global and local post-processing techniques 
to compute higher-order approximations. Local post-processing is a 
generalization of the global post-processing based on least-squared 
residual of the balance equation, irrotationality condition and 
Darcy’s law at some special points of superconvergence of the 
gradient. Other possibilities are, for example, a mixed stabilized 
finite element method with two stabilized variational formulations 
(Masud and Hughes, 2002). The first accommodates continuous 
velocity and pressure interpolations and the second accommodates 
continuous velocity and discontinuous pressure. Recently, Bochev 
et al. (2006) compare four different finite element methods for the 
Darcy equations and each one uses velocity and pressure 
approximations of the same interpolation order. 

Time-Marching Algorithm 

The concentration time-derivatives are approximated by the 
generalized trapezoidal rule (Hughes, 1987). Thus, we obtain the 
following block-iterative predictor-multicorrector algorithm to 
advance the solution in time: 

• Block 1: Solve Pressure Equation 
• Block 2: Compute Post-Processed Velocity Field 
• Block 3: Solve Concentration Equation 

The iterative process continues up to some convergence criteria 
is met. In this algorithm the linear system of equations 

corresponding to the pressure equation is solved by preconditioned 
conjugate gradients while that corresponding to the concentration 
equation is solved by the preconditioned GMRES algorithm. An 
element-by-element Gauss Seidel preconditioner is used in both 
cases. The systems of equations corresponding to the velocity post-
processing are solved using simple Jacobi iterations. Here we use 
variable time steps due to the strong nonlinear coupling between the 
pressure and concentration equations. We use an automatic time-
step selection strategy based on the feedback control theory as 
presented in Coutinho and Alves (1996, 1999) and Valli et al 
(2005). The most time consuming step in the block-iterative scheme 
is solving for pressure. This usually accounts for more than half the 
CPU time. 

Numerical Experiment 

Numerical simulations of high mobility-ratio Newtonian 
miscible displacements in homogeneous media with anisotropic 
dispersion and monotonic viscosity profiles are presented. A 
rectilinear and a radial Hele-Shaw cell are studied.  

Rectilinear Hele-Shaw Cell 

We simulate a miscible displacement flow with anisotropic 
dispersion as investigated by Zimmerman and Homsy (1991, 1992a, 
1992b) and also by Coutinho and Alves (1999). The resulting 
governing equations were scaled in the same manner as in the 
previous works. The dispersion coefficients and dimensionless 
parameters are also defined by Zimmerman and Homsy (2006). 

The computational domain is a rectilinear Hele-Shaw cell, with 
an aspect ratio A = 4 being A = 2L/H, where L and H are 
respectively the characteristic length and width of the computational 
domain. The mobility-ratio was set with a high value: MR = 
exp(6.0), and global Peclet number, PeG = 1000, being 

 
PeG = 2UL/ / /D   (25) 
 

where U is the characteristic velocity of the fluid. The initial 
condition for concentration is 

 
2 2

0( ) ( )exp( / )c x c f x xζ η= + −%   (26) 
 

where f(x) is a random function, ζ  is a magnitude of the 
concentration disturbance, and η  is the penetration of the 
disturbance. We adopted 0.01ζ = , Lη =  and,  

 
1, 0
0, 0

x
c

x L
=⎧

= ⎨ < ≤⎩
%   (27) 

 
The computational domain dimensions are: characteristic length 

L = 500 and characteristic width H = 125. This domain was 
discretized in 256 x 1024 cells, each cell subdivided into 4 triangles 
in a diamond pattern, generating a structured mesh with 525,569 
nodes and 1,048,576 elements. We study the viscous fingering 
behavior at the channel inflow. The simulation time was 860 time 
units. At this time, the fingers had not reached the end of the 
channel, but this period was enough for observing the development 
of viscous fingering mechanisms. 

