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Abstract− This work proposes a new tactile sensing system for
biometric authentication. The system operates based on the re-
sponse of multiplexed optical fiber macro-bend sensors to plantar
pressure. The setup contains a set of 6 in-series sensors installed
in holes drilled in a foot-shaped slab of Polymethyl Methacrylate.
Each sensor is a loop of standard single-mode telecommunication
fiber with 2.5 mm radius, encapsulated with silicone elastomer.
The instrumentation required for interrogation includes only a
broadband visible light source and a ultraviolet-visible spectrom-
eter. Personal authentication is based on recognizing the unique
pattern of pressures applied by the person’s foot in the metatarsal,
outside of the foot arch, and heel areas monitored by the 6 sensors.
The light spectrum transmitted by the set of multiplexed sensors
in the spectral range from 400 nm to 800 nm carries information
about the magnitude of the pressure applied on each sensor by the
foot. The distribution of pressures exerted by different individu-
als alters the geometry of the macro-bends, resulting in spectral
changes in transmitted light that allow personal authentication.
Principal component analysis and support vector machine method
are responsible for foot recognition. Data analysis returned hit
rates greater than 85% for 6 different feet.

Index Terms− Biometric authentication, Multiplexed sensor, Optical fiber
sensor, SVM

I. INTRODUCTION

Biometrics have attracted the attention of institutions and governments as a reliable method for
personal authentication. Systems based on biometry designed for positive person identification can
operate by comparing the individual captured biometric characteristic with that previously recorded
and stored in a database or by searching the database for a match with recorded information of a set of
individuals [1]. Setups based on capturing physiological and behavioral characteristics are safer than
those based on traditional methods such as passwords, PINs, and cards, reducing the risk of fraud and
justifying their use for human identification [2]. Whereas behavioral characteristics can change and
not provide a unique recognition, physiological characteristics are considered constant over time [2].
Therefore, physiological characteristics such as those related to the shape of the human face, fingerprint,
palmprint [3]–[5], and foot characteristics [1], [2], [6], among others, are promising candidates for a
reliable human identification [2].
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In the particular case of foot biometry, depending on the method used for the information extraction
from the person’s footstep, physiological and behavioral characteristics can be used for a person’s
authentication. Unique recognition of a person is obtained by recording, e.g., the foot geometry, the
skin texture, the pressure distribution, and the gait characteristics [7]–[9].

To record the plantar pressure distribution, the use of commercially available platforms based on
pressure sensors is widely spread. These equipment use arrays of resistive, capacitive, piezoelectric,
or piezoresistive sensors to record pressure maps and other parameters of interest, such as maximum
forces, pressures, and contact areas usually necessary in medical applications [10]. Some works pro-
posed methods for personal recognition from the pressure distribution of the footprint measured with
commercial pressure sensing mats [11], [12]. Traditional pressure sensors were also applied in pressure-
sensitive sheets used as socks for biometric recognition from the gait features [13]. Despite representing
a well-established technology, the required large number of sensors, the possible incidence of noise
from the electrical equipment connecting data acquisition and processing systems, and the electrical
wiring necessary for the proper system operation constitute some disadvantages of those systems. Some
approaches suggest the use of footprint images captured by scanners [14] or recorded by cameras [7],
[15], [16]. All these approaches require the use of methods of diverse complexity for data analysis or
even data preprocessing to extract physiological or behavioral features such as foot shape and size and
plantar pressure. Commercial platforms, scanners and in-shoe systems are usually used for static and
dynamic indoor tests restricted to labs and clinics due to limitations for application in daily monitoring
[10].

