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Virtual Kinematic Chains to Solve the 
Underwater Vehicle-Manipulator 
Systems Redundancy  
This paper addresses the kinematics of the Underwater Vehicle-Manipulator Systems 
(UVMSs). Due the adittional degrees of freedom (dofs) provided by the vehicle, such 
systems are kinematically redundant, i.e. they possess more dofs than those required to 
execute a given task, and need to be solved using some redundancy technique. We present 
an approach based on introducing kinematic constraints. The approach uses the screw 
representation of movement and is based on the so-called Davies method used to solve the 
kinematics of closed kinematic chains. We describe the vehicle-manipulator system as an 
open-loop chain and present a virtual kinematic chain concept that allows closing this 
open chain. Applying the Davies method to this resulting closed chain, the UVMS direct 
kinematic is solved. The inverse kinematics is obtained using the same approach, by 
introducing extra constraints derived from energy savings requirements. The proposed 
approach is compared to another redundancy resolution method to illustrate the ability of 
the proposed strategy. 
Keywords: UVMS , redundancy , screws, kinematic chains 
 
 
 

Introduction 

Underwater robotics is a technological field with increasing 
impact in the exploration of the ocean’s resources in the next 
decades. These systems are important in a number of shallow and 
deep-water missions for marine science, oil and gas, survey, 
exploration and military applications. Nowadays, most of the 
operations listed above are achieved by manned underwater vehicles 
or remotely operated vehicles; in case of manipulation tasks, those 
are performed resorting to remotely operated master/slave systems.  

The use of manned vehicles is limited by two factors: cost and  
human risk. In hostile environments, remotely operated vehicles are 
an option but they demand a skilled operator to perform the task 
using a joystick. Beside the fact that the operator must be well 
trained, underwater communication is hard and a significant delay in 
the control is experienced. Because of this the aim of the research is 
to progressively make it possible perform such missions in a 
completely autonomous way (Antonelli, 2004).1 

It is common to classify the underwater vehicles as Remotely 
Operated Vehicles (ROVs) and Autonomous Underwater Vehicles 
(AUVs). The term ROV denotes an underwater vehicle physically 
linked, via the tether, to an operator that can be on a submarine or 
on a surface ship. The tether gives power to the vehicle as well as 
closes the manned control loop. AUVs, on the other side, are 
supposed to be completely autonomous, thus relying to onboard 
power systems and artificial intelligence. These two types of 
underwater vehicles share some control problems and, sometimes 
are named Unmanned Underwater Vehicles (UUVs). In missions 
that require interaction with the environment, the vehicle can be 
equipped with one or more manipulators. In this case the system is 
usually called Underwater Vehicle-Manipulator System (UVMS). 

Fossen (1994) is one of the first books dedicated to control 
problems of marine systems. The same author presents in (Fossen, 
2002) an updated and extended version of the topics developed in 
the previous book. Antonelli (2003) is another book entirely 
dedicated to control problems of a manipulator mounted on a free 
floating underwater vehicle and, besides an extensive review, 
outlines that this subject is an emerging topic in research. 
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In recent years, various research results have enabled the 
increasing of the vehicles autonomy by minimizing the need for the 
presence of human operators. A self-contained, intelligent, decision-
making AUV is the goal of current research in underwater robotics. 
In this sense, Yuh and West (2001) present the state of the art of 
several existing AUVs and their control architectures. UVMSs are 
still under development. Several laboratories built some 
manipulation devices on underwater structures but very few of them 
can be considered as capable of autonomous manipulation (see 
Antonelli, 2004).  

To perform underwater tasks in an autonomous way is 
challenging from the technological as well as from the theoretical 
aspects including the control of the UVMSs. Some facts that make it 
difficult to control UVMSs include the highly nonlinear dynamics, 
the uncertainties in the hydrodynamic coefficients, the ocean 
currents disturbances and the inherent kinematic redundancy of such 
systems. 