We can observe here classical nonlinear interaction mechanisms 
as reported by Zimmerman and Homsy (1991, 1992a, 1992b) and 
by Coutinho and Alves (1999). These mechanisms are: shielding, 
where a finger that noses ahead shields the growth of the 
neighboring fingers; finger fading, where a finger fades in 
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concentration; coalescence, where the tip of the coalescing finger 
bends and merges into the nearest shielding finger; pairing, 
produced by the action of a pairwise mechanism upon the 
microscopic fingers causing them to merge and tip splitting, where 
the streamwise directed shielding finger spreads at the tip and splits 
into two even fingerlets; the wider part spreads and goes through 
another tip-splitting mechanism, and the process continues. We may 
also find other more complex mechanisms observed for miscible 
displacements involving two non-Newtonian fluids, as described by 
Azaiez and Mohamad (2004), and all of them are identified by 
Islam and Azaiez (2005), even though they simulate high mobility-
ratio miscible displacement flow with isotropic dispersion. We can 
clearly observe in Figs. 1, 2 and 3 two different types of 
mechanisms: coalescence and splitting of branches. Depending on 
their specific features, each mechanism, within these two wide 
categories, adopts a suitable name. Examples of first group are: 
double coalescence, where two fingers adjacent to a longer finger 
approximate into its base and merge into it slowly; gradual 
coalescence, where a slightly inclined finger gradually merges into 
the closest one and it continues development inside of it and 
stretched coalescence, where a shielding finger is bordered of both 
sides and mixtures with the adjacent fingers. The second group 
contains the following mechanisms: side branching, where a 
shielding finger edge develops; it merges in the closest finger 
continuing developing inside of it; single-sided tip-splitting, where a 
shielding finger splits in two branches always for the same side; 
alternating side-branching, where a branch separates in other 
branches alternately for each side; skewering, where the edge of a 
shielding finger develops; and dense branching, where a branch 
separates in several branches simultaneously. 

Numerical solutions for concentration are shown in Figs. 1 and 
2 respectively for two different time sequences, at the simulation 
beginning and at an intermediate time. Figure 3 shows a 
configuration at the end of simulation. All figures were scaled up 
for better appreciating the viscous fingering mechanisms. In all 
Figures we provide concentration contours in the range [0, 1]. 

We observed here, besides classical viscous fingering 
instabilities, some of the nonlinear interaction mechanisms that 
appear in miscible displacements involving two non-Newtonian 
fluids, as reported by Azaiez and Mohamad (2004) and also in Islam 
and Azaiez (2005), in this case for miscible displacements at high 
mobility-ratio with isotropic dispersion. Thus, in Fig. 1 we can 
observe mechanisms as double coalescence (DC) and single-sided 
tip-splitting (STS). In Fig. 2, at a later time, we observe side-
branching (SB) and gradual coalescence (GC) and, in Fig. 3, we can 
appreciate trailing lobe detachment mechanism (TLD). We also 
observed in Fig. 3 that there are some branches significantly more 
developed than the rest. This type of behavior was also observed in 
non-Newtonian fluids with low values of mobility-ratio (Azaiez and 
Mohamad, 2004). These observations suggest that Newtonian high 
and non-Newtonian low mobility-ratio flow displacements develop 
similar instability patterns. 

Here, we also show some computational data to illustrate the 
difficulties encountered in simulations of this type. Figures 4 and 5 
present respectively the number of block iterations within each time 
step and the sequence of time steps produced by the automatic 
stepsize control algorithm. Note in Fig. 4 that 4 to 6 block iterations 
are needed. In the simulation beginning the time step is small, but as 
the solution progresses, the time steps vary orders of magnitude 
because of the fast development of complex fingering mechanisms, 
as shown in Fig. 5.  

 

 
Figure 1. Concentration contours for a time sequence at the simulation 
beginning showing double coalescence (DC) and single-sided tip-splitting 
(STS) fingering mechanisms – MR = exp(6.0), PeG = 1000 and A = 4. 

 

 
Figure 2. Concentration contours for a time sequence at an intermediate 
simulation time showing side-branching (SB) and gradual coalescence 
(GC) fingering mechanisms – MR = exp(6.0), PeG = 1000 and A = 4. 

 

 
Figure 3. Concentration contours at the end of simulation showing trailing 
lobe detachment (TB) fingering mechanism – MR = exp(6.0), PeG = 1000 
and A = 4. 
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Figure 4. Non linear iterations within each time step. 

 

 
Figure 5. Time step size variation. 

Radial Hele-Shaw Cell 

We also analyze other miscible displacement flow with 
anisotropic dispersion following again Zimmerman and Homsy 
(1991, 1992a, 1992b). Here, the difference is that we study viscous 
fingering mechanisms in a radial geometry. As in the rectilinear case, 
PeG = 1000 and MR = exp(6.0). It was also employed a random initial 
condition. The computational domain is a radial configuration with 
internal radius Ri = 5.0 and external radius Re = 500.0. We employ an 
unstructured mesh with 99,217 nodes and 197,634 elements. A mesh 
detail around the internal radius is shown in Fig. 6. 

 

 
Figure 6. Finite element mesh detail around internal radius. 