In an effort to overcome disadvantages related to traditional technologies, some works have proposed
solutions based on optical fiber sensors (OFS). Over the past decades, the emergence of optical fiber
communications has led to scientific findings and the development of new devices and equipment
that promoted the popularization of optical fiber technologies. The success results from the optical
fiber’s unique characteristics as low cost, lightweight, small size, and immunity to electromagnetic
interference. The sensing field is one of the most benefited from the advances in the area, and, nowadays,
commercially available OFS are used in different sectors, replacing traditional technologies. There are
numerous applications for this kind of sensor in fields where they can replace conventional sensors,
emerging as solutions for limitations imposed by traditional technologies. OFS technology can explore
the optical fiber’s high sensitivity to physical and chemical parameters and the multiplexing ability, one
of the most outstanding properties of these sensors, which allows only one interrogation unit to read
information provided by a set of sensors. Multiplexing decreases the costs and complexity of sensing
systems, making the OFS technology competitive. In order to address monitoring issues of different
physical parameters over a single fiber link, multiplexing methods, such as spatial, time, or frequency
division, have been proposed [17].

Over the years, the emergence of new applications and the need for monitoring large areas or
simultaneously detecting different parameters further motivated the development of OFS systems, which
resulted in a large amount of acquired data requiring the use of pattern recognition methods such as
classification and/or clustering algorithms for data analysis [18].

In an attempt to explore the OFS favorable characteristics, fiber Bragg gratings [19]–[23], polymeric
fiber devices and bend loss-based systems [24], [25] have been used as sensor elements in systems
developed for plantar pressure monitoring. Some authors have developed different optical in-shoe plantar
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pressure systems seeking reliable monitoring and other favorable characteristics such as portability,
wearability, or wireless data acquisition [21], [22], [25], [26].

An overview of methods for personal authentication through foot recognition reported in the literature
is summarized in Table I.

TABLE I. COMPARISON OF DIFFERENT METHODS FOR BIOMETRIC AUTHENTICATION FROM FOOTPRINTS

Data type Equipment Recognition Method Accuracy Ref.
Image Pressure-sensitive mat Euclidean distance 85% [11]

Plantar pressure dynamic signal Pressure-sensitive mat HMM and LMA 64% [12]
Image Scanner Cosine similarity 98.97% [14]
Image Digital camera PCA and SVM 93.02% [7]
Image Apple iPhone CNN/SqueezeNet 98.67% [16]
Image 4 digital cameras CNN/Deep learning 92.69% [15]

Plantar pressure signal Platform instrumented with FBG sensors SVM algorithm 86.39% [23]

Nakajima et al. [11] obtained an accuracy rate of 85%. However, the complex methodology used
for analyzing the images obtained with a commercial pressure sensing mat involves many steps in the
normalization procedure used to extract the geometric information from the raw image. The technique
that uses as features the directionally aligned and quantized center of pressure trajectory during the
human walk resulted in an average recognition rate of 64% even using the Hidden Markov Model
(HMM) and the Levenberg-Marquardt Learning Algorithm (LMA) as methods [12]. Despite the low
performance, the main contribution of the procedure is the use of dynamic images obtained during a
walk.

The extraction of two features, shape and texture, from static images of naked footprints captured
with a commercial scanner resulted in a higher recognition rate of 98.97% [14]. However, image
preprocessing and distinct Gradient Vector Flow Snakes methods to extract the two features are required.
Based on a threshold, a matching algorithm based on cosine similarity allows the process to decide
how close the input and the identity data stored in a database must be. The user must be standing
barefoot on the scanner, and the recognition depends on the capture of good quality images. It is worth
to mention that the dataset used in these cited works was provided by commercial acquisition systems.

To avoid difficulties emerging from the diverse manners the person steps or walks that affect the
plantar pressure distribution and the quality of the images provided by scanners, some authors have
focused on the analysis of footprint or plantar images acquired by simpler acquisition data systems,
such as digital cameras [7], or smartphones [16]. A method for intruder identification using images
obtained with a digital camera that contains information on footprint morphology was proposed by [7].
PCA for pattern recognition and feature extraction and SVM to classify relevant classes resulted in
an accuracy of 93.02%. Convolutional neural network (CNN) was used to classify individuals with an
accuracy of 98.67% using plantar images obtained with a smartphone [16]. The work’s main contribution
was the use of the SqueezeNet technique, which allowed the automatic extraction of features from the
images. Despite the high achieved recognition rates, the methods used in these works for recording foot
images have limitations for real applications, and the development of appropriate acquisition systems
is necessary.

