Conventional microstrip line fed MPA |
2.40 |
56.1×71.8 36.8×28.1 |
Taken as reference |
50 |
3.24 |
––––––––––– |
[ 6[6] Y. Dong, H. Toyao, and T. Itoh, “Design and Characterization of Miniaturized Patch Antennas Loaded with Complementary Split-Ring Resonators,” IEEE Trans. Antennas Propag. , vol. 60, no. 2, pp. 772-785, 2012. doi: 10.1109/TAP.2011.2173120. https://doi.org/10.1109/TAP.2011.2173120...
] |
2.40 |
34×34 12.4×19.2 |
+71.3% +76.97% |
25 |
–2.02 |
Using split ring resonators |
[ 21[21] Indoor 2.4 GHz Microstrip Antenna, D-Link DWL-R60AT Data Sheet, D-Link®. ] Datasheet (D-Link: DWL-R60AT) |
2.40 |
58.4×58.4 NA |
+15.32% NA |
83.5 |
6.0 |
NA |
[ 22[22] 2.4 GHz Wi-Fi/Bluetooth Microstrip Button Antenna, WCM.01.0151W Data Sheet, Taoglas®. ] Datasheet (Taoglas: WCM.01.0151W) |
2.45 |
100×100 19.8×14.3 |
–148.26% +72.61 |
200 |
2.02 |
NA |
[ 23[23] Y. Liu, J. Xue, H. Wang, and S. Gong, “Low-profile omnidirectional dual-polarised antenna for 2.4 GHz WLAN applications,” Electron. Lett. , vol. 50, no. 14, pp. 975-976, 2014. doi: 10.1049/el.2014.1146. https://doi.org/10.1049/el.2014.1146...
] |
2.4 |
78×78 NA |
–51.04% NA |
140 |
0.46 |
Using modified monopole |
[ 24[24] Y. J. Cho, Y. S. Shin, and S. O. Park, “Internal PIFA for 2.4/5 GHz WLAN applications,” Electron. Lett. , vol. 42, no. 1, pp. 8-13, 2006. doi: 10.1049/el:20062998. https://doi.org/10.1049/el:20062998...
] |
2.4 |
47.5×20 |
+76.41% |
110 |
2.39 |
Using shorting pin |
[ 25[25] S. X. Ta, I. Park, and R. W. Ziolkowski, “Circularly Polarized Crossed Dipole on an HIS for 2.4/5.2/5.8-GHz WLAN Applications,” IEEE Antennas Wirel. Propag. Lett. , vol. 12, pp. 1464-1467, 2013. doi:10.1109/LAWP.2013.2288787. https://doi.org/10.1109/LAWP.2013.228878...
] |
2.4 |
72×72 30×30 |
–28.69% +12.96% |
410 |
6 |
Using meander-line and trident arms with arrowhead-shaped tips |
[ 26[26] M. -A. Chung, and C. -F. Yang, “Built-in antenna design for 2.4 GHz ISM band and GPS operations in a wrist-worn wireless communication device,” IET Microw. Antenna. Propag., vol. 10, no. 12, pp. 1285-1291, 2016. doi: 10.1049/iet-map.2015.0785. https://doi.org/10.1049/iet-map.2015.078...
] |
2.4 |
33×41 NA |
+66.40% NA |
240 |
4.2 |
Using monopole and inverted-F antenna |
[ 27[27] R. Zhang, H. -H. Kim, and H. Kim, “Triple-band ground radiation antenna for GPS, WiFi 2.4 and 5 GHz band applications,” Electron. Lett. , vol. 51, no. 25, pp. 2082-2084, 2015. doi: 10.1049/el.2015.3440. https://doi.org/10.1049/el.2015.3440...
] |
2.4 |
120×60 12×6 |
–78.74 +93.03% |
210 |
2.62 |
Using loop-type inductive couplers and series-resonant feeding circuits |
[ 28[28] M. K. Khandelwal, B. K. Kanaujia, S. Dwari, S. Kumar, and A. K. Gautam, “Analysis and Design of Dual Band Compact Stacked Microstrip Patch Antenna with Defected Ground Structure for WLAN/WiMAX Applications,” Int. J. Electron. Commun. (AEU), vol. 69, no. 1, pp. 39-47, 2015. doi: https://doi.org/10.1016/j.aeue.2014.07.018. https://doi.org/10.1016/j.aeue.2014.07.0...
] |
2.45 |
46.4 × 46.4 π× 17.42 |
+46.54% +8.01% |
NA |
6 |
Using circular shaped DGS |
[ 29[29] C. -M. Wu, C. -N. Chiu, and C. -K Hsu, “A New Non-Uniform Meandered and Fork-Type Grounded Antenna for Triple-Band WLAN Applications,” IEEE Antennas Wirel. Propag. Lett. , vol. 5, pp. 346–348, 2006. doi: 10.1109/LAWP.2006.880692. https://doi.org/10.1109/LAWP.2006.880692...
] |
2.45 |
60×40 34×8 |
+40.41% +73.69% |
NA |
1.48 |
Using a fork-type ground plane and non-uniform meander-line |
[ 30[30] L. Peng, C. -L. Ruan, and X. -H. Wu, “Design and operation of dual/triple-band asymmetric M-shaped microstrip patch antennas,” IEEE Antennas Wirel. Propag. Lett. , vol. 9, pp. 1069–1072, 2010. doi: 10.1109/LAWP.2010.2091671. https://doi.org/10.1109/LAWP.2010.209167...
