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Abstract— The continuous increasing of the Internet traffic has 

brought serious concerns about capacity exhaustion of the optical 

infrastructure in a medium term horizon. Taking into account the 

optical networks, comprising the Internet backbone, the strategies 

to avoid this catastrophic scenario point to the development of new 

technologies that enable the capacity expansion, as well as to a 

better utilization of network resources (spectrum or wavelengths). 

The elastic optical network, considered as a realistic perspective for 

the infrastructure, optimizes the required spectrum and improve 

the efficiency of resources utilization. However, it is based on 

optical circuit switching paradigm that tends to waste resources 

due to idle times of reservation process. Since in some dedicated 

optical networks, like data center networks, certain optical 

switching paradigms have become reality, it is expected that in the 

coming years not only an elastic optical network, but also a hybrid 

network, in terms of switching paradigms, be brought to reality. 

Considering this scenario, the present paper addresses some issues 

on the modeling of an optical network working with hybrid-

switching paradigms.  
  

Index Terms— Optical Network Modeling, Optical Switching Paradigm, 

Hybrid Operation.   

I. INTRODUCTION 

In recent years, the world has experienced the global adoption of many bandwidth-hungry 

applications, such as Internet protocol television (IPTV), high definition video-on-demand and real-

time communications, which contribute to a continuous increasing of network traffic. Moreover, the 

Internet of things (IoT) is expected to be practical in the short term and it will consume an additional 

amount of bandwidth. Based on the data obtained from backbone reference networks, operators 

estimate a future annual growth rate of Internet traffic around 35% [1], pressuring the optical 

networks to provide higher capacities with more flexibility and lower costs. In this scenario, a 

redesign of optical infrastructure based on wavelength division multiplexing (WDM) is required to 

postpone the inevitable capacity crunch. 

Elastic optical network (EON) [2]-[4] has become an option that enables a higher spectrum 

utilization, assigning spectrum slices as a function of bandwidth service demands, and dealing better 
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with uneven spectrum requirements than the conventional fixed grid WDM network. According to 

[5], the realization of EON is considered a realistic perspective since (i) it can seamlessly be 

deployed, (ii) it optimizes the required optical spectrum, and (iii) it provides flexibility with minimum 

disruption to the existing infrastructures, due to Sliceable Bandwidth-variant Transponders (S-BVT) 

and Flexible Optical Cross-connect (Flex-OXC). Therefore, EONs are expected to contribute to 

improving the resource utilization efficiency. However, the EON suffers with its own problems, and 

the most known problem in EONs is the spectrum fragmentation [6]. This problem comes from the 

dynamical nature of Internet traffic, which is affected by the connection lengths, distribution of 

bandwidth demands, and connection hold and idle times. The connection lengths can range from few 

tens to several thousands of kilometers, in single-hop or multi-hop routes, filling the spectrum (on 

connection setup) or leaving spectrum voids (on connection release) along all the used network links. 

The bandwidth requests, which can be from tens to hundreds of GHz, are related to the bit rate, 

according to the spectral efficiency of a given modulation format. Consequently, releasing different 

kinds of connections may leave spectrum voids with different sizes. Moreover, connection hold and 

idle times can be statistically distributed around an average value, which may range from seconds (as 

a conventional IP packet) to hours or even longer timescales. The last aspect is common in EONs and 

traditional WDM networks, since both are based on optical circuit switching (OCS). Around the first 

years of this century, one of the main targets was the development of efficient approaches to achieve 

higher levels of statistical multiplexing in the optical layer. Thus, the optical packet switching (OPS) 

was proposed as a promising solution to bring the advantages of WDM network (already deployed in 

the Internet core) to the metropolitan network (MAN) [7]-[9]. The main issue was that OPS could 

provide a better adaptation in a truly dynamic environment, where the infrastructure costs are 

dominant and traffic of several kinds of service needs to be carried.  

A great effort was spent to make the OPS practical, allowing traffic delivery in MAN [10]-[14]. 