Using an optical pedograph instrumented with 4 digital cameras for recording the footprint images and
convolutional neural network trained with deep learning for the footprint classification a recognition rate
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of 92.69% was achieved [15]. The training and validation test used footprint images from 16 volunteers.
The biometric identification system consisting of a platform instrumented with FBGs returned hit hates
greater than 86% [23]. The system has the advantage of requiring a small number of sensors (only 14)
compared to commercial platforms. Besides, the SVM algorithm for pattern recognition requires low
data preprocessing and low computational power. Recognition rates higher than 86% were obtained for
12 different stepping patterns used in the tests.

Among the OFS, those based on fiber macrocurvatures have been extensively used in different
configurations and applications [26]–[33]. This class of sensors is particularly attractive owing to
the simplicity of fabrication and interrogation. However, the ability of multiplexing a set of in-series
macro-bends was only recently reported [33], unveiling new applications for this type of sensor. The
interrogation of in-series multiplexed macro-bend sensors relies on wavelength-dependent intensity
changes in the transmitted signal resulting from alterations induced by the external perturbation in the
geometry of one or more sensors. These spectral modifications occur due to transition losses, pure
bending losses, and resonances of whispering gallery modes (WGM). The coupled responses of 5 in-
series macro-bend sensors installed under a steel plate (20 x 20 cm) divided into 16 sensing areas (5 x
5 cm) allowed the setup operation in quasi-distributed tactile sensing [34]. The tactile system provided
the magnitude and location of a single load acting in one of the 16 pre-established sensing areas with
an accuracy of 94.0%. The platform interrogation was based on the detection of the light spectrum
transmitted by the in-series sensors when the platform was under load. As the sensors are under the
plate, a single load acting in one sensing area can modify the geometry of more than one sensor. The
complexity of the output signal required preprocessing with Principal Component Analysis (PCA) to
reduce the dimensionality of the dataset presented to the predictive k-Nearest Neighbors (KNN) and
Support Vector Machine (SVM) classification/regression models.

This paper proposes a biometric application using a different configuration for the multiplexed
in-series macro-bend sensors previously reported [33], [34]. A foot-shaped Polymethyl Methacrylate
(PMMA) slab was instrumented with 6 similar in-series macro-bend sensors and tested to detect 6

feet of different shapes and sizes. Unlike the sensing platform previously reported [34], where the
sensors are under a steel plate, each sensor of the 6 in-series sensors is inserted in one hole of the
foot-shaped slab. Therefore, the geometry of each sensor is modified by the pressure applied directly
on its surface by the foot. As the output of one sensor is the input for the next one, the spectrum
transmitted by the set of sensors carries information about the magnitude of the pressure applied on each
sensor. Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used to cluster
similar foot allowing a pattern classification [35]. The application demonstrated here evaluated the
feasibility of biometric personal authentication by recognizing the unique pattern of pressures produced
by the person’s foot. The sensing system and the data modeling are described in Section II. Typical
spectral responses that contain the information used for biometric recognition, system repeatability, and
performance are in Section III.

II. METHODS

The developed sensing system contains a set of 6 in-series macro-bend sensors, each consisting of
an optical fiber loop encapsulated at the center of a cylindrical silicone body. The fabrication method
follows the steps previously described in [33]. The loops with a radius of 2.5 mm were produced in the
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same segment of standard single-mode fiber (SSMF, G-652, Draktel, 1238 nm cutoff wavelength). The
loops were individually embedded in a silicone elastomer (Dow Corning, BX3-8001) for encapsulation
using a mold. After the silicone cure, each sensor has a cylinder shape with a diameter of 21 mm

and height of 7 mm, containing the fiber loop approximately at its center. The plane formed by the
fiber loop is orthogonal to the cylinder bases. Despite using the same procedure and parameters for
fabrication, slight differences result in distinct sensors. The 6 in-series sensors are then inserted in
circular holes drilled in a 5 mm thick foot-shaped PMMA slab, as shown in Fig. 1. This configuration
allows each sensor in the PMMA slab to detect pressure exerted exclusively on its surface, preventing
the occurrence of coupled responses.

