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Abstract— This paper describes a new parametric spectral 

estimator for the identification of rotor bar fault of an induction 

motor by analyzing the stator current. This approach combines two 

methods: The first one, the Singular Value Decomposition method 

which allows the accurate detection and location of the fault's 

signature frequency. The second method allows the estimation of 

the fault amplitude. To this end, the Kalman filter is used for its 

efficient estimation of both amplitude and phase using the 

frequencies obtained by the first method. This combination of both 

methods gives a better frequency resolution for a very short 

acquisition time, which cannot be obtained using the conventional 

method of the Periodogram. Moreover, in order to reduce the 

significant computation time resulting from the use of the Kalman 

filter, the proposed approach is applied only to the frequency band 

where the fault signature is likely to appear. A series of tests will be 

carried out on real signals representing rotor faults. 
  

Index Terms— Induction motor, Motor current signature analysis (MCSA), 

Broken bar, SVD, Kalman filter.  

I. INTRODUCTION 

The induction motor is the most used electric machine in the industry. Its main advantage is the 

absence of sliding electrical contacts, which leads to a simple and robust structure easy to build with 

low cost [1]. However, due to certain electrical or mechanical stresses, different faults can occur in the 

induction motor making the process of detecting these faults necessary to avoid the complete 

shutdown of the industrial process [2]. Among these faults, broken rotor bar (BRB) faults account for 

about 20% of the failures of the medium and high power motors [3]. The consequences of BRB can 

be various such as the increase in motor vibration, the decrease of starting performances, the 

fluctuations in load torque or the increase in temperature in the broken zone and in the stator windings 

[4]. The reason for which, it is necessary to diagnose the incipient rotor's faults. 

Among the signal processing methods allowing the detection of BRB faults, we can find the 

estimation of the Power Spectral Density (PSD) using the Periodogram the technique [5], this method 

is the most used in industry. Unfortunately, it does not give reliable results when: 

 The speed or the load is not constant, which leads to the problem of non-stationary signals [6]. 

 The acquisition time is short: the problem of frequency resolution [2]. 
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In order to overcome the problem of non-stationary signals, several time-frequency and time-scale 

methods have been proposed to extract information on the variation of signal's frequencies as a 

function of time. The most well-known are the Short-Time Fourier Transform (STFT), the Wigner-

Ville Distribution (WVD) or the Wavelet Transform (WT). The principle of the STFT method 

consists in analysing the measured signal, by applying the Fourier Transform on short and consecutive 

temporal segments in which the signal is assumed as stationary. Each segment is analyzed by 

multiplying it by a weighting window [7]. However, the choice of a window with fixed size causes a 

serious problem of frequency resolution.  Indeed, the choice of a large weighting window to obtain a 

better frequency resolution causes the loss of a great part of information related to time.  Moreover, 

the choice of a narrow window to ensure a high temporal resolution leads to a low-frequency 

resolution. This is the principle of the Heisenberg-Gabor uncertainty [8]. To avoid this problem, the 

WVD and its variants have been proposed. This transformation allows visualizing the signal in time-

frequency plan and can be interpreted as a distribution of the energy as a function of the time and 

frequency. The WVD improves the time-frequency resolution, to the detriment of the aspect of the 

interference terms in the frequencies due mainly to the noise contained in the signal [9].  

To solve all these problems, the WT and its variants have been widely used in large domains of 

fault diagnosis of electrical machines [9]. This method is based on the use of short duration windows 

for the high frequencies and long duration windows for the low frequencies, which allows having a 

multi-resolution analysis. But, this method depends strongly on the analyzing wavelet, and it is also 

subject to the Heisenberg inequality. 

Concerning the second problem of the conventional Periodogram method; linked to the acquisition 

time which affects the reliability of identification of harmonics very close to each other; several high-

performance analysis methods have been developed. These methods are generally based on a 

mathematical model of the signals to be analysed. Thus, the PSD is estimated [10] from the 

parameters of this model. These methods are generally called high resolution methods and are divided 

into two categories [11]: linear prediction methods and subspace techniques. The origin of linear 

prediction methods goes back to the Prony work [12], aimed at estimating a sum of exponentials by 

the techniques of linear prediction. Otherwise, the subspace methods are based on the particular 

properties of the covariance matrix of the acquired signal.  So, the study of its rank allows separating 

the data space into two subspaces, the signal subspace generated by the sinusoids to be identified and 

the noise subspace which is it's complementary orthogonal. For example, the MUltiple SIgnal 

Classification (MUSIC) method [13] and its Root-MUSIC variant are based on the noise subspace, 

and the Estimation of Signal Parameters using Rotational Invariance Techniques (ESPRIT) method 

[14] is based on the signal subspace. The applications of these methods for the electrical machine 

faults diagnosis are detailed in [15], [16]. It should be noted finally, that the principal limitations of 

these methods are due to their low robustness to the unknown signal components number [15] and the 

unreliable estimation of the amplitudes and phases of the sought harmonics [17]. In addition, these 
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methods require a significant computation time. 