A robotic system is kinematically redundant when it possesses 
more degrees of freedom (dofs) than those required to execute a 
given task. A generic manipulation task is usually given in terms of 
position/orientation trajectories for the end effector. In this sense, an 
UVMS is always kinematically redundant due to the dofs provided 
by the vehicle itself and so, its inverse kinematics (in which the 
vehicle-manipulator positions/orientations are calculated given end 
effector position/orientation) needs additional conditions to be 
solved. 

It should be outlined, however, that the UVMSs are 
kinematically redundant systems whose movement has some 
particular characteristics. First, it is well known that it is not always 
efficient to use vehicle thrusters to move the manipulator end 
effector due to the difficulty of controlling the vehicle in hovering 
(Yoerger, Cook and Slotine, 1990). Moreover, due to the different 
inertias between vehicle and manipulator, movement of the latter is 
energetically more efficient. Thus, it is energetically efficient to 
keep the vehicle at rest during the task. However, to keep the 
vehicle at rest the thrusters must react to the ocean current whose 
strength exhibits a quadratic dependence on the relative velocity 
(Fossen, 1994). The UVMSs can easily recognize an ocean current 
and so, the vehicle can be aligned to the ocean current in order to 
minimize the energy dispended in the thrusters. These facts remark 
that the UVMS is a redundant system that has some kinematic 
constraints. This particular characteristic is explored in this paper. 

Some papers address the UVMS inverse kinematics considering 
the full system dynamic compensation (Sarkar and Podder, 2001), 
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(Canudas de Wit et al, 2000). This approach needs, however, the 
knowledge of the dynamic parameters, which are difficult to obtain 
due to the uncertainties in the hydrodynamic coefficients. 

In this paper we focus our attention on the kinematic control of 
the UVMS. The goal is to find suitable vehicle/manipulator joint 
trajectories that correspond to a desired end effector trajectory. The 
output of this kinematic control provides the reference values to the 
dynamic control law of the UVMS. We consider the kinematic 
control independently of the dynamic control as in (Antonelli, 
2003). 

The kinematic control corresponds to obtain the inverse 
kinematics with the redundancy resolution. The simplest way to 
obtain the redundancy resolution of a kinematical system is to use 
the pseudoinverse of its Jacobian matrix (Sciavicco, 2004). In this 
case the inverse kinematic solution corresponds to the minimization 
of the vehicle/joint manipulator velocities in a least square sense. 
This approach is dimensional dependent (Davidson and Hunt, 2004) 
and the repeatability of the movement in the joints space is not 
guaranteed (Campos, 2004). Beside this, an approach based on the 
pseudoinverse (and, consequently, with the same limitations) named 
Task Priority Redundancy Resolution is widely used in the solution 
of the inverse kinematics of UVMSs (see Antonelli, 2003, and 
references therein). The Task Priority Redundancy Resolution 
technique considers explicitly the need of keeping the vehicle at rest 
as a second task priority. 

In this paper we present a new approach to solve the redundancy 
of UVMSs. This approach is based on introducing kinematic 
constraints to the UVMS movements.   

The additional kinematic constraints are introduced by imposing 
directly the vehicle velocities. To this end an open kinematic chain 
is used to represent the differential kinematics of the vehicle-
manipulator system. Next, a virtual kinematic chain closes the open 
UVMS chain in order to allow the inverse kinematics of the 
resulting closed chain using the Davies method.  

In this paper the vehicle velocities are imposed considering 
energy savings that result in aligning the vehicle to the ocean current 
and in keeping it at rest, as discussed above. The same approach can 
be used to increase of the system manipulability, as picked out in 
(Santos et al., 2006a, 2006b) and obstacles avoidance as detailed in 
(Guenther et al, 2004). 

The remainder of this paper is organized as follows. First, we 
describe the movement of an UVMS. More specifically, we obtain 
the description of the UVMS manipulator end effector movement 
with respect to an inertial frame. In order to introduce a new 
approach to solve the inverse kinematics to this class of 
manipulators, the model of an UVMS using screws to represent its 
differential motion is presented. For completeness, the differential 
kinematics screw representation is shortly described. Next, we 
present the differential kinematics for a serial manipulator and a 
proposal to the vehicle differential kinematics using screws. By 
adding the vehicle/manipulator kinematics we came to the UVMS 
kinematics. Then we describe the Davies method and introduce the 
virtual kinematic chain concept. In the sequence our proposal to the 
UVMS direct and inverse kinematics is discussed. In order to 
compare our proposal with other redundancy resolution a brief 
description of the Singular Robust Task-Priority applied to the 
UVMS according to Antonelli (2003) is presented. Then we show 
and analyze simulations comparing the method presented in this 
paper to the Singular Robust Task-Priority in order to ilustrate our 
conclusions. 