As a standard telecommunication optical fiber is used for sensor fabrication, interrogation in the
spectral range from 400 to 800 nm implies a multimodal operation regime. The experimental setup,
shown in Fig. 1, contains a broadband white light source (LS-1 Tungsten Halogen, Ocean Optics) and
a UV-VIS spectrometer (HR4000, Ocean Optics) in transmittance mode.

Static tests were performed by placing 6 feet of different shapes and lengths from 23 cm to 27 cm

on the instrumented foot-shaped PMMA slab. The distribution of the sensors in the slab was chosen
to monitor pressures applied in areas of interest for foot recognition. Such areas comprise the first
metatarsal region, the outside of the foot arch, and the heel, as shown in Fig. 1 for one foot placed on
the PMMA slab.

Tungsten halogen 

light source

UV-Vis spectrometer

Fig. 1. Schematic diagram of the experimental setup; the foot-shaped PMMA slab instrumented with 6 in-series macro-bend
sensors; a picture showing the foot areas monitored by the system when a foot is placed on the PMMA sheet.

For each foot, 10 transmission spectra were recorded, removing and placing the foot on the PMMA
slab without trying to repeat precisely the previous position. Such intentional differences attempt to
reproduce situations that may occur in field applications. The dataset composed of 60 transmission
spectra (10 spectra per foot) in the spectral range from 400 nm to 800 nm was submitted to PCA and
SVM methods. Due to the complexity of the dataset formed by the obtained spectra, PCA is used to
reduce dimensionality by extracting the most relevant signal features. These features compose a new set
of uncorrelated variables named principal components (PCs), which are easier to compute, reducing the
complexity of the classification system [36]. The PCs form a vector basis, allowing clustering data that
share similar information or characteristics, identifying regions for subsequent classification. The spectra
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from the dataset obtained with the six different feet were normalized using the z − score technique
and processed by the PCA, following the procedure adopted in [33]. Using the two most relevant PCs
allows data plotting in a two-dimensional graph, where each foot with different characteristics can be
visually identified. From the reduced dimensionality dataset obtained after the PCA application, 90%
was used for training and testing an SVM model with a gaussian kernel function. The remaining 10%

was used for validating the model. The SVM kernel function can be generically represented by (1)
supporting a multi-class algorithm [37].

G(x1, x2) = e(−∥x1−x2∥2) (1)

The validation model uses widely employed metrics to assert pattern recognition systems. For this,
the obtained results are expressed not only in terms of accuracy but also in terms of Positive Predictive
Value (PPV) and True Positive Rate (TPR), also known as precision and recall. Their complements,
the False Negative Rate (FNR) and the False Detection Rate (FDR) are also computed.

While the recall provides the percentage of samples correctly identified out of the total examples
of that class, the precision indicates the percentage of truly positive samples [38]. Additionally, the
F1-Score, a metric that combines PPV and TPR in a harmonic mean (2), is used to evaluate the trained
model.

F1− Score =
2× PPV × TPR

PPV + TPR
(2)

III. RESULTS AND DISCUSSION

When one foot is placed on the instrumented foot-shaped slab, the pressure on each sensor produces
a deformation in the silicone cylinder, affecting the internal fiber loop. As pure bend losses and light
coupling from whispering gallery modes depend on the loop geometry, this alteration causes wavelength-
dependent intensity changes in the spectrum of the light transmitted by the sensor. Since the set contains
6 in-series sensors, the light spectrum transmitted by one deformed sensor acts as the input for the
next sensor. After the signal propagation through the whole set of sensors, the spectrometer records the
resulting spectral modifications relatively to the spectrum transmitted by the unloaded system. Despite
being fabricated with similar parameters, the sensors are slightly different. This characteristic makes
the output signal dependent on the spatial distribution of pressures exerted by the foot. Therefore, feet
with different shapes and sizes affect the set of sensors differently, resulting in dissimilar transmission
spectra.