However, some technological constraints turned difficult the management and the implementation of 

contention resolution schemes. Among them, the missing of ultrafast switching fabrics, lack of 

functional optical memories, and immaturity of optical processing, contributed to make the OPS a 

utopic metropolitan optical network. Because of these problems, the optical burst switching (OBS) 

was proposed to mitigate some of the OPS problems, like the need for fast processing and switching, 

behaving as a switching paradigm with shared characteristics from OCS and OPS [15][16]. On the 

other hand, the adaptability of optical transport network (OTN) contributed to keep OPS and OBS 

technologies confined in the testbeds and theoretical research, besides their innovative potential 

[17][18]. Nevertheless, the development of optical switching devices technologies in the last few 

years [19], the appearing of software defined network (SDN) technology, and the need to handle and 

store great volumes of traffic [20], generally using large-scale data center networks (DCN), brought 

back the interest in OPS [21]-[23]. Currently, experiments have shown the advantages of using 

hybrid-switching paradigms like OCS and OPS to virtualize resources in DCNs, by using concepts in 
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EONs [22][23]. In addition, some studies on hybrid optical networks [24]-[27] demonstrated the 

improvement of quality, granularity and throughput efficiency, pointing to a medium term horizon 

where it finally may have an optical network operating simultaneously with multiple switching 

paradigms. This work presents some issues on such networks modeling, providing tools to carry on a 

performance analysis.   

The rest of this paper is organized as follows. Section II deals with the existing optical switching 

paradigms with their most known reservation processes and the main issues on a network modeling. 

Section III presents the most known performance parameters regarding optical networks and the 

methodology to get them. Section IV brings the model for a hybrid-switching optical network and 

presents a brief discussion on it. Section V shows the results regarding the adopted scenario of a 

hybrid-switching network and Section VI presents the conclusions remarks. 

II. OPTICAL SWITCHING PARADIGMS 

The known optical switching paradigms (OCS, OPS and OBS) work in different ways in an 

optical network, mainly when considering the taking time to setup the connections or to reserve 

resources for transmitting information data. In the OCS case, the setup process can be performed in a 

centralized or decentralized way, depending on if each node has only the information about its 

resources or if there is a root node that manages the resource information on an entire network 

domain. Moreover, the transmission of data in OCS paradigm starts only after the resource reservation 

along a route is confirmed. On the other hand, OPS and OBS usually do not have a resource 

confirmation before transmitting data from a source node. This happens because they perform the 

reservation process in a decentralized hop-by-hop way, on which each node manages its own 

resources and switching devices. Since a modeling to a hybrid-switching network will be further 

presented, in order to avoid conflicting information among switching paradigms, all of them are 

treated in a decentralized way.  

A. Optical Circuit Switching 

The OCS paradigm works based in resource-oriented way, on which a lightpath is established 

only when there is at least a unique free resource (used as synonymous of wavelength) available in all 

links of a given route between a source node and a destination node. Given that a resource is assigned 

to a connection (or lightpath), it is only released after all the data are sent to the destination node [28]. 

The time for the effective connection establishment depends on the delay time (or propagation time) 

and on the time for information processing on each link. The delay time is related to the data 

travelling time on a specific link, and it depends on the link distance and on the phase velocity of the 

electromagnetic wave propagating in the optical fiber. The time for information processing (setup 

time) depends on the node hardware and on the amount of node resources. Usually, it is a time 

estimative to process the information and to prepare the signaling message to the next node. The OCS 

signaling scheme is generically presented in Fig. 1, in which a connection is assigned between node 1 
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Fig. 1. Optical circuit switching connection establishment. 

and node 4, passing through node 3. In this case, the route is 1 → 3 → 4. At t0, all information about 

free resources on link 1 → 3 are sent to node 3. It must be noted that since free resources on whole 

route are unknown at this time, all of them are made busy for a future reservation propose. Some 

techniques of generalized multiprotocol label switching (GMPLS) allowing RSVP-TE (resource 

reservation protocol - traffic engineering) do not make the resources busy in advance, but with the 

drawback of having a possibility of taking a wrong decision at destination node, since, in this case, 

some of previous free resources can be chosen for other lightpath during the connection establishment 

process. Sequentially, to achieve node 3, the list of available resources takes tdelay, arriving there at 

tRECEIVE
(3) 

(the superscript indexes indicate the processing node). After arriving, node 3 takes tsetup time 

units to (i) process the arriving information, (ii) get its particular list of available resources and  

(iii) prepare the signaling to the next node (node 4), according to routing information and containing 

only the list of resources that are free on both links 1 → 3 and 3 → 4. Further, only if there is the 

same free resource in both links, these tasks are finished at tPROCESS
(3)

 and the information is sent to 

node 4. Else, a BLOCK message is sent back to node 1, reserving no resource at link 3 → 4. Given 

that there is at least one free resource on both links, after tdelay
’
 (generally different from tdelay due to 

link distances) the destination node receives all the information to setup the connection, at tRECEIVE
(4)