Nomenclature 

$= screw movement or twist  
h = pitch of the screw 

Vp = linear velocity of point p 
So = position vector of any point at the screw axis 

$̂  = normalized twist: a screw   
S = normalized vector parallel to screw axis 
N = matrix containing the normalized twists 
T = transformation matrix of screw coordinates  
R = rotation matrix 
W = skew-symmetric matrix representing a vector 
q = manipulator joint angle 
u = vehicle linear velocity in the x-direction 
v = vehicle linear velocity in the y-direction 
r = vehicle angular velocity in the z-direction 

Greek Symbols ω  = differential rotation about the screw axis, angular velocity Ψ
 = twist magnitude 

Subscripts 

s   relative to secondary 
p   relative to primary 
i,j   relative to link or joint  i,j 

Screw Representation of Differential Kinematics 

The screw is a geometric element (Fig.1), composed by a 
directed line (axis) and by a scalar parameter h  with length 
dimension called pitch (see Davidson and Hunt, 2004, for example). 
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Figure 1. Normalized screw. 

 
If the directed line is represented by a normalized vector S  

(Fig.1), the screw is called normalized screw $̂ and is given by 
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where oS  is the vector directed from any point on the screw axis to 

the origin of the reference frame XYZO− . From this definition, it 
is noted that there are two vector components or six scalar 
components in the above screw representation. Notice that the 
vector SSo ×  determines the moment of a line, the screw axis, 

around the origin of the reference frame.  

A normalized screw $̂  multiplied by a velocity magnitude Ψ  
(a scalar) is called a twist which represents an instantaneous 
movement of a rigid body with respect to an inertial reference 
frame, and could be given by 
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where ω  is the angular velocity of the body with respect the inertial 
frame and PV  represents the linear velocity of a point P attached to 



Carlos H. F. dos Santos et al 

/ Vol. XXVIII, No. 3, July-September 2006   ABCM 356 

the body, which is instantaneously coincident with the origin of the 
XYZO −  frame. 

The movement between two adjacent links belonging to an n-
link kinematic chain may also be represented by a twist. In this case, 
the twist represents the movement of link i with respect to link (i-1).    

Often it is useful to represent the differential movement of a 
body, expressed by a twist $, in different reference frames. The 
coordinate systems transformation is done by the screw 
transformation matrix T (Tsai, 1999). Consider two reference frames 
of interest ( iiii ZYXO − ) and ( jjjj ZYXO − ) as in Fig. 2. 
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Figure 2. Coordinate transformation of a screw. 

 
The position of origin Oj relative to the iiii ZYXO −  frame is 

given by ipj=[px,py,pz]
T and the orientation of the jjjj ZYXO −  

frame relative to the iiii ZYXO −  frame is described by a rotation 

matrix iRj. A screw represented in the iiii ZYXO −  frame is denoted 

by i$, and the same screw represented in the jjjj ZYXO −  frame is 

denoted by j$. 
The matrix of transformation of screws between the jth frame 

and the ith frame ( $$ j
j

ii T= ) is given by 

 












=

j
i

j
i

j
i

j
i

j
i

RRW

R
T

0
,  

















−
−

−
=

0

0

0

xy

xz

yz

j
i

pp

pp

pp

W , (3) 

 

where j
iW  is the 3 x 3 skew-symmetric matrix representing the 

vector pi
 (expressed in the ith frame).  

In the sequence, we present the manipulator and the vehicle 
kinematics in order to describe the UVMS kinematics. 