The aim of this paper is to study another class of parametric estimators based on a stator current 

state model. From this modelling, recursive estimation techniques such as the Kalman filter (KF) are 

combined with the Singular Value Decomposition (SVD) of the covariance matrix of the stator 

current to identify the frequencies and to estimate the corresponding amplitudes characterizing the 

BRB faults in a direct way.  In fact, numerous studies [18], [19] have shown the efficiency of the KF 

to solve many practical problems in various domains related to signal processing namely radar 

detection, image processing and industrial machinery control. 

In the electrical machines diagnosis field, the KF is generally used to estimate parameters and 

inaccessible quantities such as rotor current, rotor flux and rotor bars resistance [20], [21]. Moreover, 

we have opted for the Kalman estimator as a new approach because it proves its 

performances in amplitudes estimation even in the presence of strongly noisy signals. Indeed, 

it is very difficult to estimate the amplitudes of the incipient faults harmonics in noisy signals.  

In addition, the SVD is used to separate the signal subspace from the noise subspace. So, the 

frequencies of the searched harmonics are determined from the subspace signal. 

Thus, in this article, the KF is used to estimate the amplitudes and phases of the sought harmonics 

faults by exploiting the frequencies obtained by SVD. 

Nevertheless, this approach requires an important computation time, which can be a serious 

handicap for its implementation in real time. However, since the frequency signature of a fault is 

located on a known frequency band [15], then the proposed solution in this paper consists of the 

decrease of the computation time and the used memory space by applying the processing only on the 

frequency band where the signature of the fault is likely to appear. To highlight the contribution 

merits of this new approach in the detection and the monitoring of rotor faults severity, several 

experimental tests are conducted on an induction motor by analysing the stator current signal in the 

steady-state and without varying the load or speed of the motor. 

II. STATOR CURRENT SIGNATURE ANALYSIS  

The BRB fault causes an imbalance in the rotor currents, it results, therefore, the appearance of 

additional harmonics in the spectral content of the stator current. Indeed, the broken rotor bars fault is 

manifested by the presence of harmonic components around the fundamental corresponding to the 

frequencies given by the following relation [2], [22]: 

                      sbb fksf )21(         With        k = 1, 2, 3,…                   (1) 

  Where fbb are the sideband frequencies associated with the broken rotor bar, fs the supply 

frequency and s is the slip of the motor.  

The harmonics appearing on the lower sideband 
sbb fksf )21( 
 
are due to the effect of the BRB, 

while the harmonics appearing on the upper sideband 
sbb fksf )21( 
 
are due to variations in speed. 
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The amplitudes of these lateral bands are proportional to the number of broken bars and the motor 

load [23]. 

III. PRINCIPLE OF THE PROPOSED METHOD 

In this paper, the proposed approach is based on the use of KF as a tool for estimating the 

frequencies signatures of sought faults. Note those two filters types can be used, the Linear Kalman 

Filter (LKF) and the Extended Kalman Filter (EKF). The EKF is very efficient as an estimator but 

tends to deviate from the limits of the linearity zone during the estimation of the sought parameters. 

In order to avoid this disadvantage, this paper proposes to decompose the problem of signal 

parameters estimation (amplitudes, frequencies, and phases) using two distinct estimators. The first 

aims in decomposing the covariance matrix of the stator current into singular values (SVD) in order to 

determine the sought frequencies. The second, which is the KF, allows estimating the amplitudes and 

phases of sought harmonics. Thus, the problem of no linearity will be avoided. This procedure is 

illustrated in figure 1. 

 

 

 

 

 

 

 

Fig.1. Principle of the proposed method 

A. Data model 

According to several studies [11], [24], in the presence of electrical or mechanical faults, the stator 

current model of the three phase induction motor in discrete-time is expressed by: 
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Where N is the number of the acquired samples, ai, fi and i  are respectively the amplitude, the 

frequency and the phase of the i
th
 sinusoidal component, Fsp is the sampling frequency, b(n) a 

measurements noise that can be modelled as an additive white noise and  L the number of sinusoidal 

components. 