, 

and will process it during tsetup. The processing at destination node is very important since it will 

receive the list of available resources along the whole route and will choose one of them, based on an 

assignment strategy, like First-Fit, Random-Fit, Most-Used and so on. The other nodes must be 

informed about the chosen resource, so at tPROCESS
(4)

 this information is sent to node 3. When this 

information arrives, node 3 makes free all the resources previously reserved for the connection, unless 

the chosen resource at destination node. At tCONFIRM
(3)

, after tsetup, a message is sent to node 1 which, 

up to tCONFIRM
(1)

, processes the list of previous reserved resources and the chosen wavelength, just like 

node 3. The connection will begin to transmit data after tsetup from this time, at tDATA
(1)

. Moreover, if 

node 1 receives a BLOCK message, the connection will be rejected at tDATA
(1)

, after releasing the 
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previous reserved resources at tCONFIRM
(1)

. For modeling proposes, considering a connection with 

service time ts, node 1 will release the connection ts time units after tDATA
(1)

, by assuming that all the 

nodes are equipped with an automatic data detection. As an additional feature, it could be considered 

a processing time for connection releasing, but it was ignored for the present model. Furthermore, 

considering a simulation procedure, a connection destruction event happens in the releasing process at 

destination node (considered as the time that all the data is already transmitted), when all the recorded 

data, regarding a specific connection, can be removed from memory. 

As can be seen, during the connection establishment process some resources are made busy, but 

they are not used at that time for data transmission. Therefore, the concept of idle time is introduced. 

The idle time will appear in any optical switching paradigm with different magnitudes. The idle times 

for different nodes in a given route can be different. For instance, Fig. 1 shows that the idle time at 

node 1 (hop zero) can be given by tDATA
(1)

 – t0, which is the round trip time (RTT) for route 1 → 4, 

added to the amount of time used to setup processing, that is 5 × tsetup.. The RTT is the time that an 

electromagnetic wave takes to arrive at node 4 from node 1 and go back to node 1. Performing the 

same analysis for node 3 (hop one), the idle time is given by tDATA
(3)

 – tPROCESS
(3)

, which is RTT added 

to 4 × tsetup. Using mathematical inference, the total idle time in a route from node i to node j is given 

by:  

( , ) 1
OCS

idle setup setup setup

0

( , ) ( , ) 2 ( , ) ,
H i j

k

i j RTT i j H i j t t k t




       (1) 

where H(i,j) is the number of hops of the route from node i to node j and RTT(i,j) is the round trip 

time between node i and node j.  

Given c0 as the speed of light, nc as the core refraction index of optical fibers transporting the 

electromagnetic wave and D(i, j) as the physical distance between nodes i and j, then RTT(i, j) can be 

calculated as: 

0

2 ( , )2 ( , )
( , ) c

p

D i j nD i j
RTT i j

v c

 
   (2) 

These results can be used to calculate the average idle time in a network. Therefore, assuming a 

topology with N nodes, the average network idle time for OCS paradigm, as described in Fig 1, is: 

idle

1 1,

idle-net

1 1,

( , )

( , )

N N

i j j i

N N

i j j i

i j

H i j




  

  



 

 
 (3) 

The parameter given by (3) is the average time that a resource in the network is made busy 

without being used for sending data. It is used to estimate the network load when considering an 

optical circuit switching paradigm. 
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B. Optical Packet Switching 

Optical packet switching (OPS) uses a strategy that is similar to statistical multiplexing 

mechanism, on which the resource assignment is performed hop-by-hop. The required processing 

time to execute this task is generally gotten by means of fiber delay lines (FDL) and splitters. In OPS, 

the optical-to-electronic conversion of all the packet data is not necessary, but only the portion 

concerning the packet header (for routing information) [29]. Therefore, the processing is faster due to 

the usage of basic low rate electronics that is good enough to perform this task with the required time. 

On the other hand, the technological constraint to construct random access memories or to handle 

FDLs, the missing switching devices working in optical domain with ultrafast time responses, and the 

difficulties to implement efficient contention resolution schemes made OPS economically prohibitive 

around 15 years ago.  

Nowadays, new switching devices and the progress in silicon photonics are making OPS 

interesting for some applications [19], like resources virtualization and data center networks [20]-[23].  