Serial Manipulator Kinematics 

For a serial manipulator, we may consider the movement of the 
end effector as being twisted instantaneously about the joint axes of 
an open-loop chain (Tsai, 1999). These instantaneous twists may be 
added linearly to give the resulting movement of the end effector. 
Consider, for example, the manipulator with six rotational joints 
showed in Fig. 3. For this manipulator the differential kinematics 
may be written as 

 

∑
=

Ψ=
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mimi
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E
B , (4) 

 

where mi
B $̂  is the manipulator i-th normalized screw described in 

the base frame (B-frame in Fig.4), 
miΨ  is the correspondent i-th 

magnitude and E
B$  is the screw that represents the end effector’s 

movement in the B-frame. 
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Figure 3. The serial manipulator. 

 
With the objective to present the movement of a manipulator on 

a vehicle, the next section describes the differential kinematics of a 
vehicle in a suitable form to be added to the manipulator differential 
kinematics given above. 

Vehicle Differential Kinematics 

We may consider the movement of a rigid body as being twisted 
instantaneously about several screw axes. These screws form a 
screw system whose order is defined by the number of linearly 
independent screws that spans the system (Tsai, 1999). A vehicle 
has, in general, six degrees of freedom and so, its movement may be 
represented by a screw belonging to a sixth order screw system 
( V$ ). In other words, six independent screws may span the vehicle 

movement, i.e., 
 

∑
=

Ψ=
6

1

$̂$
i

viviV
,  (5) 

 

where vi$̂  is the i-th normalized screw and viΨ  is the i-th amplitude. 

It should be outlined that, in case the set of normalized screws 
}6,,1,{ …=Ψ ivi  is linearly independent, Eq.(5) represents the 

general vehicle motion as well as describes the movement of an 
open-loop chain with six links and six kinematic pairs (joints) each 
one with only one degree-of-freedom.  

Using Eq. (5) to describe the vehicle’s movement, we may 
choose an open-loop chain with three orthogonal prismatic (P) joints 
and a spherical (S) one (Fig. 4) in order to represent the movement 
in a Cartesian reference frame as in (Campos et al, 2005). The first 
joint of this chain is prismatic and allows the movement between the 
first link and the base along the X-axis. It is named px and its 
movement is represented by the normalized screw 

px$̂ . The second 

and the third joints are prismatic, allow the movement between the 
second and the first, and between the third and the second links, 
along the Y-axis (py) and the Z-axis (pz), respectively, and are 
represented by the normalized screws 

py$̂  and 
pz$̂ . The spherical 

joint may be instantaneously changed by three rotational joints in 
the X, Y and Z directions (rx, ry, rz) and its movement are 

represented by the normalized screws rx$̂ , 
ry$̂  and rz$̂ . Due to its 

architecture this chain is named PPPS.  
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Figure 4. Vehicle movement represented by an (PPPS) open kinematic 
chain. 

 
The screws representing the PPPS chain independent 

movements are expressed in the simplest form if we choose a 
reference frame attached to the link that connects joints pz and rx 
(the first rotational joint of the spherical joint), designated as C-
frame in Fig. 4, to denote a suitable Cartesian reference frame. 
Using Eq.(2) we obtain (Campos et al, 2005): 
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This normalized screws set is even linearly independent and 

represents the vehicle motion in the C-frame. In practice the vehicle 
movement is usually described in a frame located at the vehicle 
gravity center with the axes directed according to its principal 
inertia directions, here named as vehicle frame (V-frame). To obtain 
the vehicle movement description in this V-frame, we may use the 
matrix of screws transformation between the C-frame and the V-

frame given in Eq. (3), i.e., V
C

C
V

V
V T $$ = ,  where 
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C
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C $̂$̂ 1= , 
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C
v

C $̂$̂ 2= , 
pz

C
v

C $̂$̂ 3 = , 
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C
v

C $̂$̂ 4 = , ry
C

v
C $̂$̂ 5= , 

rz
C

v
C $̂$̂ 6 = , where the normalized screws px$̂ , 

py$̂  , 
pz$̂ , 

rx$̂ ry$̂  

and 
rz$̂ ,  are given in Eq. (6).  