From Euler's decomposition, equation (2) can be written as follows 
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Where Αi represents the complex amplitudes 

In matrix form, equation (3) is written [11]: 

 

SVD 

 

Kalman 

Filter 

Frequencies fi 

Amplitudes ai 

Phases θi 

  Stator current ia 
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BSAIa                                                                                     (4) 

Where Ia,, A, and B  represent respectively the vectors of observation (stator current), the amplitude, 

and the noise. These are defined as follows: 
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Where S represents the Vandermonde matrix: 
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From the data model defined by Equation 4, the desired frequencies based on the first part of our 

approach can be determined using the SVD method.  

B. Estimation of frequencies by the SVD method  

The estimation of frequencies is based on the SVD of the covariance matrix of the noisy signal       

ia(n) to be analysed. This matrix is defined by the following relation: 

                                             
 H

aaa IIY                                                                                 (9) 

Where E{.} denotes the mathematical expectation and (.)
H
 is the Hermitian transposition operator. 

Moreover, this matrix can be considered as the sum of two matrices of covariance that of the signal 

and the other related to the noise. 
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 Where σ
2
 is the variance of white noise and   is the power matrix of the harmonics defined as: 
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 The decomposition in SVD allows the separation of the matrix Ya of dimension N × N in several 

orthogonal components according to the classification of these singular values [25]: 
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In matrix form the previous equation is written: 
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Where 
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The matrix [G1 G2] is composed by the N left singular vectors (eigenvectors of H

aaYY ). The matrix   

[U1 U2] is composed of the N right singular vectors (eigenvector of a

H

a YY ). 

),....,(diag L2211 
 
and L2N

2
2 I   .  Knowing that the λi  are the singular values of Ya  

ranked in descending order: 

 

This classification in 

the descending order of the singular values λi of the matrix Ya allows to distinguish between the signal 

subspace and the noise subspace. Indeed, the 2L first singular values generate the signal subspace (G1 

and U1) and the N-2L singular values represent the noise subspace (G2 and U2). 

To estimate the harmonics frequencies, two matrices D1 and D2 of the same dimensions                  

((N -1)×2L) can be produced from matrix G1 such that: 
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With D1 the matrix representing the (N-1) first rows of the matrix G1 and D2 the (N-1) last rows. The 

two matrices D1 and D2 are linked by the following relation: 
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However, to make the proposed technique SVD-Kalman Filter effective, the matrix Ya must be non-

singular. Unfortunately, this condition is not always verified in practice because in most cases, the 

estimation of the searched frequencies must be made from only one data vector (a single measure). 

Under these conditions, the matrix Ya is estimated by the following equation [15]: 
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Where M and Φ are respectively the order of the data matrix and the Hankel matrix defined by: 
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The next step is dedicated to the estimation of both amplitudes and phases.  

C. Estimation of the amplitudes and the phases by the Kalman filter 

The KF is a recursive algorithm used in the construction of optimal linear estimators in the sense 

that they minimize the mean squared error. Moreover, the KF does not require, unlike the Discrete 

Fourier Transform (DFT), that the number of samples per period is an integer of the power of 2. 

This filter is able to estimate the parameters of a signal observed from a previously defined state 

model [26] from the steady state mode of the signal. It assumes that the signal can be approximated by 

a limited number of L harmonic components. 

This filter lies in two main equations. The first is the state equation and the second is the measure 

equation: 
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Where Xk is the state vector of the process, Fk is the state transition matrix which describes the 

dynamics of  Xk and Wk is the model error of the process assumed to be Gaussian white of covariance 

matrix Qk and of zero mean.  

Zk being the measurement vector at time k, Hk the observation matrix and Vk the measurement error 

also assumed to be the Gaussian white noise with covariance matrix Rk and of zero mean supposed 

uncorrelated with Wk. 

In our case, the measurement vector Z represents the stator current modelled according to equation 

(2) and which can be rewritten in the following form: 
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This model includes L harmonic components of unknown amplitudes and phases but of frequencies 

estimated in the previous part.  

