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Abstract— In this work, it is investigated an improved chaos particle swarm 

optimization (IC-PSO) scheme to refine the quality of the algorithm solutions 

regarding to solve the optimal power allocation in next generation passive optical 

networks (NG-PON)s. The proposed IC-PSO scheme utilizes the Beta distribution 

instead of uniform distribution of the traditional PSO. A factor of damping based in 

the chaotic logistic map related to the updating of the best global val ue is successful 

introduced. The numerical results corroborate the best relation between the 

performance-complexity tradeoff and the quality of the algorithm solutions for the 

proposed IC-PSO when compared with the classical PSO power allocation scheme.    

 

Index Terms— Passive optical network, optical code division multiplexing access, chaos 

particle swarm optimization.  

 

1. Introduction 

The resource allocation in passive optical network (PON) is utilized for dynamic bandwidth 

allocation (DBA), power allocation (power control), multiple bit rate control and the adjustment 

of the number of actives optical network units (ONUs), such as sleep mode, to improve the 

network capacity, flexibility and energy efficiency [1][2][3]. In the power allocation problem the 

aim is to obtain the optimization of the transmitted power to minimize the interference between 

the users and maximize the energy efficiency, considering the quality of service (QoS) 

restrictions in terms of signal-to-noise-plus interference ratio (SNIR) of each optical user class 

[4][5]. The power allocation problem are related to not convex cost and constraint functions, 

therefore this problem in not straight to be solved [6][7]. In this context, there are several 

approaches to solve the power allocation problem, such as analytical-iterative algorithms, 

matrix inversion, numerical procedures and meta-heuristic schemes [4][7][8][9]. The meta-

heuristics methods are very promissory approaches to perform the power allocation considering 

its performance-complexity tradeoff and fairness features regarding the previous cited 

approaches [9][10]. In addition, the bio-inspired meta-heuristics have been presented relevant 

results to solve the power allocation problem [6][9][10]. In this work, the meta-heuristic of 

particle swarm optimization (PSO) and its variations are considered in the investigation of the 

power allocation problem in context of the next generation of PONs (NG-PONs) [11]. The 
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progress of the NG-PON depends on the increasing of the optical power budget, the fiber 

impairments mitigation (mainly in long-reach PONs) [1], as well as dynamic resource allocation 

[2][3]. In this sense, it is primordial ameliorate the energy efficiency and spectral efficiency of 

NG-PONs, related to the highly burst traffic behavior, the rising of the number of ONUs and 

the growth tendency of these networks [1][2][3]. 

The PSO is based on the movement of a population (swarm) of individuals (particles) 

randomly distributed in the search space, each one with its own position and velocity [12].  The 

challenge in the meta-heuristic algorithm utilized in optimization problems, such as the PSO, is 

to obtain the trade-off between the exploration (diversification) and the exploitation 

(intensification) [12]. In this sense, the chaos particle swarm optimization (CPSO) was proposed 

to improve the quality of the results in the optimization problems considering the global 

searching capability by escaping the local solutions [13]. The CPSO comprises a large variety of 

schemes, which chaotic maps based on the complex behavior of a nonlinear deterministic system 

are utilized to optimization goal. Chaos presents a non-repetitive nature that increase the 

random search characteristics of the CPSO methods.  For only a few examples of CPSO 

variations, in [13][14][15] several chaotic maps are applied as random number generators that 

is different from the classical PSO algorithm, where a uniform probability distribution is used 

to generate random numbers. Alternatively, these chaotic maps could be organized in the 

Ensemble learning approach to improve the CPSO algorithm [16]. In addition, the chaotic maps 

are applied to find new solutions in the neighborhoods of the previous best positions to help the 

algorithm to escape from local optima [17][18]. These modifications in the CPSO will affect the 

best relation between the performance-complexity, the algorithm convergence and the quality of 

the algorithm solutions.  

The contribution of this work is threefold. First, a systematic investigation and 

characterization of an improved chaos particle swarm optimization (IC-PSO) resource allocation 

scheme. Second, numerically demonstrate the enhanced quality of the proposed IC-PSO 

algorithm solution regarding the optimal power allocation in NG-PON OCDMA networks; 

thanks to the Beta distribution utilization instead of uniform distribution commonly deployed in 

the traditional PSO and a factor of damping related to the best global value updating and based 

on the chaotic map. Third, demonstrate that such characteristics affect the performance-

complexity trade-off and the quality of the algorithm solutions.  