The origin of the C-frame is chosen coincident with the origin of 
the V-frame. Therefore, the position vector of one origin with 
respect to the other is null as well as the matrix W given in Eq.(3). 

The matrix of screws transformation
C

VT  is obtained calculating 

the rotation matrix between the C and V frames (
C

V R ). To this end it 

should be observed that the C-frame was chosen parallel to the 

inertial frame (I-frame) and so, 
V

I
V

C RR = , where V
I R  is the rotation 

matrix that gives the orientation of the vehicle in the I-frame 
commonly measured in the RPY (Roll-Pitch-Yaw) angles 

(Antonelli, 2003). By transposing V
C R  we obtain C

V R  that is 

substituted in Eq.(3) to calculate C
VT  and, using Eq.(7) results 
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The UVMS Kinematics 

In an UVMS, the manipulator has a mobile base. So, the 
manipulator end effector movement with respect to an inertial frame 
is obtained by adding the manipulator end effector movement with 
respect to its base to the base movement (Fig. 5), i.e., 
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where B
I T  is the matrix of screws transformation between the base 

manipulator frame and the considered inertial frame.  
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Figure 5. An Underwater Vehicle-Manipulator System. 

 
Let an inertial frame instantaneously coincident with the vehicle 

frame (V-frame) defined above. In this case Eq.(9) results 
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where vi
C

C
V

vi
V T $̂$̂ = ,  i = 1,…,6, and mi

R
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B
B

V
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V TT $̂$̂ = . 

Eq.(10) may be rewritten as 
 

Ψ= JE
V $ , (11) 

 
where, 
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V

m
V
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v
V

v
V

v
VJ = , (12) 

 

[ ]Tmm 6161 ΨΨΨΨ=Ψ …… νν . (13) 
 
Eq. (11) expresses the UVMS kinematics as an open-loop chain 

constituted by the manipulator chain attached to the vehicle chain. It 
should be observed that the matrix J in Eq.(11) has six rows and 
twelve columns and outlines the system redundancy.  

In this paper, we present a new methodology to invert the 
UVMS kinematics (Eq.(11)) derived from the Davies Method and 
the virtual kinematic chain concept described in the sequence. 

Davies Method 

Davies method is a systematic way to relate the joint velocities 
in closed kinematic chains. It is based on the so-called Kirchhoff-
Davies circulation law (Davies, 1981, 2000). Davies solves the 
differential kinematics of closed kinematic chains from the 
Kirchhoff circulation law for electrical circuits. The Kirchhoff-
Davies circulation law states that “The algebraic sum of relative 
velocities of kinematic pairs along any closed kinematic chain is 
zero”' (Davies, 1981). 

Using this law, the relationship among the velocities of a closed 
kinematic chain may be obtained in order to solve its differential 
kinematics, as is presented in (Santos et al , 2005) and (Guenther et 
al., 2005). 

The velocity of a link with respect to itself is null. In screw 
theoretical terms  

∑
=

=
n

i
i
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0$  (14) 

 



Carlos H. F. dos Santos et al 

/ Vol. XXVIII, No. 3, July-September 2006   ABCM 358 

where 0 is a zero vector which dimension corresponds to the 
dimension of twists i$ . 

According to the normalized screw definition (Hunt, 2000) this 
equation may be rewritten as 

 

∑
=

=Ψ
n

i

ii

1

0$̂ , (15) 

 

where i$̂  represents the normalized screw of twist i$  and 
iΨ  

represents the velocity magnitude of the twist i. Eq. (15) is the 
constraint equation which, in general, could be written as 

 
0=ΨN , (16) 

 
where N is the network matrix containing the normalized screws 
which signs depend on the screw definition in the circuit orientation, 
and Ψ is the magnitude vector. A closed kinematic chain has active 
(or actuated) joints, here named primary joints, and passive joints, 
here named secondary joints. The constraint equation, Eq. (16), 
allows to calculate the secondary joint velocities as functions of the 
primary joint velocities. To this end, the constraint equation is 
rearranged highlighting the primary and the secondary joint 
velocities and Eq. (16) can be rewritten as follows: 
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where pN  and sN  are the primary and secondary network 

matrices, respectively, and pΨ  , sΨ  are the corresponding primary 

and secondary magnitude vectors, respectively. 
This equation may be rewritten as ppss NN Ψ−=Ψ  and the 

joint space kinematic solution is given by 
 

ppss NN Ψ−=Ψ −1  (18) 

 
This outlines that the Davies method constitutes a systematic 

way to express the joint rates of passive joints as functions of the 
joint rates of the actuated joints in closed kinematic chains. 