From Equation (23), it can be assumed that: 
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The variables [x1, x2, … x2i-1, x2i] for i = 1,2, ......, L represent the components in phase and in phase 

quadrature and are referenced as state variables. This choice leads to define the state equation as 
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follows:    
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Also, considering equation (24), the measurement equation becomes: 
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This allows rewriting this equation as follows: 
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Under these conditions, the observation matrix can be defined as follows: 
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It should be noted that the frequencies [f1 f2 ……fL] mentioned in Hk, are already estimated. This 

allows us to make the KF model described above as linear. The choice of a linear model is motivated 

by considerations such as algorithmic simplicity, convergence speed and stability of the estimation in 

the steady-state mode. Thus, from the state variables of equation (24), the amplitudes of the harmonic 

components can be estimated by the following expression: 
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Similarly, for the phases we have:     
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In conclusion, the computation steps for estimating both amplitudes and phases of the harmonics 

using the discrete Kalman filter are [26]: 

 The prediction step: 

1. State vector estimation: 
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kkkkk XFX







1                                                                 (31) 

2. Covariance matrix computation of the prediction error:  

                                                             k

T

kkkkkk QFPFP 1
                                                        (32) 

 The correction step: 

3.  Computation of the Kalman Gain: 

                                            
1

11/11111 ][ 
  k

T
kkkk

T
kkkk RHPHHPK                                (33) 

4.  Estimation of the state vector (update): 

                                                       
)( 111111











 kkkkkkkk ZZKXX                                        (34) 

5. Computation of the covariance matrix of the error (update): 

                                                       kkkkkk PHKP 11111 )1(                                                        (35) 

D. Proposed Improvements  

The major drawback of the SVD-Kalman Filter method is the important computation time due to 

the singular values calculation operation mainly because of the amplitudes estimation by the Kalman 

filter. This computation time increases exponentially with the number of searched harmonics and the 

number of used samples. However, it is well known, that the signature of the broken rotor bars fault 

appears on a limited frequency band [fmin , fmax] located around the fundamental harmonic. The 

suggested idea consists, therefore, to apply the proposed technique SVD-Kalman Filter only on this 

frequency band and not on the entire spectrum of the stator current. This solution will significantly 

reduce the length of the signal to be analysed and therefore the computation time [15]. 

With this solution, the processing will thus be performed on spBandb FfNN /..2 , instead of the N 

starting samples. Nb is the number of samples with minmaxBand fff  . This solution is illustrated in 

Fig. 2. 
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Fig. 2. Proposed solution for the reduction of the computation time 

FT: The Fourier transforms, FT-1: The inverse Fourier transform 

IV. EXPERIMENTAL RESULTS 

 The experimental setup used in this study consists of:  

1. A three-phase squirrel cage induction motor: ENEL, 50Hz, 4 poles, 3 kW, 7 A and 1410 rpm. 

The rotors used are composed of 28 bars which can be interchanged according to the number 

of the broken bar. 

2. A DC machine 200V/10.9A with separate excitation used as a generator. This machine is 

coupled to the induction motor and debits on a variable resistive load. This allows varying the 

load torque. 

3. A measuring system includes two current Hall Effect sensors (Fluck i30s), an antialiasing 

filter (realized in our laboratory) with a 400-Hz adjustable cut off frequency chosen for our 

tests, and an acquisition card (NI-6330). The whole set is connected to a computer for viewing 

and processing of acquired signals as shown in Fig. 3. 

To note that all acquisitions were performed at a constant speed 1440 r/min in steady state on an 

acquisition time of 40s and with a sampling frequency of 3 KHz. In these conditions, the signal length 

is equal to 120 000 samples and the frequency resolution is equal to 0.025 Hz. 
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(a) 

 

(b) 

Fig.3. Realised test rig 

The BRB faults are artificially created by drilling the rotor bars. The holes dimensions are 4 mm in 

diameter. Figures 4a and 4b illustrate the created faults in rotor bars used in our experimental tests. 

 

    

       (a)                                           (b) 

Fig. 4. Photo of a squirrel cage rotor with broken bars faults; (a) One broken bar, (b) Two broken bars 

To note that all acquisitions were performed at a constant speed 1440 r/min in steady state on an 

acquisition time of 40s and with a sampling frequency of 3 KHz. In these conditions, the signal length 

is equal to 120 000 samples and the frequency resolution is equal to 0.025 Hz. 
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The various modes of operation investigated in order to validate our diagnostic approach are: 

 Operation of the motor with a healthy rotor  

 Operation of the motor with a one broken bar 

 Operation of the motor with two broken rotor bars 

Moreover, according to equation (1), the frequency signature of BRB fault must appear at the 

following theoretical frequencies given in Table I.    