Fig. 2 shows representative pairs of transmission spectra resulting from each of the 6 different feet.
These spectra exhibit wavelength-dependent intensity changes measured relatively to the unperturbed
system used as a reference. The spectrum’s shape is characteristic of each foot, as shown in Fig. 2,
allowing biometric recognition of different individuals. The pairs of spectra associated with each foot
exhibit in Fig. 2 qualitatively demonstrate the system repeatability. Regardless of the output signal
complexity represented by the wavelength-dependent intensity changes, one specific foot produces
similar spectra. Additionally, dissimilarities are observed when comparing spectra from different feet.
These spectral differences contain information that assure biometric recognition.

It is important to emphasize that the dataset used for the foot recognition contains raw spectra
recorded by consecutively removing and placing the foot on the measurement system without repeating
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precisely the same position. This procedure, repeated 10 times for each foot, was adopted to simulate real
situations occurring when, e.g., a person steps a footprint marker indicating the position for the biometric
authentication. The number of repetitions and the inaccurate foot placement on the measurement system
result in diverse but reliable data, which brings robustness to the trained model.
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Fig. 2. Transmission spectra representative of the 6 different feet used in the experiments indicating the system
reproducibility. The spectra are displayed with offsets for better visualization.

Fig. 3 shows spectra recorded under these conditions for the 6 feet resulting from 5 measurements.
The spectral similarities observed for each foot indicate the system’s robustness for real applications.

Fig. 4(a) shows the relevance of the first 10 PCs obtained for the raw dataset of 60 transmission
spectra ranging from 400 nm to 800 nm. This bar plot indicates that the information contained in the
two first PCs is sufficient to characterize the samples, explaining about 65% of the data variance. Thus,
the 2-dimensional dataset containing the two main PCs is built and shown in the graph of Fig. 4(b). As
can be seen from this graph, measurements associated with the same foot share well-delimited regions
for the first two major PCs. This result indicates the sensor’s capability to differentiate the foot types
under consideration, leading to a classification problem.

The 2-dimensional dataset resulting from PCA (60 data points in the graph of Fig. 4(b)) was used as
an input for an SVM algorithm performed in Matlab, which resulted in an accuracy of 85.2% for testing
data. For validation data (9 samples for each foot), the SVM model was able to classify correctly 100%

of the samples. The confusion matrix for testing data is shown in Fig. 5. The true classes correspond to
the matrix lines, while the matrix columns represent the classes predicted by the model. When the true
class and the predicted class coincide, it is considered that the model made a correct prediction, and
these values are shown in the main diagonal. For example, this confusion matrix shows that 6 samples
of foot 3 are correctly classified, and the 3 other samples were erroneously classified as foot 6. This
mismatching between classes 3 and 6 is also observed in Fig. 4(b), in which 2 samples from foot 3
(blue dot) are mixed with samples from foot 6 (pink dot).

On the right side of the confusion matrix in Fig. 5, there are the Recall (or True Positive Rate) and
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the False Negative Rate, while at the bottom are the Precision (or Positive Predictive Value) and the
False Detection Rate. These values can also be found with their respective resulting F1-Score for each
class in Table II. It is worth mentioning that the dataset preprocessing requires only the application of
a simple method based on PCA that favors the use of the proposed approach in a real-time personal
authentication system.
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Fig. 3. Transmission spectra obtained for each foot without repeating exactly the same foot placement on the PMMA slab,
indicating the system robustness for real applications.