 This paper is organized as following. Section 2 describes the architecture of the NG-PON 

utilized in this work. Section 3 presents the resource allocation problem in OCDMA-based NG-

PONs, as well as the heuristic PSO formulation approach, and the IC-PSO scheme. The main 

numerical results are developed in Section 4.  Finally, Section 5 presents the main conclusions.  

 

2. Network Architecture 

PONs is a key architecture for broadband access network and backhauling of mobile 

networks [1][2]. This network architecture, showed in Fig. 1, is based on the tree topology 

between the optical line terminal (OLT) and ONUs [2]. The development of the NG-PONs 

depends on the technologies such as optical code division multiple access (OCDMA), wavelength 

division multiplexing (WDM), orthogonal frequency division multiplexing (OFDM), as well as 
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the advanced modulation format [1][2][3]. PONs based on OCDMA (PON-OCDMA) technology 

presents characteristics such as asynchronous operation, high network flexibility, protocol 

transparency, simplified network control, quality of service (QoS) in the physical layer and 

improvement in security aspects [4][19]. In this work, the PON-OCDMA with advanced 

modulation format is selected to our investigation about resource allocation considering the 

competitive cost and flexibility of the PON-OCDMA scheme [11][19]. In this scheme the multi-

port encoder/decoder at the OLT are based on multi-port arrayed waveguide gratings (AWG) to 

generate and recognize multiple time spreading optical codes in a single device simultaneously 

[20]. Besides, the encoder/decoder at the ONUs is based on super-structured fiber Bragg grating 

(SSFBG) that is independent of the code length and polarization [11][20]. The code generated in 

the OLT and ONUs is a coherent code phase-shift-keying (PSK), in which the code information 

is transmitted in the phase. 

 

 

Fig. 1. PON-OCDMA network architecture. 

 

In the encoder/decoder at OLT, a set of optical codes are generated considering the AWG with N 

inputs/outputs in the time domain and each PSK code is obtained through a combination of   

light pulses with different phase [20]. The chip period (  ), that represents the amount of time 

interval between two consecutive pulses in each optical code is defined as          , where    

is the effective refractive index,    is the differential path length and   is the light speed [11]. 

The code cardinality is obtained by the binomial  
 

   
 , where   is the code length, thus the 

maximum cross-correlation is given by          and the autocorrelation peak is represented by 

   [20]. In the SSFBG at the ONU, an optical code sequence is obtained by reflecting back 

optical chip pulses from each fiber Bragg grating (FBG) chip. To generate time-spreading PSK 

code in the SSFBG, it is required to adjust the number of FBG chips and the phase-shift level 

for desired code sequences. The SSFBG also acts as the decoder, resulting in either the 

autocorrelation or cross-correlation waveform according to its FBG chip arrangement. 
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3. Power Allocation Problem 

3.1. Power Allocation Problem Formulation 

In the PON-OCDMA the SNIR at the OLT (upstream) is related to the carrier-to-

interference ratio (CIR) as [4], 

   
  

  
   (1) 

where N is the code length,  is the Hamming average variance of the cross-correlation 

amplitude and i  is the CIR at the input of ith node, given by [4],  

 

   
     

         
  

       

 
(2) 

where Gii is gains of transmitter–receiver pairs,    is the transmitted power at the ith node,   is 

the transmitted power from interfering nodes,   
  is the power of receiving noise, and the 

elements Gij constitute the network interference matrix between the nodes given by  

                     , where αf is the fiber attenuation (km-1), ac represents the 

encoder/decoder attenuation and Lc is the total internal losses in the optical path. There is the 

establishment of the virtual path between the transmitting ONU and receiving OLT based on 

the code and the total link length that is represented by        
     

  , where   
   is the link 

length from the transmitting ONU to the remote node and   
   is the link length from the 

remote node to the OLT. The amplifier spontaneous emission (ASE) effect in the optical 

preamplifier is a predominant received noise power when compared to thermal and shot noise 

[4]. Moreover, received noise power is given by   
                , which considers the two 

polarization mode of a single mode fiber, and where     is the spontaneous emission factor, h is 

Planck’s constant, f is the carrier frequency, Gi is the amplifier gain, and    is the optical 

bandwidth.  