TABLE I. THEORETICAL ROTOR FAULT FREQUENCIES AT 1440 RPM 

sb f)ks21(f   
Lower Sideband 

k =2          k =1 

 

fs 

Upper Sideband 

   k =1          k =2 

  Frequencies (Hz)          42               46     50           54               58 

This table shows that an analysis of the stator current spectrum around the fundamental over a 

frequency band of [40 Hz, 60 Hz] is sufficient for the diagnosis of the rotor faults for all the operation 

modes cited previously. Moreover, the choice of this frequency range is justified by the fact that the 

slip of induction motors can never exceed 7% in reality even when it is overloaded [2].  

A. Motor operation with healthy rotor  

In this first test, the motor is tested with a rotor supposed to be healthy. It is to be noted that, what 

we call a healthy rotor in this paper, is a rotor that has no visually apparent faults. This does not 

exclude the existence of imperfections linked either to the phase of manufacture or to the existence of 

scratches associated with its use. This first mode of operation is very important, in order to have the 

reference signals. Indeed, the signals acquired and analysed for this first test will be used as references 

for all future tests. This step is called the "reference step".  
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                                          (a)                                                                            (b) 

Fig.5. Stator current analysis Healthy rotor; (a)  PSD method,  (b)  SVD-KALMAN method 

Figure 5a shows the results obtained by the conventional method based on the PSD estimation (by 

the Periodogram). This figure depicts the appearance of a low harmonic at the frequency of 54.02 Hz 

in addition to the fundamental (fs = 50 Hz). On the other hand, in the lower sideband, the 

identification of other harmonics is difficult or even impossible. Under these conditions, it is difficult 

to explain the presence of this frequency at 54.02 Hz. 

By analysing the stator current with the SVD-Kalman Filter method in the specified frequency band 
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[40Hz, 60Hz], see Fig. 5b, the following harmonics summarized in Table II are obtained. 

TABLE II.  HARMONICS ESTIMATION BY THE SVD-KALMAN METHOD FOR THE FIRST OPERATING MODE ON THE FREQUENCY                        

BAND [40HZ -60HZ] (HEALTHY ROTOR) 

 

 

 

 

The analysis of the harmonics frequency positions generated around the fundamental and their 

comparison with the given theoretical frequencies in Table I prove the presence of a signature which 

can be justified by the presence of a rotor cage imbalance or a rotor scratch resulting from the 

multiple manipulations during the various experimental tests in our laboratory. 

These first results show the effectiveness of the proposed method in comparison to the conventional 

Periodogram method for the detection of very low magnitude harmonics. 

B. Effect of the proposed solution  

In the aim to make the proposed method more competitive for a possible use in real-time, the 

reduction of computation time is necessary. The proposed solution consists to only analyse the 

frequency band where the signature of the fault can appear. It is to be noted that due to the chosen 

frequency band [40Hz, 60Hz], the computation time has been improved as it can be shown in Table 

III. 

 TABLE III.   ESTIMATION OF COMPUTATION TIME  

 

 

 

 

 
Table III gives an estimation of the computation time by the mentioned methods for the 

identification of the components of the fundamental and the searched harmonics. These results are 

obtained from a microcomputer type Intel Core I3 CPU 2.10 GHz, 4 GB RAM.  

It can be noticed that the computation time obtained by the Periodogram method is very short 

compared to the proposed method hence its main advantage.  Indeed, the SVD-Kalman method 

requires a significant time of computation in the order of 40971.86 sec, which is approximately 11 

hours since it requires analysis of the whole spectrum (that is a large number of samples) which 

affects the rank of the covariance matrix. This computation time can be a serious problem while 

implementing the technique in real time. 

To deal with this problem, the SVD-Kalman technique is only applied in the frequency band [40 Hz 

    Lower Sideband      Upper Sideband 

   k=2 k=1    fs      k=1       k=2 

Estimated frequencies (Hz)     41.93  45.97 49.98    54.001 

 

   57.99 

 

Estimated Amplitudes 
  (dB)   -64.30 -45.91 15.36  -36.06   -51.76 

  (A) 0.0009   0.0072  8.296 0.0222     0.0037 

  Method Data length  Computation time (s) 

  Periodogram  120000       0.023 

 SVD-Kalman  120000       40971.86 

 Improved  SVD-Kalman   

 On [40Hz 60 Hz] 
  1600       0.40 
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60 Hz], which reduces the computation time to 0.40 sec. Note that the computation time depends on 

the samples number used and on the searched harmonics number. 