 
The initial random condition for concentration is 

 
2 2

0 ( ) ( )exp( / )c c fζ η= + −r r r%   (28) 
 

where r is the position vector in polar coordinates, f (r) is a random 
function, ζ  and η  are respectively the disturbance magnitude and 
penetration. We adopted 0.01ζ = , eRη =  and 

 
1, 0 2
0, 0 2

i

i e

r R
c

R r R
θ π

θ π
= ≤ <⎧

= ⎨ < ≤ ≤ <⎩
%   (29) 

 
The simulation time was 972 time units. We show results for 

respectively two different time intervals in Figs. 7 and 8: one at the 
simulation beginning and the other at the simulation end. Each time 
interval contains a sequence of three different time instants in each 
figure that were scaled up for better appreciating the viscous 
fingering features; in both figures we present concentration contours 
in the range [0, 1]. 

The numerical results obtained present similar behavior patterns 
when compared with experimental and other numerical results 
(Sharon et al., 2003). We also observed, as for the rectilinear case, 
similar viscous fingering mechanisms observed for miscible flow 
displacements involving two non-Newtonian fluids, as described by 
Azaiez and Mohamad (2004) and also in Islam and Azaiez (2005), 
in this case for miscible displacements at high mobility-ratio with 
isotropic dispersion. 

We can observe mechanisms as alternating side-branching 
(ASB) and trailing lobe detachment (TLD) in Fig. 7. We also 
observed side-branching and gradual coalescence in Fig. 8. 

 

 
Figure 7. Concentration contours for a time sequence at the simulation 
beginning showing alternate side-branching (ASB) and trailing lobe 
detachment (TB) fingering mechanisms – MR = exp(6.0) and PeG = 1000. 

 

 
Figure 8. Concentration contours for a time sequence at the simulation 
end showing side-branching (SB) and gradual coalescence (GC) fingering 
mechanisms – MR = exp(6.0) and PeG = 1000. 

 
Here, we also show some computational data. Figure 9 presents 

the sequence of time steps produced by the automatic step size 
control algorithm. Differently from the rectangular Hele-Shaw cell, 
here we note a step size increase at early simulation times and as the 
solution progresses and the finger mechanisms evolve, the step size 
diminishes. The number of block-iterations also increases in the 
initial steps until 6 block-iterations per step, and remains fixed until 
the end of the simulation.  
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TLD 
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Figure 9. Time step evolution. 

Conclusions 

In this paper, it was presented numerical simulations to observe 
viscous fingering patterns in miscible displacements at high 
mobility-ratios. We studied numerically two different geometries: a 
rectilinear and a radial Hele-Shaw cell. The numerical results for 
both cases point out that, besides classical mechanisms of viscous 
fingering, other types of mechanisms become dominant at large 
values of mobility-ratios. They are double coalescence, side-
branching, gradual coalescence, single-sided tip-splitting, trailing 
lobe detachment and alternating side-branching. Some of these 
mechanisms, already identified in non-Newtonian fluids with low 
values of mobility-ratio, are reported by Azaiez and Mohamad 
(2004). All of them are identified by Islam and Azaiez (2005) that 
studied high mobility-ratio miscible displacement of Newtonian 
fluids involving isotropic dispersion, using a different numerical 
approach.  

Therefore, the stabilized finite element formulation applied here 
was able to represent correctly the several complex mechanisms of 
viscous fingering related to high mobility-ratio as already observed 
by others in miscible displacement flows. 

New stabilized formulations have been developed for Darcy 
flow in recent years. Some examples are space-time formulations, as 
in Coutinho et al. (2004), a mixed stabilized finite element method 
presented by Masud and Hughes (2002), four different finite 
element methods using velocity and pressure approximations of the 
same order described by Bochev et al. (2006) and multi-scale finite 
element formulations reported by Juanes and Patzek (2002). We 
want to point out that these stabilized formulations applied to 
complex problems, as the case of this paper, would be a great 
advance. In such a way we expect that the range of the mobility-
ratio value will be extended even more.  

Acknowledgements 

This work is partly supported by CNPq grant 303645/02-4. Ms 
Sesini is supported by CNPq grant 140680/02-0, while Mr. Souza is 
supported by ANP grant 2001.0070-7. 

References 
Arbogast T., Wheeler M.F., 1995, “A characteristic-mixed finite 

element method for advection-dominated transport problem”, SIAM J. 
Numer. Anal., Vol. 32, pp. 404-410.  

Azaiez, J. and Mohamad, A.A., 2004, “Fingering instabilities in 
miscible displacement flows of non-Newtonian fluids”, Journal of Porous 
Media, Vol. 7, pp. 29-40. 