The optimization of the SNIR is related to the power allocation for each PON-CDMA node. 

Therefore, the SNIR optimization is based on the determination of the minimum power 

restriction, named sensitivity level, ensuring the suitably optical signal detected by all optical 

devices together with the QoS requirements. Thus, the power control in PON-OCDMA is an 

optimization problem. Denoting i at the required decoder input, in order to get a certain 

maximum tolerable bit error rate at the ith optical node, considering K the number of ONUs 

and the K-dimensional column vector of the transmitted optical power p = [p1, p2,…, pK]T , the 

optical power control problem consists in finding the optical power vector p that minimizes the 

cost function      ; this optimization problem can be formulated as [7] : 

 

                =     
    

       =      
    

   
 
    

 

 

 

subject to: 

   
     

         
  

       

   
 

 

   (3) 
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 i = 1,.., K, 

 

where 1T = [1, ..., 1] is a one vector and   
  is the minimum CIR to achieve a desired QoS; pmin 

and pmax is the minimum and maximum value considered as permitted transmitted power, 

respectively. Through a matrix notations, (3) can be grouped as          , where I is the 

identity matrix, H is the normalized interference matrix, which elements evaluated by     

        for     and zero for another case, thus        
     , where there is a scaled version of 

the noise power. Substituting inequality by equality, the optimized power vector solution can be 

analytically obtained through the matrix inversion              . However, the matrix 

inversion is not attractive procedure due to its performance-complexity tradeoff [4][7]. The 

optimization method to obtaining the optical power vector p based on PSO and IC-PSO are an 

expeditious method in order to solve resource allocation problems due to its performance-

complexity tradeoff and fairness features regarding the optimization procedure based on matrix 

inversion [4]. An alternative formulation to the power allocation optimization of (3) is discussed 

in [6], and adopted herein with some adaptation in order to jointly include information rate and 

power allocation:  

    
    

           

    
    

 
 

 
  

 

   

     
      

  
 

    
 

 

  

   

 

               
          

       
              

                        

(4) 

where L is the number of different group of information rates allowing in the system, and    is 

the number of user belonging to the lth rate group with minimum rate given by     
 .  Finally, 

the threshold function in (5) is defined as: 

 
 

    
     

          
 

           
              

(5) 

where      is the SNIR for the  th user belongs to the lth rate group. Note that the term 

   
  

    
 gives credit to those solutions with minimum power and punishes others using high 

power levels.  

The quality of solution achieved by any iterative resource allocation procedure could be 

measured by how close to the optimum solution is the found solution, and can be quantified by 

the normalized mean squared error (NMSE) when equilibrium is reached. For power allocation 

problem, the NMSE definition is given by, 

             
           

     
  (6) 

 

where      denotes the squared Euclidean distance to the origin, and      the expectation 

operator. In addition, a convergence test is considered 100% successful if the following relation 

holds: 

 

                    
       (7) 
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where,       is the global optimum of the objective function under consideration,      is the 

optimum of the objective function obtained by the heuristic PSO algorithm after   iterations, 

and   ,    are accuracy coefficients, usually in the range              In this study it was 

assumed that T = 100 trials and             . 

3.2 PSO Principle 

The meta-heuristic PSO is based on the particles that keeps track its coordinates in the space 

of search, which are associated with the best solution (fitness) it has achieved so far. Another 

best value tracked by the global version of the particle swarm optimizer is the overall best value, 

and its location, obtained so far by any particle in the population. At each time iteration step, 

the PSO concept consists of velocity changes of each particle toward local and global locations. 

The acceleration is weighted by a random term, with separate random numbers being generated 

for acceleration toward local and global locations. Let bp and vp denote a particle coordinates 

(position) and its corresponding flight speed (velocity) in a search space, respectively. In the PSO 

strategy, each power-vector candidate      , with dimension      , is used for the velocity-vector 

calculation in the next iteration [9]; in vector form, the K dimensional velocity-vector       

[v 1  v 2    v K  ]  is defined by: 

                                 
                           

             (8) 

where      is the inertia weight of the previous velocity in the current speed calculation, the 

diagonal matrices        and        with dimension K have their elements as random variables 

with uniform distribution in the range U   [0, 1], generated for the pth particle at iteration t = 1, 

2, . . . ,  ;   
     and   

     are the best global position-vector found until the     iteration, and the 

best local position-vector found at the     iteration, respectively;    and    are acceleration 

coefficients regarding the best local particles’ position and the best global positions; both 

coefficients influence in the velocity updating and in the algorithm convergence. In our PON-

OCDMA power allocation problem, the particle’s position at the tth iteration is defined by the 

power-vector candidate            
     

       
   . The position of each particle is updated using 

the new velocity-vector for that particle: 

                        

        

(9) 

where   is the population size, which depends on the PON-OCDMA network 

dimension, specifically the number of ONUs. 