C. Motor operation with one broken rotor bar  

Figure 6a below represents the stator current spectrum obtained by the conventional method of the 

PSD estimation using the Periodogram algorithm.  
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(a)                                                                   (b) 

Fig. 6.  Stator current analysis  One broken rotor bar; (a) PSD method, (b) SVD-KALMAN method 

The stator current analysis for this operation mode by the SVD-Kalman method in the frequency 

band [40Hz 60Hz] gives the harmonics summarized in the following Table IV:  

TABLE IV.   HARMONICS ESTIMATION BY IMPROVED SVD-KALMAN METHOD FOR THE CASE OF A ONE  BROKEN BAR ON THE 

FREQUENTIAL BAND      [40HZ, 60HZ] 

 

 

 

 

 

Figure 6b shows the spectral clarity given by the proposed SVD-Kalman method. Moreover, we can 

notice that the harmonics magnitudes around the fundamental, in the case of one broken rotor bar, are 

higher compared to those of the healthy rotor. 

It is to be noted that this slight difference between theoretical and estimated frequency values is 

certainly due to the error in measuring the mechanical speed of the motor. 

D. Motor Operation With Two Broken Rotor Bars  

Figure 7a illustrates the PSD obtained by the stator current Periodogram. It can be noticed that the 

harmonics obtained are almost at the same frequencies because the operation mode is always at 

nominal load. On the other hand, their magnitudes are higher, which indicates that the severity of the 

fault has increased. 

   Lower  Sideband 

fs 

 Upper Sideband 

  k=2   k=1   k=1        k=2 

 

 Estimated frequencies (Hz) 

 

  41.93   45.98  49.98   53.99     58.14 

 

Estimated Amplitudes 

(dB)  -40.61   -25.57 15.73   -27.21    -42.39 

(A)   0.0132   0.0744  8.6545  0.0616     0.0107 
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Fig.7. Stator current analysis  Two broken  rotor bars;  (a)  PSD method, (b)  SVD-KALMAN method 

Furthermore, the identification of the fault frequency signature by the proposed technique SVD-

Kalman is given by the following table: 

TABLE  V.   HARMONICS ESTIMATION BY IMPROVED SVD-KALMAN METHOD FOR THE CASE OF A TOW BROKEN BAR ON THE 

FREQUENTIAL BAND      [40HZ, 60HZ] 

From Table V and Figs. 7a and b, it is noted that the SVD-Kalman technique allows identifying the 

fault signature with more clarity on the specified frequency band. This shows the merits of this 

technique. Furthermore, it is also observed that the magnitudes of the different harmonics increase 

with the number of the broken bar. This result is important for monitoring the severity of the fault. 

Finally, very important remarks can be deduced from all the experimental tests conducted: 

   The presence of a slight difference between both the theoretical frequencies (Table I) and those 

estimated (Tables II˗IV-V) can be explained by the errors resulting from the speed measurement. 

    The appearance of the components around the fundamental is a sign of the existence of rotor 

bars fault when the load is not variable. 

    The harmonics magnitudes around the fundamental, associated with the fault, increase with the 

number of the broken bar. This indicates the level of the fault. 

V. CONCLUSION 

In this paper, a new reliable and effective SVD-Kalman approach for rotor fault diagnosis of the 

induction motor is proposed in order to enhance simultaneously: 

 The frequency resolution: allowing a better distinction between harmonics that are close to each 

other at a reduced acquisition time.  

   Lower Sideband 

fs 

  Upper Sideband 

  k=2  k=1    k=1         k=2 

 

Estimated frequencies (Hz) 

 

   41.62   45.80 49.97    54.14        58.31 

 

Estimated Amplitudes 

(dB)   -38.75   -21.14 16.46 -22.23        -41.88 

   (A)    0.0164   0.1239     9.41  0.1094        0.0114 
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 The magnitudes estimation of these harmonics: enabling better monitoring of the severity of the 

searched faults. 

 The reduction of the computation time.   

This approach is based on the combination of two algorithms. The first consists in the 

decomposition into singular values of the estimated covariance matrix from the stator current in order 

to improve the frequency resolution of the stator current spectrum. The second allows the estimation 

of these signatures magnitudes using the KF in order to improve the estimation of the magnitudes of 

these signatures.   

Moreover, the identification of the fault using the combination of both algorithms is carried out on a 

limited frequency band where the fault signature is likely to appear. This solution leads to the 

reduction of the computation time without affecting the efficiency of the analysis. Finally, the results 

obtained experimentally show the effectiveness and merits of the proposed approach compared to the 

conventional Periodogram method to identify the frequency signatures. 
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