In the next section, we introduce the virtual kinematic chain 
concept, which allows closing open kinematic chains in order to 
apply the Davies method. 

The Virtual Kinematic Chain Concept 

The virtual kinematic chain, virtual chain for short, is essentially 
a tool to obtain information about the movement of a kinematic 
chain or to impose movements on a kinematic chain. 

In this paper, we use the virtual kinematic chain concept 
introduced by Campos (2004), who defines a virtual chain as a 
kinematic chain composed by links (virtual links) and joints (virtual 
joints) satisfying the following three properties: a) the virtual chain 
is open; b) it has joints whose normalized screws are linearly 
independent; and c) it does not change the mobility of the real 
kinematic chain. 

Either to obtain information about the movement of a (real) 
chain or to change its movement, we apply virtual chains to close 
open real chains. All the kinematic chains that satisfy the three 
properties cited above may be used as virtual kinematic chains. A 
particularly useful virtual chain is the orthogonal PPPS chain 

presented in (Fig. 4) and described in vehicle differential kinematics 
section. 

In the next two sections, this PPPS chain is used to close the 
UVMS open-loop chain in order to obtain information about the end 
effector motion in a Cartesian frame and to impose movements to 
the UVMS chain. 

UVMS Direct Kinematics 

The end effector movement description in a Cartesian frame 
may be obtained closing the UVMS chain by introducing a PPPS 
virtual chain between the base and the end effector as in Fig. 6. In 
this case, regarding the circuit orientation indicated in the figure, the 
closed-loop chain network matrix is given by 

 

[ ]pxpypzrxryrzmmvvN $̂$̂$̂$̂$̂$̂$̂...$̂$̂...$̂ 6161 −−−−−−= , (19) 

 
where the superscript V indicating that all the normalized screws are 
represented in the vehicle frame is omitted for simplicity. The 
negative terms in Eq. (18) are in accordance with the definitions of 
the screws that represent the virtual joint motions given in the 
section which describes the vehicle differential kinematics. The 
corresponding magnitude vector is 
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Figure 6. The Underwater Vehicle-Manipulator System with the PPPS 
virtual chain. 

 
To solve the direct kinematics, we select the velocities 

magnitudes corresponding to the UVMS as the components of the 
primary vector pΨ  and the magnitudes of the operational space 

(represented by the virtual kinematic pairs) as the components of the 
secondary vector sΨ . The corresponding primary and secondary 

matrices result 
 

[ ]6161 $̂$̂$̂$̂ mmvvpN ……=  (21) 

 

[ ]pxpypzrxryrzsN $̂$̂$̂$̂$̂$̂ −−−−−−= . (22) 

 
The magnitudes of the secondary kinematic pairs, i.e., the end 

effector velocities in the Cartesian frame, are calculated using Eq. 
(18), in which the secondary matrix needs to be inverted. It should 
be remarked that the secondary matrix has always full rank in this 
case, as can be observed in the Eq. (6), and so it is always invertible. 

UVMS Inverse Kinematics 

To obtain the vehicle and the manipulator velocities once given 
the end effector velocities (inverse kinematics), we select the 
operational space (virtual kinematic pairs) as the components of the 
primary magnitude vector pΨ  and velocity magnitudes 

corresponding to the UVMS as the components of the secondary 
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magnitude vector 
sΨ . In this case, the primary and the secondary 

matrix result 
 

[ ]pxpypzrxryrzpN $̂$̂$̂$̂$̂$̂ −−−−−−= , (23) 

 

[ ]6161 $̂$̂$̂$̂ mmvvsN ……= . (24) 
 
Again, to calculate the magnitudes of the secondary pairs, we 

need to invert the secondary matrix. Matrix sN  cannot be inverted 

because it has twelve columns and only six rows.  We must specify 
six supplementary velocity magnitudes and include it in the primary 
magnitude vector in order to obtain a secondary matrix that could be 
inverted or, alternatively, we need to introduce six additional 
kinematic constraints. 