 

3.3. Improved Chaos Particle Swarm Optimization (IC-PSO) Scheme 

The proposed Improved Chaos PSO (IC-PSO) scheme is based on two specific features 

aggregated to the conventional PSO algorithm:  

i) it is utilized the Beta distribution instead of uniform distribution to generation of 

random variables aiming at increasing the diversity while aid the exploration 

(diversification) of undercover regions in the search space during the transmitted power 

optimization procedure. 

ii) it is introduced a damping factor based on random numbers generated by chaotic maps 

related with the updating of the best global value. These aspects could limit the 
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dominance of the best global particle value to avoid premature convergence, increasing 

the randomness (diversification) without loss in the exploitation capability of the 

algorithm.  

Under these aggregated features, the velocity updating equations of the IC-PSO is given by: 

 

                                 
                 

       
            

           
             

(10) 

where        [0, 1] is the damping factor generated by chaotic maps. In this work, without loss of 

generality, it is used the one dimensional logistic map that is related to the dynamics of the 

biological population [13][14]. The logistic map is given by,  

                       (11) 

where a is the control parameter. The variation of X[t] will increase the randomness of the 

influence of the best global. In addition,        and        are the diagonal matrices with 

dimension K,  where their elements are random variables with Beta distribution in the range 

B(p,q)   [0, 1] generated for the pth particle at iteration t = 1, 2, . . . ,  ., where p and q are the 

shape parameters from the Beta distribution [21]. The control of the shape parameters enables 

Beta distribution simulation with symmetric densities (  =  ) and asymmetric densities with 

shape parameters     . Besides, the uniform distribution is a special case of Beta distribution 

with   =   = 1 [21]. The particle position updating is performed in the same way of conventional 

PSO, Eq. (9). 

 

4. Numerical Results 

4.1. Parameters Summary 

In this section the scenario studied is described, the values for the optical network devices and 

standard fiber are summarized.  Table I presents the main system parameters deployed in the 

numerical simulations. These parameters are based on network equipment currently available 

[19][22]. The link length between the OLTs and the remote node is 40 km. Moreover, the link 

lengths from the remote node to the ONUs are uniformly distributed over a distance with a 

radius between 2 and 50 km. Herein, the extension of the total link lengths is [42; 90] km 

considering three different scenarios with 16, 32 and 48 ONUs. This number of ONUs 

representing situations with SNIR estimates in high, medium and weak signal environments, 

respectively [23].  

  

Table I. System parameter values 

Variable Value 

dij - link length [42: 90] km 

K - OCDMA PON dimension [16, 32] ONUs 

f - Fiber loss coefficient 0.2 (dB/km) 

h - Planck constant 6.63 10-34 (J/Hz) 

f - Light frequency 193.1 (THz) 

Bo - Optical bandwidth 100 (GHz) 
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nsp - Spontaneous emission factor 2 

Gamp - EDFA gain 20 (dB) 

N - Code length [16, 32, 48] 

Ri - Individual Bit rate 40 (Gbps) 

LAWG - Losses of AWG  16 (dB) 

LBragg – Losses of Bragg 6.7 (dB) 

Pmin – Minimum transmitted power -100 dBm  

Pmax – Maximum transmitted power 20 dBm  

i* – Target SNIR   20 dB 

The conventional PSO performance presents high dependence of the control input 

parameters for each kind of optimization problem, therefore the definition of the parameters 

for resource allocation in optical networks was performed in [24]. The conventional PSO 

parameters utilized in all numerical simulations are illustrated in Table II. The IC-PSO input 

parameters tuning that are different of the PSO are discussed in the Subsection 4.2. 