] |
2.44 |
64×62 NA |
+1.48% NA |
110 |
1.65 |
Using shorting vias |
[ 31[31] H. -X. Xu, G. -M. Wang, and M. -Q. Qi, “A Miniaturized Triple-Band Metamaterial Antenna with Radiation Pattern Selectivity And Polarization Diversity,” Prog. Electromagn. Res., vol. 137, pp. 275-292, 2013. doi: 10.2528/PIER12081008. https://doi.org/10.2528/PIER12081008...
] |
2.44 |
60×60 NA |
+10.62% NA |
80 |
2.85 |
Using complementary split ring resonators and metamaterial |
[ 32[32] H. -X. Xu, G. -M. Wang, Y. -Y. Lv, M. -Q. Qi, X. Gao, and S. Ge, “Multifrequency Monopole Antennas by Loading Metamaterial Transmission Lines with Dual-Shunt Branch Circuit”, Prog. Electromagn. Res., vol. 137, pp. 703-725, 2013. doi: 10.2528/PIER12122409. https://doi.org/10.2528/PIER12122409...
] |
2.42 |
30 × 52.6 NA |
+60.82% NA |
310 |
0.28 |
Using complementary split ring resonators and metamaterial |
[ 33[33] C. -T. Chuang, and S. -J. Chung, “Synthesis and Design of a New Printed Filtering Antenna , ” IEEE Trans. Antennas Propag. , vol. 59, no. 3, pp. 1036-1042, 2011. doi: 10.1109/TAP.2010.2103001. https://doi.org/10.1109/TAP.2010.2103001...
] |
2.45 |
60×77 NA |
–14.69% NA |
343 |
–1.3 |
Using the parallel coupled microstrip line and the inverted-L antenna |
[ 34[34] W. Cheng, “Compact 2.4-GHz filtering monopole antenna based on modified SRR-inspired high-frequency-selective filter,” Optik, vol. 127, pp. 10653-10658, 2016. doi: https://doi.org/10.1016/j.ijleo.2016.08.086. https://doi.org/10.1016/j.ijleo.2016.08....
] |
2.4 |
50×55 NA |
+31.72% NA |
401 |
2.4 |
Using monopole antenna with modified split ring resonators |
[ 35[35] Z. H. Jiang , M. D. Gregory, and D. H. Werner , “ Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices, ” IEEE Trans. Biomed. Circuits. Syst., vol. 10, no. 2, pp. 328-338, 2016. doi: 10.1109/TBCAS.2015.2438551. https://doi.org/10.1109/TBCAS.2015.24385...
] |
2.4 |
55×55 NA |
+24.90% NA |
100 |
3.5 |
Using coupled stripline open-loop resonators |
[ 36[36] A. Pirooj, M. N. -Moghadasi, and F. B. Zarrabi, “Design of Compact Slot Antenna Based on Split Ring Resonator for 2.45/5 GHz WLAN Applications With Circular Polarization,” Microw. Opt. Technol. Lett. , vol. 58, no. 1, pp. 12-16, 2016. doi: 10.1002/mop.29484. https://doi.org/10.1002/mop.29484...
] |
2.45 |
40×40 NA |
+60.27% NA |
600 |
2.1 |
Using split ring resonators and metamaterial |
[ 37[37] C. -T. Chuang, and S. -J. Chung, “A Compact Printed Filtering Antenna Using a Ground-Intruded Coupled Line Resonator,” IEEE Trans. Antennas Propag. , vol. 59, no. 10, pp. 3630-3637, 2011. doi: 10.1109/TAP.2011.2163777. https://doi.org/10.1109/TAP.2011.2163777...
] |
2.45 |
50×50 NA |
+37.93% NA |
343 |
1.03 |
Using a coupled line resonator and a Γ-shaped antenna |
[ 38[38] M. J. Duarte, V. P. da Silva Neto, and A. G. D'Assunção, “Synthesis and Mechanical Reconfiguration of Ground Plane Tilted Microstrip Antennas Based on Tetra-Circle Fractals,” J. Microw. Optoelectron. Electromagn. Appl. , vol. 19, no. 2, pp. 228-241, 2020. doi: 10.1590/2179-10742020v19i2838. https://doi.org/10.1590/2179-10742020v19...
] |
2.45 |
NA NA |
NA NA |
85.01 |
1.27 |
Using tetra-circle fractal patch elements |
Compact Design_1
|
2.40 |
38.31×45.61 |
+56.62%
|
100 |
1.43 |
Using Type2 Iter1 Wire |
MPA
|
|
19.11×16.34 |
+69.80%
|
|
|
Fractal DGS |
Compact Design_2
|
2.40 |
46.86×60.07 |
+30.11% |
110 |
5.11
|
Using Type2 Iter1 Wire |
MPA
|
|
27.66×27.66 |
+26.01% |
|
|
Fractal DGS |
Compact Design_3
|
2.40 |
68.31×50.5 |
+14.35% |
70 |
5.91
|
Using Type2 Iter1 |
MPA
|
|
49.11×29.5 |
−40.09% |
|
|
Fractal DGS |