Thus, the idle time for OPS is, in the worst case, the time taken to process routing information and to 

assign resources. This time is usually provided by an FDL with fixed storing time (tsetup). As 

previously assumed, given a route 1 → 3 → 4, the signaling scheme to OPS is generically presented 

in Fig. 2. Beginning from t0, all the information about resources at link 1 → 3 are processed. One 

single resource is chosen by node 1, sending data to node 3 after tsetup (at tPROC/TRANS
(1)

). In the worst 

case, which the assigned resource is made busy immediately after t0, the average idle time for OPS is 

given by tsetup, since after tPROC/TRANS
(1)

 the optical packet is completely delivered at tRELEASE
(1) 

(after 

service time (ts) from tPROC/TRANS
(1)

).  

Consequently, assuming an automated data detection, the reserved resource and switching ports 

are released, at node 1, ts time units after tPROC/TRANS
(1)

 (tRELEASE
(1)

). In addition, the resource is chosen 

in the first node and, if the chosen resource is not available in any link along the route, the optical 

packet is dropped. Note that all the nodes behaves in the same way.  
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Fig. 2. Optical packet switching connection establishment. 
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Fig. 3. Optical burst switching connection establishment. 

Therefore, assuming any topology, the average network idle time, δidle-net, for OPS paradigm, as 

described in Fig 2, is given by its node idle time: 

OPS

idle setupt   (4) 

C. Optical Burst Switching 

A hybrid solution between OCS and OPS is known as optical burst switching (OBS) [16], since 

the data to a given destination node is aggregated in a burst and sent only after enough time to reserve 

the resources along a given path, which must be assigned in advance. Before sending a burst, a 

signaling message is sent through a control channel along the path in order to perform the resource 

reservation and setup the switching ports on each node. Some strategies for reservation, such as Just-

in-Time (JIT), Horizon and Just- enough-Time (JET) were proposed, with their advantages and 

disadvantages concerning computational complexity and idle times discussed in [30]. In all signaling 

methods for OBS, resource reservation needs an offset time (toffset), calculated as the minimum amount 

of time to provide all the resources reserved at destination node. On each node, a setup time (tsetup) is 

necessary to process the signaling message and to reserve the resources, but differently from OPS, the 

data information is received later and an optical memory is not necessary. Fig. 3 shows the signaling 

steps for JIT mechanism, which is adopted in the present work and carefully described in [30]. 

Therefore, before a burst is sent along the route 1 → 3 → 4, it is stored by toffset time units. During this 

time, a signaling message is sent along the path, carrying all the information about the burst, including 

its time length. Therefore, the signaling message negotiate network resources on each node for a 

specific period, enough to serve the burst. According to Fig. 3, when signaling message gets to  

node 3, at tRECEIVE
(3)

, it tries to assign the same resource which was assigned by node 1, at t0. If the 

specific resource is not available, the reservation process fails and the burst is dropped when getting to 

node 3. Given JIT mechanism, the resource remains reserved for the period tPROCESS
(3)

 up to tRELEASE
(3)

. 

As previous switching methods, it is assumed an automatic data detection to release the reserved 

resource when stopping sending data (end of burst). Note that, in this example, resources belonging to 
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node 3 are reserved for the given burst only up to tRELEASE
(3)

, which means node 3 can reserve the same 

resource for any other burst after this time. Moreover, it is clear from Fig. 3 that the idle times are 

different depending on the position of nodes along the route. For instance, node 1 presents an idle 

time exactly equal to toffset while node 3 presents an idle time of tPROCESS
(3)

 – tDATA
(3)

. Thus, average idle 

time depends exclusively on the position that the node occupies in a given route. Assuming OBS with 

JIT signaling, the average idle time is given by: 

( , ) 1
OBS-JIT

idle setup

0

( , )
H i j

offset

k

i j t k t




    (5) 

Taken a network topology with N nodes and substituting (5) in (3), it is possible to calculate the 

average idle time for a whole network operating with OBS and JIT. Clearly, if other reservation 

mechanism are employed, the idle times can be slightly different, but the overall process is always the 

same. The knowledge of idle times of any switching paradigm and/or reservation mechanism is a key 

issue to calculate the network load, which has a difference from traffic intensity, as addressed in the 

next section. 

III. THE NETWORK PERFORMANCE PARAMETERS 

Some interesting parameters can be used to measure the performance of a conventional optical 

network. It is not different when analyzing a hybrid-switching optical network, since some 

characteristics of a specific switching paradigm can heavily contribute to the network behavior. In 

order to simplify the text, the generic term connection is used to refer to a lightpath in OCS, to an 

optical packet in OPS, or to a burst in OBS. Firstly, network load must be defined to avoid 

misunderstandings with traffic intensity.  