 

Table II. Input PSO parameters values 

Variable Value 

  - Number of particles   = K + 2 

C1 - Particle acceleration  1.8 

C2 - Global acceleration  2 
 - Inertial weight 

             
   

 
 
 

    

m - Nonlinear index [0.6; 1.4] 

φ - Number of iterations 1800 

i - Initial weight inertia 1  

f - Final weight inertia 0.4 

Vmax – Maximum velocity Vmax = 0.2(pmax – pmin) 

Vmin – Minimum velocity Vmax = - Vmin 

 

For all the numerical simulations it is performed 100 trials (realizations) to obtain the better 

solution with significant coefficient of variation (CV), which is given by the ratio of the standard 

deviation to the mean. Our simulations have presented CV lower than 8%. Data distribution 

with CV < 25 % is considered a low-variance data distribution [25].  

 

4.2. IC-PSO Input Parameters Tuning 

The conventional PSO and IC-PSO algorithms for optical power allocation present several 

equivalents parameters; therefore, the equivalents parameters utilized for the PSO will be also 

utilized for IC-PSO algorithm. On the other hand, for the IC-PSO will be adjusted the 

parameters related to the Beta function distribution. Initially, in the numerical results is 

presented the NMSE for the IC-PSO when different values of shape parameters (p, q) and 

number of ONUs are utilized. The damping factor (    ) will be generated by the logistic map 

with the control parameter a = 4 to obtain a chaotic behavior [13]. Herein, a vast quantity of 

combinations of shape parameters were simulated taking the following scheme: Firstly, a q 

shape parameter was fixed and various simulations were performed with different value of p 

shape parameter. After that, another q shape parameter was fixed and various simulations 

were performed with different value of p shape parameter again. This process was performed in 

the wide range of values, which were refined in each step; however, for practicality purpose, 
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only the more representative values will be presented and discussed.  

Fig. 2. presents the attained NMSE with IC-PSO considering different value of p and q shape 

parameter of Beta function for 16, 32 and 48 ONUs.  

 

  
   (a) Parameter p for K = 16 ONUs                      (b) Parameter q for K = 16 ONUs                                                  

 

  
   (c) Parameter p for K = 32 ONUs                      (d) Parameter q for K = 32 ONUs                                                  

 

  
 

   (e) Parameter p for K = 48 ONUs                      (f) Parameter q for K = 48 ONUs                                                  

 

Fig. 2. NMSE for IC-PSO considering different value of shape parameters of the Beta 

function for 16, 32 and 48 ONUs.  
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From Fig. 2 (a) and (b), it is illustrated the impact of the p and q shape parameter values of 

the Beta function on the NMSE for 16 ONUs. For this number of ONUs, which represents a 

situation with high SNIR estimate environment, the lower NMSE is obtained directly with p = 

2.0 and q = 1.3. In the same way, Fig. 2 (c) and (d) depicts the NMSE for different value of p 

and q shape parameter of Beta function for 32 ONUs, representing a situation with medium 

SNIR estimate environment. Notice that comparing Fig. 2 (c) and (d) with Fig. 2 (a) and (b), 

the level of the NMSE is higher for 32 ONUs when compared with the NMSE for 16 ONUs. 

This behavior is related to the level of the SNIR and the ability of the IC-PSO power allocation 

to solve the allocation problem when the number of ONUs increase. Notice, even in situations 

of low NMSE the difference between NMSE magnitudes represents a better tendency of 

convergence. The variation of the number of ONUs will affect the choice of the Beta 

distribution shape parameters to return the lower NMSE. For the case of 32 ONUs the lower 

NMSE is obtained with p = 2.0 and q = 1.6. Fig. 2 (e) and (f) depicts the NMSE for different 

value of p and q shape parameter of Beta function for 48 ONUs, representing a situation with 

weak SNIR estimate environment. This case presents the higher NMSE compared with the 

situations with 16 and 32 ONUs. ¨In this situation, the values of the NMSE is limited by the 

nonconvexity of the power allocation problem. For the case of 48 ONUs the lower NMSE is 

obtained with p = 2.5 and q = 1.9. This behavior is related to variation of the Beta distribution 

shape with the alteration of the shape parameters. Herein, the Beta distribution shape 

parameter values that represent the best trade-off between the exploration (diversification) 

and the exploitation (intensification) for the power allocation problem using IC-PSO for 16, 32 

and 48 ONUs were obtained and summarized in Table III. 