Bochev, P.B., Dohrmann, C.R., 2006, “A computational study of 
stabilized, low-order C0 finite element approximations of Darcy equations”, 
Comput. Mech., Vol. 38, pp. 323-333. 

Brooks, A.N. and Hughes, T.J.R., 1982, “Streamline upwind/Petrov-
Galerkin formulation for convection dominated flows with particular 
emphasis on the incompressible Navier-Stokes equations”, Computer 
Methods in Applied Mechanics and Engineering, Vol. 32, pp. 199-259. 

Christie, M.A., Muggeridge, A.H., Barley J.J., 1991, “3D simulation of 
viscous fingering and WAG schemes”, SPE 31238, Proc. 11th SPE 
Symposium on Reservoir Simulation, Anaheim, CA. 

Coutinho, A.L.G.A., Alves, J.L.D., 1996, “Parallel finite element 
simulation of miscible displacement in porous media”, SPE Journal, Vol. 4, 
No. 1, pp. 487-500. 

Coutinho, A.L.G.A., Alves, J.L.D., 1999, “Finite element simulation of 
nonlinear viscous fingering in miscible displacements with anisotropic 
dispersion and nonmonotonic viscosity profiles”, Computational Mechanics, 
Vol. 23, pp. 108-116. 

Dias, C.M., Coutinho, A.L.G.A., 2004, “Stabilized finite element 
methods with reduced integration techniques for miscible displacements in 
porous media”, Int. J. Numer. Meth. Engrg.., Vol. 59, pp. 475-492. 

Coutinho, A.L.G.A., Dias, C.M., Alves, J.L.D., Landau, L., Loula, 
A.F.D., Malta, S.M.C., Castro, R.G.S., Garcia, E.L.M., 2004, “Stabilized 
methods and post-processing techniques for miscible displacements”, 
Comput. Methods Appl. Mech. Engrg., Vol. 193, pp. 1421-1436. 

Douglas, J.Jr., Ewing, R.E., Wheeler, M.F., 1983, “The approximation 
of the pressure by a mixed-method in the simulation of miscible 
displacement”, R.A.I.R.O. Analyse Numer., Vol. 17, pp. 17-33. 

Fast, P. and Shelley, M.J., 2004, “A moving overset grid method for 
interface dynamics applied to non-Newtonian Hele-Shaw flow”, Journal of 
Computational Physics, Vol. 195, pp. 117-142. 

Galeão, A.C., Carmo, E.G.D., 1988, “A consistent approximate upwind 
Petrov-Galerkin method for convection-dominated problems”, Computer 
Methods in Applied Mechanics and Engineering, Vol. 68, pp. 83-95. 

Homsy, G.M., 1987, “Viscous fingering in porous media”. Ann. Rev. 
Fluid Mech., Vol. 19, pp. 271-311. 

Hughes, T.J.R., 1987, “The Finite Element Method”, Prentice-Hall, 
Englewood Cliffs. 

Islam, N., Azaiez, J., 2005, “Fully implicit finite difference-pseudo 
spectral method for the simulation of high mobility-ratio miscible 
displacements”, Int. J. Num. Meth. Fluids, Vol. 47, pp. 161-183. 

Juanes, R., Patzek, T.W., 2002, “Multiple-scale stabilized finite 
elements for the simulation of tracer injections and waterflood”, In: 
SPE/DOE 13th Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 
SPE 75231. 

Juanes, R., Patzek, T.W., 2004, “Multiscale-stabilized finite element 
methods for miscible and immiscible flow in porous media”, Journal of 
Hydraulic Research, Vol. 42, pp. 131-140 Sp. SI. 

Loula, A.F.D., Garcia, A.L.M., Coutinho, A.L.G.A., 1999, “Miscible 
displacement simulation by finite element methods in distributed memory 
machines”, Comput. Methods Appl. Engrg., Vol. 174, pp. 339-354.  

Malta, S.M.C., Loula, A.F.D., Garcia, A.L.M, 1995, “A post-processing 
technique to approximate the velocity filed in miscible displacement 
simulations”, Matemática Contemporânea, Vol. 8, pp. 239-268. 

Mangiavacchi, N., Coutinho, A.L.G.A. and Ebecken, N.F.F., 1997, 
“Parallel pseudo-spectral simulations of nonlinear viscous fingering in 
miscible displacements”, In: “Offshore Engineering”, edited by FLLB 
Carneiro et al., Computational Mechanics Publications, Southampton, UK, 
pp. 497-506. 

Manickam, O., Homsy, G.M., 1993, “Stability of miscible 
displacements in porous media with nonmonotonic viscosity profiles”, Phys. 
Fluids A, Vol. 5, pp. 1356-1367. 

