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Abstract
Background: Parkinson’s disease (PD) is the second most prevalent neurodegenerative 
disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are 
a cocktail of proteins and peptides with great therapeutic potential and might be useful 
in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, 
the major component of Crotalus durissus collilineatus venom. PD is characterized by low 
levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic 
compounds might delay the progression of PD. The neurotrophic potential of crotapotin 
has not been studied yet. Methods: We evaluated the neurotrophic potential of crotapotin 
in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation 
of the NGF signaling pathway was investigated through pharmacological inhibition of 
its main modulators. Additionally, its neuroprotective and neurorestorative effects were 
evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with 
the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce 
Parkinsonism in humans and animal models. Results: Crotapotin induced neuritogenesis 
in PC12 cells through the NGF-signaling pathway, more specifically, by activating the 
NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which 
are involved in neuronal survival and differentiation. In addition, crotapotin had no 
cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell 
viability and differentiation. Conclusion: These findings show, for the first time, that 
crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might 
be beneficial in Parkinson’s disease. Additional studies are necessary to evaluate the 
toxicity of crotapotin in other cell models.
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Background
Venoms are complex and specialized mixtures of enzymatic and 
non-enzymatic proteins, peptides, and non-protein compounds 
with great pharmacological potential [1-4]. These bioactive 
molecules target ion channels, receptors, and a variety of 
modulators. They might serve as the basis for developing new 
drugs for treating several diseases, including neurodegenerative 
diseases [5].

Crotalus durissus collilineatus (C. d. collilineatus) is a 
subspecies found in the Brazilian Southeast and Central 
West regions [6, 7]. Its venom consists of different classes of 
proteins and peptides like bradykinin-potentiating peptides, 
convulxin, crotamine, crotoxin, and gyroxin [7-10], crotoxin 
being the major component [11-13]. Crotoxin is a molecule 
composed of two subunits that are non-covalently bonded, 
i.e., subunit A or crotapotin (crotoxin acid chain) and subunit 
B or phospholipase A2 (PLA2) [11, 14-17]. Crotapotin is a non-
toxic, non-enzymatic protein [6, 14] with anti-inflammatory 
[18-20], and antimicrobial activities [16, 18, 19, 21, 22]. The 
neurotrophic activity of crotapotin is unknown. This study 
investigates if crotapotin has neurotrophic potential and if it 
could be involved in the neuroprotection against the toxicity 
induced by MPP+. This neurotoxin is the active metabolite 
of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). 
Both MPTP (parent drug) and MPP+ (its active metabolite) 
are associated with Parkinsonian syndrome in primates [23].

Parkinson’s disease (PD) is the second most prevalent 
neurodegenerative disease; it is characterized by synaptic and 
axonal degeneration, loss of dopaminergic neurons, and reduced 
levels of dopamine in the nigrostriatal pathway. The treatment 
of PD is restricted to motor symptoms’ alleviation, without 
any beneficial effect on cognitive decline. Moreover, long-term 
treatment induces important side effects and adaptive tolerance 
[24-26].

Neuronal survival, differentiation, and regeneration are 
controlled by neurotrophins both during the nervous system 
development and in the mature nervous system [27-30]. Studies 
provide evidence that reduced levels of neurotrophins are 
involved in the pathogenesis of neurodegenerative diseases [31-
35]. Therefore, compounds that mimic or enhance the action 
of neurotrophins might be of use to slow the progression of 
neurodegeneration or restore the lost neuronal function [36-38]. 
In this scenario, animal toxins represent a promising source of 
new molecules with neuroprotective activity and therapeutic 
potential against neurodegeneration [39-43]. 

Based on these premises, this study investigates the 
neuroprotective activity of crotapotin in PC12 cells treated 
with the dopaminergic neurotoxin MPP+, with a focus on the 
neurotrophic signaling pathway triggered by the neurotrophin 
NGF as a possible mechanism of neuroprotection. This is a 
prospective work in which different isoforms of crotapotin have 
been tested for the initial characterization of the neurotrophic 
and neuroprotective effects of crotapotin.