 

Table III. Input IC-PSO parameters values 

Number of the ONUs Beta Shape parameter 

16 p = 2.0;  q = 1.3 

32 p = 2.0;  q = 1.6 

48 p = 2.5;  q = 1.9 

 

 

4.3. IC-PSO versus PSO Resource Allocation  

In this section, the IC-PSO and PSO resource allocation have been evaluated considering the 

network parameters and variables described in the previous sections. In order to obtain a fair 

comparison between the IC-PSO and PSO power allocation algorithms, the same computational 

effort, herein represented by the run time, was guaranteed for both algorithms. The simulations 

were performed with MATLAB (version 7.1) in a domestic computer with 4 GB of RAM and 

processor Intel Core i5@ 1.6 GHz. Besides, the IC-PSO power allocation will be compared to the 

conventional PSO power allocation scheme, which was previously validated and compared with 

other methods [9][10].  

Fig. 3 illustrates the sum of the transmitted power versus the number of iterations for IC-

PSO and PSO power allocation schemes considering the scenario with (a)16, (b)32 and (c)48 

ONUs. In addition, it is illustrated in the horizontal dash line the sum of the transmitted power 

obtained with matrix inversion procedure. The matrix inversion is effective to obtain the correct 
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value of the transmitted powers; however, it presents high computational complexity when 

compared with heuristic or meta-heuristic approaches [4][7]. Therefore, the figures-of-merit 

results obtained with matrix inversion will be utilized to validate the proposed IC-PSO power 

allocation. Herein, the goal is to evaluate the initial behavior of convergence trend from both 

heuristic algorithms; therefore, it is considered a maximum number of 800 iterations.   

   

                               (a)                                              (b)                                               (c)   

Fig. 3. Sum of the transmitted power versus the number of iterations for PSO and IC-PSO 

power allocation for (a) 16, (b) 32 and (c) 48 ONUs. 
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medium and weak SNIR estimates environment, respectively. The faster convergence of the 

IC-PSO power allocation scheme when the SNIR has deteriorated is related to the utilization 

of the Beta distribution which provides diversity increasing while aid the exploration 
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based on random numbers generated by chaotic logistic has increased the randomness 

(diversification) without loss in the exploitation capability of the algorithm. Besides, Fig. 3 (a) 

depicts the case with 16 ONUs where the SNIR is high; even so, there is a marginal 

improvement in the convergence performance of the IC-PSO over the conventional PSO optical 

power allocation procedure. Indeed, under this scenario, the power transmission convergence 

was obtained with approximately 250 and 350 iterations for IC-PSO and PSO power allocation 

scheme, respectively. Notice in the Fig. 3 (b), for 32 ONUs, the IC-PSO algorithm was able to 

achieve convergence after approximately 345 iterations in contrast to the approximately 800 

iterations necessary for the PSO power allocation scheme convergence. Besides, the more 

remarkable situation occurs for 48 ONUs that is illustrated in the Fig. 3 (c), where the 

convergence of the transmitted power occurs with approximately 450 iterations for IC-PSO 

power allocation scheme and the PSO power allocation scheme does not present tendency of 

convergence in the next iterations, here beyond of 800 iterations.   

Fig. 4 depicts the normalized mean squared error (NMSE) against the number of iterations 

for PSO and IC-PSO optical power allocation schemes to precisely evaluate the velocity of 

convergence and quality of solutions. In this sense, we have considered more iterations in such 

analysis aiming at achieving the condition of the non-improvement on the performance (NMSE 

floor condition).   

 

                               (a)                                  (b)                                           (c)   

Fig. 4. Normalized mean squared error (NMSE) versus the number of iterations for PSO and 

IC-PSO power allocation for (a) 16, (b) 32 and (c) 48 ONUs. 
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One can observe from Fig. 4 that the increasing in the number of iterations affects the 

quality of the solutions (NMSE) of both heuristic PSO and IC-PSO power allocation schemes; 

however, the proposed IC-PSO procedure achieves a lower NMSE when compared with the 

conventional PSO power allocation scheme. This behavior is related to the non-convexity of the 

optical power allocation problem in OCDMA systems, increasing the number of local optima as 

the problem dimension increases. Such difference in MSE performance between both algorithms 

is related to the capability of the IC-PSO to execute a broad global search aiming to escape from 

local optima solutions. However, the faster convergence of the IC-PSO power allocation scheme 

occurs at expense of the oscillatory behavior to reach the convergence, in contrast to the 

smoother but slower convergence behavior of the PSO scheme.  Notice that in Fig. 4, when there 

is the tendency of stabilization of the NMSE with approximately 1700 iterations, the difference 

in the NMSE performance is so huge (five decades) among the PSO and IC-PSO power-rate 

allocation schemes. Hence the proposed IC-PSO scheme has demonstrated effectiveness and 

ability to improve substantially the velocity and quality of the solutions (for the same number of 

iterations) when compared with the PSO power allocation scheme in PON-OCDMA systems in 

scenarios with high, medium and weak SNIR estimates scenarios.   