A. Network Load and Traffic Intensity 

The network load take into account the network stress due to idle resources. Consequently, the 

switching idle times are required to compute the overall network load. On the other hand, traffic 

intensity is the net load, effectively used to transport data information. 

In general, the network load is defined as: 

idle-net

1
,H  



 
   

 
 (6) 

where λ is the average arrival rate of connections (following a poissonian statistical distribution) and µ 

is the average departure rate of connections (following a negative exponential distribution), on which 

1/µ is the average service time (ts). In addition, the parameter δidle-net is the average network idle time, 

computed by (3), and H is the theoretical average number of hops, since the same connection can 

occupy a given resource in several links of the network.  

The last relation presents an important issue for modeling and simulating an optical network, 

since it brings information about the value for the average arrival rate to have a given network load, 

assuming a topology with average number of hops H, a switching paradigm with network idle time 
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δidle-net and mean service time of ts. Note that, if somebody wants to approach the analysis with the 

traffic intensity, the term of average idle time must be eliminated from (6). In this case, performance 

parameters will show the differences between the network load and traffic intensity approaches. The 

most known performance parameter is the blocking probability; therefore, some issues on its 

calculation must be addressed. 

B. Blocking Rate, Blocking Probability and Service Blocking Probability 

The blocking probability is an issue that frequently has two approaches when considering an 

optical network. The first approach is assuming the blocking probability as the blocking rate, which is 

the number of blocked connections divided by the total number of generated connections. Although 

the blocking rate can be used as a performance parameter, it is different from blocking probability. 

The blocking probability should consider the opportunities of blocking along a route. For instance, 

route 1 → 3 → 4 in Figs. 1 to 3 has two links and, independently of the switching paradigm, the used 

resource to serve a connection in this route must be available in both the links. Clearly, this example 

shows that always there are two opportunities to block a connection using this route.  Consequently, 

there are two important measures to compute the blocking probability: the number of blocking events 

and the number of links travelled (visited) by the connections. In order to provide an individual 

analysis for any switching parameter, they can be treated as a network service. Thus, assuming a 

network operating with S different switching paradigms, the number of blocking events can be stored 

in a vector Bs, for each switching paradigm s, s ∈ [1:S]. Similarly, considering a topology with L links, 

the number of link visits can be stored in a vector Vl, for each network link l, l ∈ [1:L]. Therefore, the 

blocking probability for switching paradigm s is given by Pbs: 

1

s
s L

l

l

B
Pb

V





 

(7) 

From (7), the network total blocking probability, concerning all the network switching paradigms 

can be computed by: 

1

S

s

s

Pb Pb


  (8) 

Sometimes, it is interesting to compute the service blocking probability to compare the 

performance among network switching paradigms. To provide this parameter, the vector for link visits 

must store the information classified by switching paradigms, as shown by:  

1

s
s L

s

l

l

B
Psb

V





 

(9) 

Note that the relations (7) to (9) can be obtained also for blocking rate instead of blocking 

probability by replacing the vector V with a vector Gs, which stores the number of generated 

connections for each switching paradigm. 
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C. Average Number of Hops 

As the reservation process is quite different for each switching paradigm, another interesting 

parameter to evaluate the hybrid network is the real average number of hops. Assuming that each 

connection c, belonging to switching paradigm s, travels hc links, the real average number of hops can 

be calculated by (10), for each switching paradigm s with number of generated connections Gs. It 

must be highlighted that for blocked OCS connections, hc is always zero, since the connection does 

not effectively enter the network. On the other hand, OPS or OBS can travel a certain number of links 

before being blocked. Consequently, this number is always considered to compute the real average 

number of hops. 

1

sG

c

c
s

s

h

H
G




 
(10) 

The real average number of hops can also be calculated for the network as a total average number 

of hops. In order to get this parameter, the average is computed over all switching paradigms, as given 

by: 

1 1

1

sGS

c

s c

S

s

s

h

H

G

 







 (11) 

The average number of hops can be considered as a metric to evaluate the physical resources and 

an estimative of power levels, considering the distribution of optical amplifiers. 