Methods
Reagents
1-Methyl-4-phenylpyridinium iodide (MPP+, D048), LY-
294002 hydrochloride (L9908), 3-(4,5-Dimethyl-2-thiazolyl)-
2,5-diphenyl-2H-tetrazolium bromide (MTT, M2128), 
K252a (K2015), U0126 monoethanolate, 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES, H3375), sodium 
bicarbonate (S5761), Dulbecco's Modified Eagle Medium 
(DMEM) (D5648), Ham's F12K medium (N6658), Trypsin-
EDTA solution (59427C), Nerve Growth Factor (NGF) from 
Vipera lebetina venom (N8133), Collagen Type-IV (C5533) 
and Fetal bovine serum (F2561) were purchased from Sigma-
Aldrich (USA). Equine serum and antibiotic mix (PSN, 5 mg/mL 
penicillin, 5 mg/mL streptomycin, and 10 mg/mL neomycin) were 
purchased from GIBCO® (Life Technologies Corporation, USA). 

Crotapotin identification
C. d. collilineatus venom fractionation and crotapotin isolation 
were performed as described previously [44]. Crotapotin 
purity was assessed by Fast Protein Liquid Chromatography 
or FPLC (Äkta Purifier UPC10 GE Healthcare, Sweden), with 
a reversed-phase C4 Jupiter column (4.6 × 250 mm, 5 μm, 300 
Å, Phenomenex, USA), employing 0.1% trifluoroacetic acid 
(TFA) as solution A, and 80% acetonitrile (ACN) + 0.1% TFA as 
solution B. The elution was performed through a linear gradient 
of 0-100% solution B, at a 1 mL/min flow rate. Absorbance was 
monitored at 280 nm.

Additionally, crotapotin was analyzed by matrix-assisted 
laser desorption/ionization (MALDI) with a time of flight 
(TOF) analyzer to determine its molecular mass and identity. 
The molecular mass was analyzed by using an ultrafleXtreme 
instrument (Bruker Daltonics GmbH, Leipzig, Germany) with 
the Smartbeam II laser. Data acquisition was performed with 
FlexControl software, version 3.3 (Bruker Daltonics GmbH, 
Leipzig, Germany). The following parameters were employed: 
500 laser shots per spectrum; 1000 Hz laser frequency; positive 
reflected mode; and a range of 5 to 30 kDa. A mixture of peptides 
(Peptide calibration standard, NC9846988, Bruker Daltonics 
GmbH, Leipzig, Germany) and proteins (Protein calibration 
standard I, NC0239984, and Protein calibration standard II, 
NC0416074, Bruker Daltonics GmbH, Leipzig, Germany) was 
used for calibration. As a matrix, a saturated solution of α-cyano-
4-hydroxycinnamic acid (α-CHCA) in ACN and 0.1% TFA (V/V), 
at the ratio of 1:1 (V/V) was used. The software FlexAnalysis, 
version 3.3 (Bruker Daltonics GmbH, Leipzig, Germany) was 
used for data analysis.

For identification, the crotapotin fraction that eluted from 
RP-FPLC was reduced, alkylated, digested with sequencing grade 
porcine pancreatic trypsin, and analyzed by Axima Performance 
(Shimadzu, Manchester, UK). MS/MS data were analyzed with 
the MASCOT program, against databank protein sequence 
deposited in the NCBI (65,519,838 sequences, 23,472,502,492 
residues) and SwissProt (548,208 sequences, 195,282,524 
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residues). Cysteine carbamidomethylation was included as a 
fixed modification, and methionine oxidation was included as a 
variable modification. MS/MS mass tolerance was set to ± 0.8 Da.

Cell culture
Rat pheochromocytoma PC12 cell line (PC-12 – CRL-1721) 
was obtained from the American Type Culture Collection 
(ATCC, USA). PC12 cells were cultured in high-glucose DMEM, 
supplemented with 10% equine serum, 5% fetal bovine serum, 
and 1% antibiotic mix, at 37 °C in a humidified atmosphere 
containing 5% CO2. The medium was replaced every 2 days. 
For the assays, cells were detached with trypsin-EDTA solution 
and the enzymatic reaction was stopped with an equal volume 
of culture medium.