  

 

4.4. Computational Complexity  

The computational complexity of the resource allocation algorithms could be obtained 

considering the execution time or the number of mathematical operations. In this work, the 

computational complexity of the PSO and IC-PSO power allocation algorithms is based on the 

mathematical number of executed operations (including sums and multiplications) implicit in 

the optimization problem, Eqs. (2) or (3) [9]. Therefore, the polynomial complexity of PSO power 

allocation algorithm is of the order      , where   is the number of nodes in the PON-OCDMA 

[9]. In addition, in the case of the IC-PSO power allocation is not added a dominant 

computational complexity term, resulting in the same computational complexity order of the 

classical PSO power allocation scheme. To illustrate the competitive computational complexity 

of the PSO and IC-PSO power allocation schemes, the computational complexity of the matrix 

inversion considering the best situation is given by           [9]. Fig. 5 depicts the asymptotic 

computational complexity versus the number of ONUs for both heuristic PSO, IC-PSO 

algorithms, as well as deploying matrix inversion approach. 

As expected, the computational complexity of the IC-PSO, PSO and matrix inversion power 

allocation schemes increases with the increasing of the number of ONUs. Regarding the 

scenarios evaluated in this work, the computational complexity is almost the same for the three 

power allocation schemes until approximately 16 ONUs. However, after that, the increasing on 

the computational complexity is very accentuated for the matrix inversion approach compared 

with the IC-PSO and PSO power allocation schemes. Such characteristic is remarkable for 

PONs with number of ONUs higher than 32, and in the case of 48 ONUs the computational 

complexity of  matrix inversion power allocation scheme is approximately twice of the IC-PSO 

and PSO power allocation schemes.  On the other hand, there is no difference on the asymptotic 

computational complexity of both heuristic IC-PSO and PSO strategies. 
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Fig. 5. Asymptotic computational complexity versus the number of active ONUs for heuristic-

evolutionary PSO, IC-PSO, as well as the matrix inversion power allocation schemes. 

 

 

5. Conclusions 

In this work, an improved chaos particle swarm optimization (IC-PSO) power allocation 

algorithm was proposed to improve the convergence velocity and the quality of the algorithm 

solutions to solve the optimal power allocation problem in PON-OCDMA systems. The proposed 

IC-PSO utilizes the Beta distribution modeling instead of uniform distribution of the traditional 

PSO; moreover, a factor of damping based in the chaotic logistic map related to the updating of 

the best global value was successful introduced. These characteristics have affected the best 

relation between the performance-complexity, the velocity of algorithm convergence and the 

quality of the algorithm solutions. The numerical results have demonstrated the effect of the 

Beta distribution shape parameters in the quality of the solutions of the IC-PSO power 

allocation scheme, regarding the situations with SNIR estimates in high, medium and weak 

signal environments. To improve the convergence speed and quality of solution, such shape 

parameters must be tuned according the number of active ONUs in the network aiming to 

provide the diversity and the diversification of undercover regions in the search space during 

the transmitted evolutionary-heuristic power optimization procedure. In addition, the 

utilization of the chaotic logistic map as damping factor is effective to the IC-PSO scape from 

the local optimum. There is a considerable improvement in the convergence velocity of the IC-

PSO algorithm when compared with the PSO power allocation, mainly in situations with SNIR 
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estimates in medium and weak signal environments, i.e. in PONs with higher number of ONUs 

. In addition, the IC-PSO power allocation scheme is effective and able to improve substantially 

the quality of the solutions with decreasing of approximately 5 decades of normalized mean 

square error (for the same number of iterations) when compared with the PSO power allocation 

scheme. Indeed, this convergence increment and quality of the solutions improvement is 

remarkable, since in the IC-PSO power allocation scheme it does not come with a computational 

complexity increasing when compared with the PSO power rate allocation. 
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