D. End-to-end Average Delay 

Following the same methodology used to get the real average number of hops, the real average 

end-to-end delay can be obtained. The end-to-end delay of each connection c is given by dc in (12) 

and (13). As explained before, given a blocking event for OPS and OBS, dc is stored with the end-to-

end delay until the time that the blocking event occurred. Naturally, the real end-to-end average delay 

is dependent on the switching process and it can be calculated for a specific switching paradigm by: 

1

sG

c

c
s

s

d

D
G




 
(12) 

  The end-to-end average delay can be also calculated for the whole network as follows. 

1 1

1

sGS

c

s c

S

s

s

d

D

G

 







 (13) 

The end-to-end delay is a parameter that helps to evaluate the period of time that it takes, on 

average, to require the connection at the source node up to the time that it is received by the 

destination node. Consequently, it can be considered a valuable parameter to evaluate the type of 
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switching paradigm compared to the required level of delay that the transported application can 

tolerate. 

E. Average Utilization 

Finally, the average utilization is another valuable performance parameter. This index is equal to 

unity if all the generated connections make all the network resources along all links busy, during a 

complete watching period. Thus, considering Gs connections of switching paradigm s, L links in the 

network topology with R available resources, and a watching time (simulation time) of tsim, the 

average utilization for switching paradigm s is given by:   

hold

1 1

sim

( , )
sG L

r

c l
s

t c l

U
R L t

 
 


 

(14) 

where t
r
hold(c,l) is the time that connection c uses resource r at link l, with r ∈ [1:R].  

In order to have total information about average utilization, the network average utilization can 

be computed by: 

1

S

s

s

U U


  (15) 

It should be clear that the utilization is an important parameter to provide information on how the 

network resources are being used by switching paradigms. Now that the details on switching 

paradigms are stated and performance parameters are defined, it is time to model the hybrid-switching 

optical network. 

IV. THE HYBRID-SWITCHING OPTICAL NETWORK 

For the analysis of a hybrid-switching network, the calculation of the general idle time must have 

an adaptation, since there is a specific formulation for each kind of switching paradigms. Introducing 

a new network parameter as the traffic probability Ps, which is the probability of having, at any time, 

a traffic based in the switching paradigm s, the average idle time for a hybrid network can be stated 

as:   

hybrid

idle-net idle-net

1

s
s

s

s

P 


   (16) 

In addition, the average service time is recalculated as function of traffic probabilities Ps, 

allowing getting the average arrival rate for a hybrid-switching network according to: 

1

hybrid hybrid

idle-net

1

S
s

s s

P

H


 







  
   

  
  (17) 

As before, ρ is the network load and H is the theoretical average number of hops. If the traffic 

intensity approach is used instead of network load, then λ
hybrid

 must be calculated in the same way, just 

turning to zero the term concerning the idle time of hybrid network. 
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The hybrid-switching model was incorporated to ONSim [31], an optical network simulator built 

in JAVA. ONSim treats all the phases of connection establishment and reservation processes for OCS, 

OBS and OPS as discrete events, according to schemes in Figs 1 to 3. The model and the simulation 

tool were tested on simple scenarios described by analytical formulations and on complex scenarios 

with known performance parameters, matching the results with statistical confidence higher than 98% 

by using 1 million connections per load value. The scenario that is used to achieve the results, 

concerning a hybrid-switching network, was comprised by three switching paradigms OCS, OPS and 

OBS, respectively described in their decentralized reservation processes by Figs. 1, 2 and 3. The 

adopted topology is a skeleton of NSFNet topology with 14 nodes and 21 bidirectional links, whose 

distances shown in Fig. 4. Routing process considered the shortest path distance, with just one fixed 

route for each source-destination node pair. In this case, the theoretical average number of hops is 

2.2967. The connections are uniformly distributed by all possible node pairs. Moreover, it was 

assumed that any connection occupies a bandwidth of 25 GHz and that the available bandwidth is  

150 GHz, shared for all of them, equivalent to 6 network resources (wavelengths) for ITU grid with 

25 GHz channel spacing. This means that this bandwidth is sufficient to attend, on each link, up to  

6 different connections. The characteristic of simulation scenario regarding the optical switching 

paradigm, traffic probabilities, service times, and idle times are given in Table I. These times were 

achieved from the reservation mechanisms of each switching paradigm and the propagation time was 

assumed as 5 µs/km.  