Differentiation/neurite outgrowth assay
PC12 cells (2 × 105 cells/well) were treated with crotapotin 
(2.5; 5; and 10 µg/mL) or NGF (100 ng/mL, positive control) 
and incubated for 72 h. Untreated cells were used as negative 
controls. Three independent experiments from different cell 
cultures were assayed; each sample was assayed in triplicate. The 
morphometric analysis was performed under inverted phase 
contrast microscopy (Carl Zeiss Axio Observer A1 Inverted 
Microscope, magnification of 400x). The wells were scanned 
from left to right and three fields/wells were randomly selected; 
investigators were blinded about cell treatments (numbers 
identified groups). The percentage of cells with neurites was 
determined in digitalized images by using the ImageJ open 
source software [45]. Cells bearing at least one neurite longer than 
the diameter of their cell bodies were considered neurite-bearing 
cells [46]. Data were expressed as a percentage of total cells. 

Inhibition of NGF-signaling pathway
PC12 cells (2.0 × 105 cells/well) were grown in DMEM 
supplemented with 10% equine serum, 5% fetal bovine serum, 
and 1% antibiotic mix. After 24 hours, the medium was replaced 
with F-12K Nutrient Mixture Kaighn’s Modification (GIBCO®, 
Life Technologies Corporation, USA) supplemented with 1% 
equine serum and 1% antibiotic mix (PSN, GIBCO®). Crotapotin-
induced cell differentiation was evaluated in the presence of (i) 
the antagonist of trkA receptor (K252a), or the inhibitors of the 
(ii) PI3K/Akt pathway (LY294002) or (iii) MAPK/ERK pathway 
(U0126). PC12 cells were pretreated with K252a (100 nM), 
LY294002 (30 µM), or U0126 (10 µM) as previously described [47, 
48] with minor modifications, and incubated for one hour prior 
to the addition of crotapotin (10 µg/mL) or NGF (100 ng/mL), 
following incubation for 72h. Neurite outgrowth assay was 
performed as described for the Neurite Outgrowth Assay.

Evaluation of the protective effects of crotapotin 
against MPP-induced toxicity on neuritogenesis
PC12 cells were plated onto 24 well plates (2 × 105 cells/well) 
and incubated. After 24h, cells were treated with crotapotin 

(10 µg/mL) and/or MPP+ (100 μM). Cells treated with NGF 
were used as positive controls and untreated cells were used 
as negative controls. This concentration of MPP+ (100 μM) 
inhibits neurite outgrowth without inducing cell death, as we 
have previously determined [49]. Neurite outgrowth assay was 
performed as described in the section “Differentiation/Neurite 
outgrowth assay”. 

Evaluation of the protective effects of crotapotin 
against MPP-induced toxicity on cell viability 
Cells (2 x 104 cells per well, final volume of 200 μL) were plated onto 
96-well plates. After 24 hours of incubation, cells were treated with 
crotapotin (10 µg/mL) and/or MPP+ (1 mM). This concentration 
of MPP+ (1 mM) corresponds to the IC50 for viability in PC12 
cells, as we have previously determined [49]. After 72 hours 
of treatment, MTT solution (5 mg/mL, 20 μL/well) was added 
and the plates were incubated (3h, 37 °C). Then, the plates were 
centrifuged (1000 rpm, 5 minutes), the supernatant was removed 
and the crystals formed were solubilized in DMSO (200 μL/well). 
Untreated cells were used as negative controls and cells treated 
with Triton X-100 were used as positive controls. Samples were 
assayed in triplicate. The plates were mixed (37 °C, 5 minutes) 
and the absorbance was determined at 570 nm, in a microplate 
reader (Multiskan™ FC Microplate Photometer, Thermo Scientific, 
USA). This procedure was based on previous reports [50, 51].

Statistical analysis
All data were expressed as mean ± SEM (standard error of the 
mean). Multiple comparisons were performed by the One-
way ANOVA test and Post-hoc Tukey’s multicomparison test 
(GraphPad Software, San Diego, CA, USA). Values of p < 0.05 
were considered significantly different.

Results
Fractionation of venom and isolation of crotapotin 
Crotapotin homogeneity, mass spectrometry, and protein 
sequencing are presented as Supplementary Material (Additional 
file 1A-1C). 