In addition to what can be visually inferred from Fig. 4(b), the highest values for F1-Scores, associated
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with feet 2 and 4, indicate that these are the most distinguishable feet among the 6 belonging to the
dataset. Furthermore, the two classes that tend to be the most confused are the ones corresponding to
feet 3 and 6. It can be inferred that the confusion comes from a certain level of similarity in the format
of the considered feet.
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Fig. 4. Results of Principal Component Analysis: (a) Percentage of variance explained by the 10 first PCs, (b) Data from
each foot represented by the first 2 PCs.

Fig. 5. Gaussian SVM confusion map for testing data.

The tactile sensing system based on optical fiber macro-bend sensors of this work show an accuracy
of over 85%, which is comparable with some of the works in Table I. Additionally, it has some
advantages compared to the methods found in the literature, offering a promising alternative for
biometric authentication. It requires a small number of sensors and simple instrumentation for data
acquisition. The set of in-series sensors can be installed in different configurations and are cheap and
easy to fabricate. Regarding data processing, PCA efficiently reduces the dataset dimensionality and
extracts the most relevant signal features from the raw spectrum. No additional preprocessing method is
required. Furthermore, the SVM algorithm offers a well-established and efficient approach, potentially
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reducing complexity compared to Deep Learning model techniques.

TABLE II. PRECISION, RECALL AND F1-SCORES FOR EACH CLASS

Class Precision Recall F1 Score
1 1 0.818 0.8999
2 0.889 1 0.9412
3 0.667 0.750 0.7061
4 1 0.900 0.9474
5 0.778 1 0.8751
6 0.778 0.700 0.7369

IV. CONCLUSION

This work shows the possibility of biometric authentication through foot recognition with a system
based on multiplexed macro-bend sensors. The output signal of only 6 similar sensors distributed in a
spatial configuration chosen to monitor pressures exerted by the foot in the metatarsal, heel, and outside
the foot arch areas allowed personal authentication. Besides the advantage of using a small number
of multiplexed sensors, the in-series macrobends that constitute the system are easy to fabricate using
standard optical fibers and an ordinary elastomer as encapsulating material. The low complexity of
the fabrication process results in a versatile set of sensors. These sensors can be easily installed in a
configuration adequate for the desired application. Another advantage is the interrogation using ordinary
equipment for UV-Vis spectroscopy, a well-established technology.

The system operates in a multimodal regime as the sensors are fabricated using standard SMF fibers
and the interrogation is within the 400 nm to 800 nm range. This particular characteristic results in
complex modifications in the transmission spectra due to bend losses and WGM, which are related to
the features of the foot. Consequently, the quality and amount of information carried by the transmission
spectra allows foot recognition and, therefore, biometric authentication. Despite the complexity of the
spectral modifications associated with the characteristics of each foot, the method combining PCA and
SVM techniques used for the data analysis extracted features from the spectra that allowed the feet
to be distinguished. The SVM, an easily applicable and low-cost computational algorithm, managed
to classify the reduced dataset from PCA, plotted as data points in a bi-dimensional space, with an
accuracy of over 85% for essayed data. Future works can evaluate the robustness of the proposed
approach increasing the dataset using a large variety of feet. Besides, the performance can also be
evaluated with a configuration containing two foot-shaped slabs and a larger number of sensors to
record information of footprints of a person standing on both feet. Some possible sources of error that
might affect the sensor’s performance should be considered when projecting a commercial equipment.
The effect of intensity fluctuations of the light source can be minimized by taking a reference spectrum
for the spectrometer right before acquiring the spectrum corresponding to the foot under authentication.
For long-term thermal changes in the environment where the sensor is installed, a previous calibration
considering this parameter can be incorporated to compensate for these changes. As the elastomer
used for encapsulating the fiber loop has low thermal conductivity (about 1 W/m/K), the impact of
short-term thermal fluctuations is of minor concern. Additionally, changes in the mechanical properties
of the elastomer from repetitive use might impair the sensor’s performance, leading to the need for
recalibration or even replacement of the sensors.
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