Specifically for OBS, the offset time was assumed as 40 µs, while the setup time for all OCS, 

OPS and OBS was 5 µs. The time required by switching fabric to configure its switching ports was 

assumed as 2 µs in ONSim configuration, but it was not used for the present model. In order to keep, 

as far as possible, similar time scales for all the considered optical switching paradigms, service times 

for OCS and OBS were assumed as 10s and 2s, respectively. For OPS, it was assumed a service time 

of 1.6 µs, which is equivalent to an optical packet carrying 500 Bytes at 2.5 Gb/s or 2000 Bytes at  

10 Gb/s. The average network idle times were computed using idle times for each optical switching 
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Fig. 4. NFSNet topology with 14 nodes and 21 bidirectional links. 
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paradigm, given by (1), (4) and (5), respectively for OCS, OPS and OBS. The traffic probabilities 

were defined as function of a future possibility of deployment. The last column summarizes the 

average holding time for each optical switching paradigm. For instance, OPS has 5 µs of average 

network idle time and 1.6 µs of service time, which weighted for a 20% traffic probability means that 

OPS data units holds a resource, on average, for 1.32 µs.  

Therefore, the data in Table I are used to compute the average arrival rate as function of network 

load, using (17). For instance, it can be seen that for a network load of 100 erlangs (E), λ
hybrid

 is  

7.7732 arrivals/s. Note that in a hybrid-switching optical network, the assigned loads to each 

switching paradigm are different. Expanding (17) and isolating the load contributions of each 

switching paradigm for a given λ
hybrid

, it is clearly seen that the distribution of network loads in the last 

example is 89.2883 E, 0.0001 E, and 10.7116 E, respectively for OCS, OPS and OBS. Now that the 

more important issues regarding the working of a hybrid-switching optical network were discussed, it 

is time to study this network as a function of the approached performance parameters. 

V. RESULTS 

All the performance parameters were calculated as function of network load, ranging from 10 E 

to 500 E, with intervals of 10 E, totalizing 50 points per curve. The first results are referred to 

blocking probability, which are shown in Fig. 5. The contribution of each switching paradigm on 

blocking probability, calculated by using (7), is shown in Fig. 5(a). The total blocking probability can 

be seen in this figure with a purple continuous line without markers, calculated by using (8). This 

figure shows that the major contribution for blocking probability is due to OCS, followed by OBS and 

OPS. Specifically, the OPS switching paradigm presents a high level of blocking, considering its low 

relative load. This behavior can be explained by the fact that the network available resources are 

shared by all the switching paradigms, and clearly OCS and OBS hold the resources for longer 

periods when compared to OPS. Thus, OPS suffers higher blocking probabilities because resource 

conversion is not possible and no contention resolution scheme are being used. Furthermore, the 

decentralized way to reserve resources for OCS makes all the available resources busy in the resource 

discovering process even if it will use just one of them. Since OPS is the most dynamical switching 

paradigm among the considered ones, it also suffers blocking probability.  

The service blocking probability, calculated by using (9), was also achieved for the considered 

hybrid-switching paradigm, which is presented in Fig. 5(b). From this figure, the service blocking 

TABLE I. PARAMETERS FOR OPTICAL SWITCHING PARADIGMS  

Switching  

Paradigm 

Service  

Time (s) 

Average Network  

Idle Time (µs) 

Traffic 

Probability 

Average Holding  

Time (s) 

OCS 10.0000000 27786.0 50 % 5.00138930 

OPS 0.0000016 5.0000 20 % 0.00000132 

OBS 2.0000000 0.3574 30 % 0.60000107 
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probability for OCS is clearly higher than the one for OBS and OPS, while OBS and OPS present 

approximately the same results (the curves for OBS and OPS are nearly overlapped). This behavior 

can be explained by using the results from Fig. 5(a), that show a blocking probability around 50% 

higher for OBS compared to OPS. Observing that the denominator of (7) is the same for any 

switching paradigm, it can be concluded that the number of blocking events for OBS is about 50% 

higher when comparing to OPS. On the other hand, the traffic probabilities, which were defined as 

30% for OBS and 20% for OPS, influence the OBS and OPS values in the vector of link visits by a 

difference of around 50%. Clearly, this behavior will conduct to the same value when analyzing the 

service blocking probability, which is seen in Fig. 5(b). 

Beyond the blocking probabilities, it was also analyzed three other network parameters that are 

important to the definition of general network performance. One of them is the evolution of the real 

average number of hops, calculated for switching paradigms and for the whole network by using (10) 

 
(a) 

 
(b) 

Fig. 5. (a) Blocking probability and (b) service blocking probability in a hybrid-switching network. 
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and (11), respectively. Another one is the end-to-end average delay, calculated for switching 

paradigms and the whole network, by using (12) and (13), respectively. The last one is the evolution 

of average utilization, calculated for switching paradigms and the whole network, by using (14) and 

(15), respectively.  