As previously reported, the fractionation of Crotalus durissus 
collilineatus venom yielded six fractions containing crotapotin, 
corresponding to the subunit A of the crotoxin complex [44]. 
There are several isoforms of the subunits A and B of crotoxin 
with different biological properties [8, 11, 12, 52-56]. In the 
present study, we evaluated six fractions of crotapotin for their 
ability to induce differentiation in PC12 cells (Additional file 
2A-2B); the most effective, with the lower degree of contaminants 
(fraction 4) was selected to perform the mechanistic assays and 
the neuroprotection evaluation.

Crotapotin-induced cellular differentiation in NGF-
deprived PC12 cells 
Crotapotin significantly induced the differentiation of PC12 
cells after 72 hours of incubation when compared to untreated 
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controls (1.31 ± 0.40%). The effect was concentration-dependent 
as shown by the percentage of neurite-bearing cells stimulated 
by the following concentrations of crotapotin: 2.5 μg/mL (8.63 
± 1.9%, p < 0.0001), 5 μg/mL (17.21 ± 4%, p < 0.0001) and 10 μg/
mL (26.56 ± 3.8%, p < 0.0001). The percentage of neurite-bearing 
cells in the positive control (NGF-stimulated) was significantly 
higher (5.96 ± 0.80%, p < 0.01) in comparison with untreated 
controls (1.31 ± 0.40%). Results are presented in Figure 1A-1F.

Pretreatment with K252a (antagonist of trkA) 
reduced the differentiation induced by crotapotin
The NGF group (12.58 ± 0.92%, p < 0.01) and the crotapotin 
group (47.9 ± 2.7%, p < 0.0001) presented higher percentages 
of neurite-bearing cells in comparison with the control group 
(4.28 ± 0.46%). Pretreatment with k252a significantly reduced the 
neuritogenesis induced in both groups NGF+k252a (5.91 ± 0.5%, 
p < 0.05) and crotapotin+k252a (23.32 ± 1.1%, p < 0.0001) in 

Figure 1. Effects of different concentrations of crotapotin on the differentiation of PC12 cells after 72h incubation. (A) The bar graph represents the mean ± 
SEM (n = 3). Cells with at least one neurite with a length equal to or greater than the cell body were considered differentiated and expressed as a percentage 
of total cells in the field. (B-F) Inverted phase-contrast photomicrographs of (B) control (untreated), (C) NGF (100 ng/mL), (D) crotapotin (2.5 µg/mL), 
(E) crotapotin (5 µg/mL) and (F) crotapotin (10 µg/mL). Cells with at least one neurite with a length equal to or greater than the cell body were considered 
differentiated and expressed as a percentage of the total cells in the field (n = 3). **Significantly different from control (p < 0.01); ****Significantly different from 
control (p < 0.0001). 
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relation to the groups treated solely with NGF or crotapotin, 
respectively. No significant difference was observed between the 
control group (4.28 ± 0.46%) and the group treated solely with 
k252a (2.94 ± 0.45%). Results are presented in Figure 2A-2G. 

Inhibition of PI3K/Akt pathway reduced the 
differentiation induced by crotapotin
The NGF group (14.46 ± 2.07, p < 0.01) and the crotapotin group 
(33.36 ± 3.51, p < 0.0001) presented higher percentages of neurite-

bearing cells in comparison with the control group (3.60 ± 0.1%). 
The inhibition of the PI3K/Akt signaling pathway by LY294002 
(30 µM) reduced the cell differentiation induced in the groups 
NGF+LY294002 (2.79 ± 0.3%, p < 0.005) and crotapotin+LY294002 
(12.09 ± 0.75%, p < 0.0001) in comparison with the groups 
treated solely with NGF or crotapotin, respectively. No significant 
differences were observed between the group treated solely with 
the inhibitor LY294002 (0.50 ± 0.33%) and the controls (3.6 ± 
0.1%). Results are presented in Figure 3A-3G. 