The velocity magnitudes may be specified considering, for 
example, energy savings, i.e., reduce energy consumption. This 
energy savings could be achieved by keeping the vehicle aligned 
with the ocean current as suggested by Antonelli (2003). 
Correspondingly, this could be done by specifying the rotation 
components of the vehicle velocities in order to keep the vehicle 
aligned with the ocean current and making its linear velocities to be 
equal zero.  

The primary and the secondary matrix result 
 

[ ]61 $̂$̂$̂$̂$̂$̂$̂$̂ vvpxpypzrxryrzpN …−−−−−−= , (25) 

 

[ ]654321 $̂$̂$̂$̂$̂$̂ mmmmmmsN = . (26) 
 
This secondary matrix could be inverted even if it is full rank, 

i.e. even if the kinematic chain is not at a singularity. This outlines 
the easiness of obtain the inverse kinematics allowed by the 
approach proposed in this paper only by adequately the primary 
velocity magnitudes.  

Due to the use of screws to represent the involved movements, 
this approach allows also to choose reference frames where this 
representation is simpler and so, the secondary matrix sN  is sparser 

and, consequently, easier to be inverted. This easiness of invertion 
makes the algorithm for motion coordination more efficient as it 
was verified in simulations by Santos and Guenther (2004) and 
Santos et al (2005).  

Singular Robust Task-Priority applied to the UVMS 

According to Liégeois, (1977) the inverse kinematics of a 
redundant mechanism can be solved in terms of a minimization 
problem of a quadratic cost function. In the case of the UVMS, this 
function is constructed from the manipulator and vehicle joint 
velocities vector, and give the follow general solution: 

 

( )( ) ( )dppsdsppNsdpp xJJxJJIJxJ ,,, ɺɺɺ ∗∗∗∗ −−+=ς , (27) 

 

where, dpx ,ɺ , dsx ,ɺ , sJ , pJ , ∗
pJ   are the primary velocity, the 

secondary velocity, the secondary Jacobian, the primary Jacobian 
and the Pseudoinverse (denoted by ∗  in this work) primary 
Jacobian respectively. Equation (27) represents the Task-Priority 
redundancy resolution.  

However, for this solution, the problem of the algorithmic 
singularities still remains unsolved. In this case, it is possible to 
experience an algorithmic singularity when sJ   and pJ  are full 

rank but the matrix ( )ppNs JJIJ ∗−  drop rank. In order to overcome 

this problem, a robust solution to the occurrence of the algorithmic 
singularities is based on the following mapping (Antonelli, 2003): 

 

( ) .,, dssppNdpp xJJJIxJ ɺɺ ∗∗∗ −+=ς  (28) 

 
This algorithm has a geometrical interpretation: both tasks are 

separately inverted by the use of the pseudoinverse of the 
corresponding Jacobian; the joint velocities associated with the 
secondary task are further projected in the null space of the primary 
task pJ .  

Simulation Results 

This section presents the simulation results for a task performed 
using both the Singular Robust Task-Priority and the Kinematic 
Constraint approach presented in this paper.  

The UVMS model is based on a real model of a UVMS showed 
in (Antonelli and Chiaverini , 1998, Antonelli, 2003). The vehicle 
has a length of 5 meters and each link of the manipulator has a 
length of 2 meters. For the sake of clarity we have restricted our 
attention to a planar task described in the plane of the manipulator, 
that is mounted horizontally, as in (Antonelli, 2003). Furthermore, 
this choice helps the comparison of the results.  

 

 
Figure 7. UVMS initial configuration. 