Fig. 6 shows the evolution of the real average number of hops. The purple curve without markers 

gives the average network results and the other curves show the considered switching paradigms. It 

can be seen that all curves start from the theoretical average number of hops (2.2967) and decrease to 

lower values due to blocking events and the facts that, as network load increases, the connections that 

travel smaller routes present more chances to get their final destinations.  

On the analysis of switching paradigms, it is seen that the real average number of hops for OCS 

has a sharp decreasing in the average number of hops, while OPS and OBS have almost the same 

results, even considering the zoom view of this parameter in the inset figure. This result is in 

accordance with service blocking probability shown in Fig. 5(b). As previously discussed, the number 

of blocking events is around 50% higher for OBS comparing to OPS. As both paradigms are based in 

a hop-by-hop reservation scheme, the sum over the number of hops should follow the same proportion 

of blocking events. Consequently, as the number of traffic requests for OBS is 50% higher, the 

average number of hops for both OBS and OPS are nearly the same for this network scenario. It 

should be highlighted that optical bursts or optical packets are considered for these statistics only 

when they occupy at least one resource in any link of the network. In other words, an optical burst (or 

optical packet) is not considered for network statistics if no resource can be reserved for it at source 

node.  

An interesting result regarding OCS is that from 400 E, the average number of hops decreases to 

smaller than one. This result shows that there are too many connection requests that collect free 

resources along a route, but they are not able to find a free resource along their routes (wavelength 

 

Fig. 6. Average number of hops in a hybrid-switching optical network. 
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continuity constraint). In this case, the request is blocked, but the zero hop travelled by the connection 

itself (not by signaling) is computed to the average number of hops statistic.  

The results concerning the average delay are shown in Fig. 7. As before, the purple curve without 

markers brings the average network results. The other curves depict the considered switching 

paradigms. The results for OPS begin from 1.391 ms and provide information on the delay due to 

electromagnetic wave propagation, since the setup time of 5 µs per node does not have a considerable 

contribution to the end-to-end delay. These results are very similar to the results concerning OBS, but 

there is a tiny quantitative difference (that can be seen in the inset figure), since the OBS has an initial 

offset time that is generally larger than the sum of setup times in routing nodes. Analyzing the OCS 

case, in which for the effective transmission the signaling message must depart from source node, 

arrive at destination node, and go back to source node. Moreover, data information must travel from 

source node to destination node, and so the end-to-end delay should be approximately three times the 

average delay for OPS, added to setup times. For the low load region, the achieved results match very 

well with the expected results, since for 10 E, the network average delay of OCS is 4.157 ms. The 

strong decreasing in average delay after 50 E is supported by the level of blocking probability shown 

by Fig. 5.  

Finally, Fig. 8 shows the results on average network utilization. The purple curve without 

markers brings the results on total utilization and it ranges from 3.9% to 65.7% of resources 

utilization taking the network load variation from 10 to 500 E. For the specific switching paradigms, 

OCS uses 52.34% of the available resources at 500 E and OBS uses 13.36%. On the other hand, OPS 

uses only 0.01% of the available resources when the hybrid-switching network is loaded with 500 E. 

This last result cannot be evaluated as unexpected, since the specific load due to OPS paradigm is 

 

Fig. 7. Average delay in a hybrid-switching optical network. 
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significantly low. Therefore, all the presented results for the adopted scenario of a hybrid-switched 

optical network are coherent and support themselves. 

VI. CONCLUSIONS 

The present paper has addressed some issues on the modeling of an optical network working with 

hybrid-switching paradigms. The achieved results show that different switching paradigms can 

determine different results in performance, since they treated the network resources with very 

particular ways. The network model was deeply discussed and it can be adapted to study an elastic 

optical network working with hybrid-switching paradigms. In the future new studies, other 

distributions for traffic probabilities will be carried on. Moreover, other reservation strategies for OBS 

and OCS will be implemented. The presented study considered a scenario with resource sharing and 

decentralized signaling way. However, resource partitioning and even a centralized resource 

reservation can also be considered as a strategy to manage the occupation of network resources, 

considering a migration to elastic network paradigm, always pursuing to postpone the capacity crunch 

of optical network resources.  
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