Figure 2. Effect of K252a (trkA antagonist) on the differentiation of PC12 cells treated with crotapotin. Cells were pretreated with K252a (100 nM) and 
incubated for one hour prior to the addition of NGF (100 ng/mL) or crotapotin (10 µg/mL). (A) The bar graph represents the mean ± SEM (n = 3). Cells with at 
least one neurite with a length equal to or greater than the cell body were considered differentiated and expressed as a percentage of the total cells in the field.
**Significantly different from control (p < 0.01). #Significantly different from NGF (p < 0.05). ****Significantly different from control (p < 0.0001). 
####Significantly different from crotapotin (p < 0.0001). (B-G) Inverted phase-contrast photomicrographs of (B) control, (C) K252a (100 nM), (D) NGF 
(100 ng/mL), (E) NGF (100 ng/mL) + K252a (100 nM), (F) crotapotin (10 µg/mL) and (G) crotapotin (10 µg/mL) + K252a (100 nM), after 72h incubation.
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Inhibition of the MAPK/ERK pathway reduced the 
differentiation induced by crotapotin
The percentage of neurite-bearing cells increased in the groups 
treated with crotapotin (31.93 ± 1.81%, p < 0.0001) and NGF 
(8.7 ± 0.78%, p < 0.005) in comparison with controls (2.09 ± 0.31). 
Pretreatment with U0126 reduced the neuritogenesis in the 
groups NGF+U0126 (1.52 ± 0.14%, p < 0.0005) and crotapotin 

+U0126 (21.93 ± 1.42%, p < 0.0001) in comparison with the 
groups treated solely with NGF or crotapotin, respectively. 
No significant differences were observed in the percentage of 
neurite-bearing cells between the group treated solely with the 
inhibitor U0126 (0.31 ± 0.21%) in comparison with controls 
(2.09 ± 0.31%). Results are presented in Figure 4A-4G.

Figure 3. Effect of LY294002 (PI3k/Akt pathway inhibitor) on the differentiation of PC12 cells treated with crotapotin. Cells were pretreated with LY294002 
(30 nM) and incubated for one hour prior to the addition of NGF (100 ng/mL) or crotapotin (10 µg/mL). (A) The bar graph represents the mean ± SEM (n = 3). 
Cells with at least one neurite with a length equal to or greater than the cell body were considered differentiated and expressed as a percentage of the total cells 
in the field. **Significantly different from control (p < 0.005). ****Significantly different from control (p < 0.0001). ##Significantly different from NGF (p < 0.005). 
#### Significantly different from crotapotin (p < 0.0001). (B-G) Inverted phase-contrast photomicrographs of (B) control, (C) LY294002 (30 nM), (D) NGF 
(100 ng/mL), (E) NGF (100 ng/mL) + LY294002 (30 nM), (F) crotapotin (10 µg/mL) and (G) crotapotin (10 µg/mL) + LY294002 (30 nM), after 72h incubation.
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Crotapotin protected PC12 cells against the 
inhibition of neurite outgrowth induced by MPP+

The neurotoxin MPP+ reduced the neurite outgrowth (2.71 ± 1.2%, 
p < 0.0001) in comparison with the NGF group (15.37 ± 2.57%). 

Crotapotin protected cells (21.68 ± 6.1%, p < 0.0001) against the 
inhibition of neurite outgrowth induced by MPP+ (2.71 ± 1.2%). 
Results are presented in Figure 5A-5E. 

Figure 4. Effect of U0126 (MAPK/Erk pathway inhibitor) on the differentiation of PC12 cells treated with crotapotin. Cells were pretreated with U0126 
(10 µM) and incubated for one hour prior to the addition of NGF (100 ng/mL) or crotapotin (10 µg/mL). (A) The bar graph represents the mean ± SEM 
(n = 3). Cells with at least one neurite with a length equal to or greater than the cell body were considered differentiated and expressed as a percentage of the 
total cells in the field. **Significantly different from control (untreated cells) (p < 0.005). ****Significantly different from control (untreated cells) (p < 0.0001). 
###Significantly different from NGF (p < 0.0005). ####Significantly different from crotapotin (p < 0.0001). (B-G) Inverted phase-contrast photomicrographs 
of (B) control, (C) U0126 (10 µM), (D) NGF (100 ng/mL), (E) NGF (100 ng/mL) + U0126 (10 µM), (F) crotapotin (10 µg/mL) and (G) crotapotin (10 µg/mL) + 
U0126 (10 µM), after 72h incubation. 
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Figure 5. Effects of crotapotin on the differentiation of PC12 cells treated with MPP+. (A) The bar graph represents the mean ± SEM (n = 3). Cells with at least 
one neurite with a length equal to or greater than the cell body were considered differentiated and expressed as a percentage of the total cells in the field. (B-
E) Photomicrographs of (B) control, (C) NGF (100 ng/mL), (D) MPP+ (100 µM), (E) crotapotin (10 µg/mL) + MPP+ (100 µM). ****Significantly different from 
control (p < 0.0001). ####Significantly different from MPP+ (p < 0.0001). 

