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Abstract— This article presents the theoretical analysis of a signal 

coupling between a proposed Photonic Crystal Fiber (PCF) and a 

Conventional Fiber with Step Index (CFSI) system. In this analysis, 

the Finite Element Method (FEM) and Beam Propagation Method 

(BPM) are applied together with Daubechies wavelets as basis 

function and described in the mathematical formulation. The 

simulations were performed casting the PCF signal into CFSI core 

using the PCF refractive index. For simulation purposes, the 

cladding material refractive index was set as 1.5% lower than the 

core index. The application of Daubechies wavelets as basis 

functions in BPM analysis presented insertion loss around 3.8% 

during the fiber coupling. 
Index Terms— Daubechies Wavelets, PCF, CFSI. 

I. INTRODUCTION 

An important effect on the transmission of signals through optical fibers is the power transfer 

related to fiber coupling, which is necessary for the most diverse applications. Among the various 

classes of optical fiber couplers, the couplers based in Photonic Crystal Fiber (PCF) present great 

research interest due particular spectral features, high performance and great directionality potential 

applied in high-rate ultra-broadband communication systems [1]-[3]. PCF has revolutionized optical 

fiber technology due to new degrees of freedom for fiber design, fabrication, and applications which 

could be achieved. Regarding manufacturing, it is possible to use different materials and geometries, 

according to the desired propagation mechanism, in a large range of wavelengths [4]. 

Multi-resolution analysis with wavelets developed by Stephane Mallat [5] is a technique that allows 

the visualization of signals at various resolution levels, in this work it represents the spectral content 

of optical fiber signals. Here, the implementation of the basis functions with wavelets was useful for 

visualizing possible discontinuities, speed up the convergence of the method performed by the 

simulations, and mapping the optical signal energy levels at different resolution levels. 

The coupling structure proposed in this work requires a powerful numerical tool to allow a deeper 

understanding of the electromagnetic phenomena associated with the interpretation of signal 

propagation. Thus, an important computational tool applied in the propagation analysis in photonic 

structures is the Vector Beam Propagation Method (VBPM) [6], which combined with basis functions 
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of the wavelets type allows the visualization of the signal variations along the propagation considering 

the effects caused by the PCF holes and the signal evolution when coupled to the conventional fiber. 

In this article, the VBPM was modified to accept the elementary matrices coefficients got from 

Daubechies wavelets applied on a free scalar field in one dimension, where the spatial derivatives 

couple the degrees of freedom on different scales, although the method applies to more complex field 

theories. In the formulation, Perfectly Matched Layers (PML) [7], [8] were used to bound the 

computational domain.  

In the next section, the finite element formulation is briefly explained, Daubechies’ theory of 

wavelets instruction is described in section III, the coupler design and the numerical results are shown 

in section IV, and finally, the conclusions of this article are presented.   

II. FINITE ELEMENT METHOD 

A. Helmholtz Equations 

The finite element approach for the analysis of electromagnetic propagation characteristics in 

optical fibers has been studied and applied successfully in several types of structures. Generally, 

software-based in Maxwell’s electromagnetism are used to simulate communication systems 

involving optical fibers. Therefore, the fiber structural parameters turn to be essential to ensure the 

results precision. Usually, the computational performance depends on the approximations applied 

during the mathematical formulation development. In this article, to proceed with the formulation, the 

procedure was started from Helmholtz equation for the magnetic field [4]:  

𝛻 × (𝑘𝛻 × 𝐻⃗⃗ )− 𝑘0
2𝐻⃗⃗ = 0 (1) 

Where 𝑘̿ =  
1

𝜀̿
  and 𝜀 ̿ represent the relative permissiveness tensor, ×  is the curl operator, 𝑘0 is the 

free space wavenumber, 𝜔 is the angular frequency and 𝑐 is the speed of light in free space. After 

some mathematical manipulations and assuming that the electromagnetic fields ranging slowly along 

the z-propagation direction, (1) may be rewritten as follows: 

[𝐴]{𝜑} = 𝑛𝑒𝑓𝑓
2 [𝐵]{𝜑} (2) 

Where [𝐴] and [𝐵] are sparse and complex matrices. Equation (2) is efficiently solved through the 

interaction of subspaces method. Equation (2) was obtained from (1) and the details are presented in 

[6]. In this work, for (2), 𝑛𝑒𝑓𝑓 is the effective refractive index of the structure when it converges to a 

modal solution. 

B. Elementary Matrices       

After the mathematical development and application of the Finite Element Method (FEM) for the 

discretization of the domain in which (1) is defined, followed by the application of the Galerkin 

Method, the author in [9] uses Daubechies wavelets in the calculation of the elementary matrices to 

the Beam Propagation Method (BPM). Then, the basis functions were approximated using  

Daubechies wavelets for representing the behavior of the magnetic field inside the elements.  
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In the next section, we present a brief description of the elementary matrices, using generation 

moment function for Daubechies wavelets. 