Manickam, O., Homsy, G.M., 1994, “Simulation of viscous fingering in 
miscible displacements with nonmonotonic viscosity profiles”, Phys. Fluids, 
Vol. 6, pp. 95-107. 

Manickam, O., Homsy, G.M., 1995, “Fingering instabilities in vertical 
miscible displacements flows in porous media”, J. Fluid Mech., Vol. 288, 
pp. 75-102. 

Masud, A., Hughes, T.J.R., 2002, “A stabilized mixed finite element 
method for Darcy flow”, Comput. Methods Appl. Mech. Engrg., Vol. 191, 
pp. 4341-4370. 

Moissis, D.E., Miller, C.A., Wheeler, M.F., 1987, “A parametric study 
of viscous fingering”. In: “Numerical Simulation in Oil Recovery”, edited by 
M.F. Wheeler, Springer-Verlag, New York, pp. 227-249. 

Moissis, D.E., Miller, C.A., Wheeler, M.F., 1988, “A parametric study 
of viscous fingering in miscible displacement by numerical simulation”, 
Numerical Simulation in Oil Recovery, Vol. 11, pp. 227-247. 



Finite Element Simulation of Viscous Fingering in Miscible Displacements at High Mobility-Ratios 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2010 by ABCM July-September 2010, Vol. XXXII, No. 3 / 299 

Moissis, D.E., Wheeler, M.F., Miller, C.A., 1993, “Simulation of 
miscible displacements viscous fingering using a modified method of 
characteristics: effects of gravity and heterogeneity”, SPE Reservoir 
Advanced Technology Series, Vol. 1, pp. 62-72. 

Peaceman, D., 1977, “Fundamentals of Numerical Reservoir 
Simulation”, Elsevier, Amsterdam. 

Ruith, M., Meiburg, E., 2000, “Miscible rectilinear displacements 
with gravity override, part 1, homogeneous porous medium”, J. Fluid 
Mech., Vol. 420, pp. 225-257. 

Sharon, E., Moore, M.G., McCormick, W.D. and Swinney, H.L., 2003, 
“Coarsening of fractal viscous fingering patterns”, Phys Rev Lett, Vol. 91, 
pp. 205-504. 

Singh, B., Azaiez, J., 2001, “Numerical simulation of viscous fingering 
of shear-thinning fluids”, Can. J. Chem. Engg., Vol. 79, pp. 961-967. 

Tan, C.T., Homsy, G.M., 1986, “Stability of miscible displacements in 
porous media: rectilinear flow”, Phys. Fluids, Vol. 29, pp. 39-45. 

Tan, C.T., Homsy, G.M., 1988, “Simulation of nonlinear viscous fingering 
in miscible displacement”, Phys. Fluids, Vol. 31, No. 6, pp. 1330-1338. 

Tan, C.T., Homsy, G.M., 1992, “Viscous fingering with permeability 
heterogeneity”, Phys. Fluids A, Vol. 4, No. 6, pp. 1099-1101. 

Valli, A.M.P, Carey, G.F., Coutinho, A.L.G.A., 2005, “Control strategies 
for timestep selection in finite element simulation of incompressible flows and 
coupled reaction-convection-diffusion processes”, International Journal for 
Numerical Methods in Fluids, Vol. 47, No. 3, pp. 201-231. 

Waggoner, J.R., Castillo, J.L., Lake, L.W., 1991, “Simulation of EOR 
processes in stochastically generated permeable media”, Proc. 11th SPE 
Symposium on Reservoir Simulation, Anaheim, CA, 351-60. 

Wang, J., Zabaras, N., 2006, “A Markov random field model of 
contamination source identification in porous media flow”, International 
Journal of Heat and Mass Transfer, Vol. 49, No. 5-6, pp. 939-950. 

Zimmerman, W.B., Homsy, G.M., 1991, “Nonlinear viscous fingering in 
miscible displacements with anisotropic dispersion”, Phys. Fluids A, Vol. 3, 
pp. 1859-1872. 

Zimmerman, W.B., Homsy, G.M., 1992a, “Three-dimensional viscous 
fingering: a numerical study”, Phys. Fluids A, Vol. 4, pp. 1901-1914. 

Zimmerman, W.B., Homsy, G.M., 1992b, “Viscous fingering in 
miscible displacements: unification of effects of viscosity contrast, 
anisotropic dispersion, and velocity dependence of dispersion on nonlinear 
finger propagation”, Phys. Fluids A, Vol. 4, pp. 2348-2359. 

 