Crotapotin increased cell viability in MPP+-treated 
PC12 cells
Crotapotin (98.84 ± 4.8%) does not alter cell viability in 
comparison with controls (normalized to 100%). MPP+ 
significantly decreased the viability of cells (52.06 ± 4.4%, 

p < 0.0001) in comparison with controls. Crotapotin significantly 
increased the viability of cells (90.89 ± 0.30%, p < 0.0001) treated 
with MPP+ in comparison with cells treated solely with MPP+ 
(52.06 ± 4.41). Results are presented in Figure 6.
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Discussion
In this study, we have used the PC12-cell-neuronal model to 
evaluate the neurotrophic potential of crotapotin obtained from 
the venom of Crotalus durissus collilineatus. Additionally, we 
investigated the involvement of the NGF-signaling pathway in 
the neurotrophic mechanism of crotapotin and the protective 
effect of crotapotin against the toxicity of MPP+, a neurotoxin 
associated with Parkinsonism in animal models and humans. 
The PC12 cell line is a suitable model of neuronal differentiation, 
particularly for the investigation of compounds that mimic 
the NGF action, because they naturally express the NGF-
selective receptor trkA, but do not express other neurotrophic 
receptors such as trkB or trkC, which have high affinity for 
BDNF and NT-3, respectively. The differentiated PC12 cells 
acquire the phenotype of sympathetic and dopaminergic 
neurons, which are affected in PD. They are electric excitable, 
respond to neurotransmitters, and express several neuronal 
markers. Additionally, they synthesize, store, release, and uptake 
dopamine, besides expressing α-synuclein. Therefore, PC12 
cells are also a suitable model for Parkinson’s disease research 
[42, 57, 58]. 

Neurodegenerative diseases are characterized by the 
activation of multiple cellular processes such as oxidative stress, 
neuroinflammation, and protein aggregation, resulting in loss of 
neuronal function [59]. The diversity of biomolecules in animal 
venoms and their biotechnological potential can be useful as 
therapeutic tools for neuroprotection and neuromodulation. 
Toxins isolated from animal venoms have shown promising 
pharmacological and therapeutic activity [60-62] such as 
reducing inflammation, modulating synapses, and reducing 
protein aggregation [63]. 

Crotapotin (subunit A of crotoxin) is an acidic protein 
without enzymatic activity. The most known biological 
activity of crotapotin is acting as a chaperone for PLA2 [18] 
avoiding non-specific bindings of the subunit B of crotoxin 
[11, 64, 65]. Several isoforms of crotoxin subunits A and B 
have been described; they form different complexes with 
crotoxin and have different biological activities [11, 52, 54]. For 
instance, it has been demonstrated that crotoxin induces an 
analgesic effect and decreases motor impairment in an animal 
model of Multiple Sclerosis [66]; inhibits tumor growth by 
reprogramming macrophages and inducing antiangiogenic 
effect [67], and has beneficial effects on skeletal muscle repair 
[68]. It has also been demonstrated that crotapotin can form 
complexes with subunit B from C. durissus ssp., with PLA2 
from other venoms, and modify the biological activity of 
these toxins [13, 16, 52, 69]. Accordingly, crotapotin inhibited 
paw edema induced in rats by PLA2 from Naja naja and Apis 
mellifera venoms, but potentiated the edematogenic effects of 
PLA2 from Naja mocambique mocambique venom, showing 
different interactions [15, 19, 20]. Cecchini and colleagues 
demonstrated that crotapotin inhibited the edema induced by 
BthTX-I, BthTX-II, PrTX-I, PrTX-III, and MjTX-II on mouse 
paws [70]. However, several studies have shown that crotapotin 
alone has different pharmacological activities. Castro and 
colleagues [71] evaluated the effects of crotapotin modulation on 
experimental autoimmune neuritis (EAN), widely used animal 
models of autoimmune peripheral demyelinating diseases [72, 
73]. Crotapotin reduces the clinical signs and slows down the 
initiation of the effects associated with the disease [15, 71]. 
Garcia and colleagues [18] showed that crotapotin inhibited 
the T-cell response to Concanavalin A in a dose-dependent 
manner. Also, the toxin increases the production of PGE2 in T 
cells [18]. Oliveira et al. [56] demonstrated that the crotapotin 
isolated from C. d. cascavella venom has a bactericidal effect 
against Xanthomonas axonopodis pv. passiflorae and Claribacteri 
ssp [56]. Shimizu et al. [74] evaluated the antiviral effect of 
crotapotin at different stages of the Hepatitis C virus (HCV) 
cycle as entry, replication, and release. The authors demonstrated 
that treating cells with crotapotin inhibited the release of HCV 
in addition to interfering with lipid metabolism [74]. 