III. DAUBECHIES WAVELETS APPLIED TO THE VBPM 

Daubechies wavelets are functions that can be applied to generate analysis, decompose, or even 

obtain information from a dataset. This analysis is usually performed by orthonormal wavelet basis as 

the Fourier basis. Daubechies wavelets do not have an analytical expression that defines their terms. 

However, these terms are evaluated using the recursive relations below, 

𝜑(𝑥) = ∑ 𝑎𝑚𝜑(2𝑥 −𝑚)

𝑁−1

𝑚=0

 (3) 

𝜓(𝑥) = ∑ (−1)𝑚𝑎1−𝑚𝜑(2𝑥 −𝑚)

1

𝑚=2−𝑁

  , (4) 

where 𝑁 is the wavelet kind, 𝑚 is the translation, 𝑎𝑚 and 𝑎1−𝑚 are the filter coefficients. The scale 

function 𝜑 has support in the range [0, 𝑁 − 1] with energy concentrated in this range. In general, a 

function 𝑓(𝑥) = 𝑥𝑘 can be represented by the relation (5) used a basis 𝜑 of wavelets. 

𝑥𝑘 = ∑ 𝑐𝑚𝜑(2
𝑗𝑥 −𝑚)

+∞

𝑚=−∞

 (5) 

The terms 𝑐𝑚 =
𝑀𝑚
𝑘

2𝑗𝑘
  are called moments of the scale function 𝜑 concerning the function 𝑥𝑘. 𝑀𝑚

𝑘  is 

the moment of the father wavelet 𝜑, 𝑚 is the translation, 𝑘 is the degree of the function 𝑥𝑘 to be 

approached, and 𝑗 the wavelet resolution. 

In order to apply Daubechies wavelets in this work, the calculation of Moment Generating Function 

(MGF) performed in [9] is needed. The MGF is crucial to calculating the approximation of a 

polynomial function using Daubechies wavelets.  MGF´s expression is shown below, 

  

𝑀𝑚
𝑘 =

{
  
 

  
 1

2(2𝑘 − 1)
∑(

𝑘

𝑟
)∑ 𝑎𝑠𝑠

𝑘−𝑟

𝑁−1

𝑠=0

𝑀0
𝑟 , 𝑖𝑓  𝑚 = 0; 𝑘 ≠ 0

𝑘−1

𝑟=0

∑(
𝑘

𝑟
)𝑚𝑘−𝑟𝑀0

𝑟

𝑘

𝑟=0

, 𝑖𝑓   𝑚 ≠ 0; 𝑘 ≠ 0

1,    𝑖𝑓      𝑘 = 𝑚 = 0.

 (6) 

In which, 𝑎𝑠 is the Daubechies coefficient, 𝑘 is the degree of monomial  𝑥𝑘, 𝑚 is the translation of 

wavelet and 𝑁 is the wavelet kind. 

According to the results shown in [9], the integral 𝐼 = ∫ 𝑥𝑘𝑑𝑥
𝑠

𝑜
 involving Daubechies wavelets can 

be expressed by, 

𝐼 = ∑ ∫
𝑀𝑚
𝑘

2𝑗𝑘

𝑠

0

+∞

𝑚=−∞

𝜙(2𝑗𝑥 −𝑚)𝑑𝑥. (7) 

The calculation of the elementary matrices to the (BPM) uses the integral (7) and the transformation 
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𝜓̃ given by, 

𝜓̃(𝑥, 𝑦) = (1 − 0.634𝜑(𝑥) + 0.366𝜑(𝑥 + 1) + 1.366𝜑(𝑥 + 2) − 𝑦,
0.634𝜑(𝑥) − 0.366𝜑(𝑥 + 1) − 1.366𝜑(𝑥 + 2), 𝑦 ) 

(8) 

With, 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1 − 0.634𝜑(𝑥) + 0.366𝜑(𝑥 + 1) + 1.366𝜑(𝑥 + 2).  

The expressions in (7) and (8) are fundamental for the analysis of the development of the functions 

proposed in this work. 

   

IV. COUPLER DESIGN AND SIMULATIONS RESULTS 

A. Coupler Design 

Fig. 1 shows the Conventional Fiber with Step Index (CFSI) overlapped by the PCF, forming the 

proposed coupler design. The PCF is composed of pure silica with refractive index of 1.46 along with 

air holes distributed in hexagonal rings form, with defects caused by the removal of air holes to form 

one extended core. CFSI is a conventional fiber composed of a pure silica core with a radius 

about 4.0 m. 

 

Fig. 1. Proposed Structure. 

Recent studies verified that periodic structures could give rise to important phenomena and 

properties only observed in these types of structures, such as [10] and [11]. For example, the influence 

that introducing six hexagonal air hole rings into a low refractive index dielectric matrix can cause in 

photonic gaps, that is frequency bands in which the propagation of light is completely prohibited [11]. 

