BACKGROUND: The development of vascular grafts has been crucial for advances and achievements in reconstructive vascular surgery over the past 5 decades. OBJECTIVES: To develop a new model of microperforated vascular graft using fabric covered with a natural latex-derived polymer taken from Hevea brasiliensis and assess its patency, thrombogenicity, biocompatibility and healing process, besides some mechanical properties (adaptability, elasticity, impermeability and possibility of suture), using expanded polytetrafluoroethylene graft as control. METHODS: Fifteen dogs were divided into three groups of five animals. The microperforated latex graft was implanted in all dogs and the expanded polytetrafluoroethylene graft was implanted in the contralateral pelvic limb. Postoperative follow-up was 4, 8 and 12 weeks. Analysis of results was performed according to clinical evaluation of pulses, complications (fluid collection, dehiscence, granuloma and infection), arteriography, macroscopic analysis and scanning electron micrography. RESULTS: Statistical tests revealed no significant differences (p > 0.05) concerning post-operative complications and graft patency. Both grafts were properly integrated to surrounding tissues, with connective tissue formed by collagen fibers. A neointimal layer covering all extension of the luminal surface was observed in the microperforated latex graft. Conversely, the endothelial development over the neointimal surface was limited to regions adjacent to the anastomoses in the expanded polytetrafluoroethylene graft. CONCLUSIONS: The microperforated latex graft showed satisfactory structural qualities (adaptability, elasticity, impermeability and possibility of suture) as a vascular substitute. It stimulated endothelial growth beyond contact regions with the artery in anastomoses and was biocompatible in the dog's arterial system, presenting adequate tissue integration.
Vascular graft; latex; polytetrafluoroethylene; endothelium; porosity; femoral artery