 
Let the initial configuration of the vehicle be: 0x = m, 

0y = m, 0=ψ rad and the manipulator joint angles be: q = [q1  q2  

q3 ]T =    [1.47 –1 0.3]T rad, corresponding to the end-effector 
location: 92.5=Ex m, 29.4=Ey m, 77.0=ψE rad (see Fig. 7). 

As showed in Fig. 8, the task consists in aligning the vehicle 
with the ocean current orientation, here considered equal to 0.78 rad, 
and, simultaneously, making the end effector perform two returns in 
a circumference of 1 meter of diameter during a period of 10 
seconds. 

 

 
Figure 8. Alignment with the ocean current and circular trajectory to the 
end-effector. 
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This simulation uses an integration step of 0.1 seconds with the 
Euler method (Burden, 2003). 

In the Singular Robust Task-Priority method the movement of 
the end effector is performed in order to minimize the vehicle 
movements. The corresponding simulation results are shown in 
Figs. 9  to 11. Figure 9 shows the x, y and phi (angle around the z-
direction which defines the orientation) vehicle positions. Figure 10 
shows the manipulator joint angles 1q , 2q  and 3q . Figure 11 

reports the vehicle linear velocities u (in the x-direction) and v (in 
the y-direction), and the angular velocity r (in the z-direction). 

The results in Figs. 9 and 11, outline that, despite the Task-
Priority approach minimizes the vehicle movement, it does not keep 
the vehicle at rest as intended. This fact is a consequence from the 
minimization on which the approach is based. 

In the kinematic constraint approach proposed in this paper, the 
vehicle is kept at rest by imposing the corresponding kinematic 
constraint in terms of velocity magnitudes. The simulation results 
are shown in Fig. 12 (vehicle positions and orientation), Fig. 13 
(manipulator joint positions) and Fig. 14 (vehicle velocities). 

By comparing the manipulator joint positions obtained with the 
Task-Priority approach (Fig. 10) and the manipulator joint positions 
calculated using the kinematic constraint approach (Fig. 13), it could 
be observed that they are similar. 

Figures 12 and 14 shown that using the kinematic constraint 
approach the vehicle is kept at rest as desired. 

These results illustrate that the undesirable vehicle movements 
resulting from the Task-Priority approach could be avoided by 
imposing kinematic constraints. 

The vehicle-manipulator positions and velocities obtained are 
the outputs of the UVMS kinematic control and, consequently, the 
inputs to the UVMS dynamic control. This means that the 
undesirable vehicle movements which excite the system dynamics 
unnecessarily could be avoided by the approach proposed in this 
paper. 

 

 
Figure 9. Singular Robust Task-Priority: vehicle positions and orientation. 

 

 
Figure 10. Singular Robust Task-Priority: manipulator joint angles.    

 
Figure 11. Singular Robust Task-Priority: linear and angular vehicle 
velocities.    

 

 
Figure 12. Kinematic Constraint Approach: vehicle positions and 
orientation. 

 

 
Figure 13. Kinematic Constraint Approach: manipulator joint angles. 

 

 
Figure 14. Kinematic Constraint Approach: linear and angular vehicle 
velocities. 
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Conclusions 

This paper presents a new approach to the kinematic control of 
Underwater Vehicle-Manipulator Systems (UVMSs). This 
kinematic control consists in obtaining the inverse kinematics of this 
kind of redundant system, which is used as an input to its dynamic 
control. 

The presented approach is based on introducing directly some 
kinematic constraints intrinsic to this kind of systems, and is derived 
using the screw representation of the differential kinematics of rigid 
bodies, the Davies method and a virtual kinematic chain concept. 

In order to enable an easy adding of the vehicle and manipulator 
movements, a suitable form of the vehicle kinematics is introduced. 

By modeling the UVMS as an open kinematic chain and closing 
this chain with a virtual chain, it is shown that the kinematic 
constraints could be introduced directly by imposing the 
corresponding velocity magnitudes in this closed chain. 

This approach avoids undesirable vehicle movements generated 
as inputs to the dynamic control, always present in the usual 
approaches based on the minimization of some cost function. 

In this sense, the presented approach avoids undesirable system 
dynamics excitation, as the simulations have shown. 

Simulations illustrate these results. 
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