The application of Daubechies wavelet in the analysis of these structural models presents high 

precision because it is a problem that can be originally described through independent variables in 

space. Due to its ability to decompose frequency and time domain functions, the Daubechies wavelet 

function applied in this work could identify a high degree of singularities during signal propagation in 

the PCF. 

B. Simulation Results 

The numerical results were obtained from the structure shown in Fig. 1. For the PCF, air holes 

diameter was set as 𝑑 = 1.2m and  
𝑑


= 0.4, where  represents the distance between air hole 

centers. The CFSI has a core with refractive index 𝑛𝐶𝐹𝑆𝐼 = 1.46  immersed in a cladding of refractive 

index equal to 1.44. The CFSI was excited with a signal from PCF with wavelength 𝜆 = 1.55µm, 

polarized in the y-direction. The computational window was 26µm (x-direction) by 16µm (y-
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direction) divided into, approximately, 22,000 triangular elements. The propagation of light in PCF 

occurs due to the total internal reflection phenomenon, which describes light guidance in the solid 

central core [9]. Therefore, the losses involved in the coupling occur only by insertion, due to 

different cross-sectional structures. Fig. 2 shows the convergence for effective permittivity according 

to the signal launched in the CFSI. It is possible to observe a reduction in permissiveness in relation to 

PCF permissiveness, which can be attributed to insertion loss. 

 

Fig. 2. Variation of the reference refractive index during signal propagation. 

The hexagonal PCF has been designed to operate in a single-mode with flattened dispersion 

wideband at the wavelength range from 1500 nm to 1580 nm. For the numerical analysis, this 

wavelength was centered at 1550 nm where it can be perfectly applied to an optical transmission 

system. 

Fig. 3 and Fig. 4 show the magnetic field distribution, from modal analysis simulation, generated in 

the polarized PCF in the y-direction. This signal was launched in the CFSI. Fig 3 was obtained using 

the elementary matrix coefficients by linear approximation, while Fig 4 was obtained using the 

elementary matrix coefficients obtained by Daubechies wavelet. 

 

 

Fig. 3. The y component of CFSI input magnetic field signal performed by elementary matrix with linear approximation. 
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Fig. 4. The y component of CFSI input magnetic field signal performed by elementary matrix Daubechies wavelets 

coefficients. 

Fig. 4 illustrates the potential of Daubechies wavelet in this application, which requires 

dimensionality reduction to allow an immediate distinction of patterns. The coefficients obtained for 

the elementary matrix assisted by Daubechies wavelet allowed a good precision of the pattern 

recognition procedure for the magnetic field. In this simulation, the contribution of the wavelet is to 

allow the extraction of relevant information from the initially imperceptible propagated signal.  

 It is possible to observe a greater detail of the magnetic field contour in Fig 4 when compared with 

the magnetic field contour shown in Fig 3. This detail was possible due the use of Daubechies wavelet 

basis of kind 𝑁 =  4, 6, and 8, which shows a better contour according to the structure of the enlarged 

core, especially in the center of the figure. Furthermore, it was also possible to obtain a faster energy 

transfer from PCF to CFSI.  

Fig. 5 shows the magnetic field distribution of the y-component, launched in the CFSI, after 

500 µm propagated, from BPM simulation. This result was obtained with the application of the 

VBPM described in [6] and the basis of Daubechies wavelets used in [9]. It was possible to obtain a 

major degree of resolution, guaranteeing the success of the results obtained in this simulation. 

 

Fig. 5. The y component of the magnetic field after 𝟓𝟎𝟎 µ𝒎 propagated. 

After the convergence, the signal acquires the CFSI format operating at 1550 nm for a single-mode 

application. It can be verified the insertion loss that occurs in the resultant energy of the CFSI signal 
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considering the difference between the power launched in the PCF to the CFSI after coupling, that is, 

after the total transference of the light signal in the PCF to the CFSI.  

As the signal propagation occurs along the z-direction by successive reflections, an insertion loss 

around 3.8% was observed during the coupling. This type of loss can be attributed to the absorption 

or derailments between optical fibers contact surfaces. Here, the power in both fibers was calculated 

using the Pointing Vector theorem. 

V. CONCLUSIONS 

In this work it was presented the application of the Daubechies wavelet to obtain the coefficients of 

elementary matrices used in the BPM. An investigation of coupling signal between a PCF and a 

conventional optical fiber was performed. The main advantage of the wavelet application can be 

attributed to its multi-resolution analysis capability. The Daubechies wavelets applied as basis 

functions allow visualization of the spectral distribution of the magnetic field with various levels of 

resolution, improving the result precision. The signal was launched in the PCF and coupled to the 

CFSI with structural parameters, adjusted to improve its performance as an optical coupler. Low 

insertion loss was observed during the coupling, as explained in section IV. The insertion loss occurs 

due to the difference in the cross-section area between the fibers. The results obtained show that the 

signal launched in the CFSI from the PCF is completely transferred after 500 µ𝑚 of propagation. 
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