Despite all the described biological activities of crotapotin, its 
neurotrophic and neuroprotective effects, and the underlying 
mechanisms remain elusive. It is known that, in PD, there is an 
early stage characterized by axonal and dendritic degeneration 
that precedes the death of dopaminergic neurons [75-80]. Low 
levels of NGF and reduced trkA signaling play important roles 
in neurodegenerative disorders, constituting therapeutic targets 
in neurodegenerative disorders’ treatment [31, 81]. Depletion of 
neurotrophic factors such as BDNF, GDNF, and NGF has been 
associated with Parkinson’s, Alzheimer’s, and Huntington’s 
diseases [82]. The therapeutic use of neurotrophins is limited; 
the clinical trials featuring the administration of NGF to treat 
neurodegenerative diseases have failed. The main limitations of 
NGF are poor bioavailability (low stability, short half-life), low 

Figure 6. Effects of crotapotin on MPP+-induced cytotoxicity. The bar graph 
represents the mean ± SEM (n = 3). ****Significantly different from control 
(p < 0.001). ####Significantly different from MPP+ (p < 0.01).
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blood-brain barrier permeability, and pleiotropic effects (due 
to the activation of the low-affinity p75 receptors, besides the 
high-affinity trkA receptors) [83, 84]. 

NGF is essential for the neurons’ growth, differentiation, 
regeneration, and maintenance [36, 85-87]. The neurotrophic 
signaling of NGF on trkA receptors mediates cell survival and 
differentiation, mainly through the activation of MAPK/Erk and 
PI3K/AKT pathways [88]. It has been demonstrated that, in PC12 
cells, NGF activates the PI3K/Akt and MAPK/ERK pathways 
[89-91], promoting initiation, elongation, and branching of 
neurites able to form functional synapses [42, 91-97]. In this 
study, we demonstrated that the inhibition of one of the main 
modulators of these pathways (MAPK or PI3K), induced by 
pretreatment with specific pharmacological inhibitors (U0126, 
LY294002, respectively), inhibits the neurotrophic effect of 
crotapotin. These findings suggest that crotapotin activates the 
same pathways activated by the endogenous neurotrophin NGF 
in PC12 cells. The PC12 cell line has been largely used to explore 
cell differentiation and neurite outgrowth due to their well-
characterized response to NGF [98, 99]. Upon NGF stimulation, 
PC12 cells differentiate into cells that are morphologically 
and functionally similar to adult sympathetic neurons; these 
neuron-like cells constitute a suitable model for neurobiological 
studies [100, 101]. NGF induces cell differentiation in PC12 cells 
by activating trkA receptors, which are naturally expressed by 
PC12 cells [102]. We observed that the neurotrophic effect of 
crotapotin on PC12 cells was inhibited by the trkA antagonist, 
k252a, which indicates that the neurotrophic mechanism of 
crotapotin involves the activation of the NGF-high-affinity 
receptor, trkA.

We further evaluated the protective potential of crotapotin 
against MPP+ toxicity. Many studies use MPP+ to induce damage 
that resembles Parkinson’s disease, in order to evaluate the 
effect of potential neuroprotective agents [103-106]. MPP+ is the 
active metabolite of the neurotoxin MPTP. MPP+ is taken up by 
neuronal cells through the dopamine transporter (DAT) present 
in the dopaminergic neurons [107]. MPP+ blocks complex I of 
the electron transport chain, inhibiting cellular respiration and 
ATP synthesis, therefore leading to the death of, specifically, 
dopaminergic neurons [107, 108]. Consistent with previous 
research, our results showed that MPP+ exposure significantly 
reduces PC12 cells’ viability [103] and differentiation [109-
112]. Crotapotin protected PC12 cells against MPP+ toxicity by 
increasing cell viability and cell differentiation in the groups 
treated with MPP+ plus crotapotin, in comparison with the 
group treated with MPP+ alone. Several neurotrophins protect 
dopaminergic neurons from the toxicity of MPP+, including 
GDNF [113], NGF, BDNF, and NT-5 [114]. One of the mechanisms 
by which neurotrophins protect neurons is reducing oxidative 
stress-mediated apoptotic death through the modulation of PI3K/
Akt and MAPK/Erk pathways [107, 115]. Accordingly, our study 
showed that crotapotin induces neuritogenesis by activating 
these two neurotrophic pathways, PI3K/Akt and MAPK/Erk, 
which might explain the neuroprotection against MPP+ toxicity.

Conclusion
Taken together, our results indicate that crotapotin induces 
neuritogenesis in PC12 cells and protects them against MPP+-
induced neurotoxicity. Additionally, our data suggest that the 
neurotrophic effects induced by crotapotin are mediated by 
the activation of the trkA receptor, and the downstream PI3k/
Akt and MAPK/ERK pathways, which are the same cascades 
triggered by NGF. This is the first study to show the neurotrophic 
and neuroprotective potential of crotapotin. Further studies 
are necessary to better understand its mechanisms of action 
and its therapeutic potential for neurodegenerative diseases. 
The possible toxicity of crotapotin should be investigated in 
other cell models. 
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Additional file 1. Crotapotin analysis. (A) Analysis of the 
homogeneity of crotapotin by fast protein liquid chromatography 
(FPLC) with a reversed-phase C4 Jupiter column (250 × 4.6 mm, 5 
μm, 300 Å, Phenomenex, Torrance, CA, USA). Mobile phase: 0.1% 
trifluoroacetic acid (TFA), as solution A, and 80% acetonitrile 
(MeCN) in 0.1% TFA, as solution B. Elution gradient: 0-100% 
solution B (1 mL/min). Absorbance was monitored at 280 nm. 
(B) Molecular weight analysis of crotapotin obtained by MALDI-
TOF (positive linear mode) using α-cyano-4-hydroxycinnamic 
acid (α-CHCA) matrix. (C) Protein sequencing: MS/MS 
data were analyzed with Mascot program, against databank 
protein sequence deposited in the NCBI (65,519,838 sequences, 
23,472,502,492 residues) and SwissProt (548,208 sequences, 
195,282,524 residues). Cysteine carbamidomethylation was 
included as a fixed modification and oxidation of methionine 
was included as a variable modification. MS/MS mass tolerance 
was set to ± 0.8 Da.

Additional file 2. Effect of different isoforms of crotapotin 
on the differentiation of PC12 cells. Six crotapotin fractions 
(1 to 6) were evaluated for their ability to induce PC12 cell 
differentiation. Cells were incubated for 72h with/without 
NGF (100 ng/mL) or crotapotin isoforms (5 μg/mL). Data from 
four fields in each well were pooled and used to calculate the 
percentage in relation to the total number of cells in the fields. 
(A) Bar graph represents the mean ± SEM (n = 3). (B) Inverted 
contrast-phase photomicrographs of control (untreated), NGF 
(100 ng/mL), crotapotin fractions 1 to 6 (5 µg/mL). Cells with 
at least one neurite with a length equal to or greater than the 
cell body were counted and expressed as a percentage of total 
cells in the field (n = 3). ***Significantly different from control 
(p<0.001). 
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