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Abstract 
Thermal stresses and displacements for orthotropic, two-layer 
antisymmetric, and three-layer symmetric square cross-ply lami-
nated plates subjected to nonlinear thermal load through the 
thickness of laminated plates are presented by using trigonometric 
shear deformation theory. The in-plane displacement field uses 
sinusoidal function in terms of thickness co-ordinate to include the 
shear deformation effect. The theory satisfies the shear stress free 
boundary conditions on the top and bottom surfaces of the plate. 
The present theory obviates the need of shear correction factor. 
Governing equations and boundary conditions of the theory are 
obtained using the principle of virtual work. The validity of pre-
sent theory is verified by comparing the results with those of 
classical plate theory and first order shear deformation theory and 
higher order shear deformation theory. 
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1 INTRODUCTION 

Composite materials are widely used, particularly in aerospace engineering. By virtue of their high 
strength to weight ratios and because of their mechanical properties in various directions, they can 
be tailored as per requirements. Further they combine a number of unique properties, including 
corrosion resistance, high damping, temperature resistance and low thermal coefficient of expansion. 
These unique properties have resulted in the expanded use of the advance composite materials in 
structures subjected to severe thermal environment. These structures are usually referred to as high 
temperature structures. Examples are provided by structures used in high speed aircraft, spacecraft 
etc. The high velocities of such structures give rise to aerodynamic heating, which produces intense 
thermal stresses that reduces the strength of aircraft structure. Coefficients of thermal expansion in 
the direction of fibers are usually much smaller than those in the transverse direction. This results 
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in high stresses at the interfaces. In order to describe the correct thermal response of laminated 
plates including shear deformation effects refined theories are required.  

Thermal stress analysis of isotropic plates is given by Boley and Weiner [1] and thermal stresses 
of laminated plates subjected to linear thermal load across the thickness of the plate with classical 
plate theory are given by, Jones [2] and Reddy [3]. Classical plate theory does not take into account 
the transverse shear effects, which are more pronounced in laminated plates.  Rolfes, Noor and 
Sparr [4] applied first order shear deformation theory for the analysis of laminated plates which 
takes in to account the transverse shear stresses in the laminates. First order shear deformation 
theory does not satisfy the transverse shear stress free boundary condition as the transverse shear 
strains are assumed to be constant in thickness direction. The global higher order theory taking into 
account both transverse shear and normal stresses has been applied by Matsunaga [5] to analyze 
the laminated plates subjected to linear thermal loading. Fares, et al. [6] discussed thermal effect on 
transverse displacement of cross-ply laminated plate subjected nonlinear thermal load using refined 
first-order theory. Wu, et al. [7] discussed a global-local higher theory considering transverse normal 
deformation to predict the thermal response of laminated plate subjected to linear thermal load. 
Using shear flexible element thermal stresses in laminated plates subjected to linear thermal load is 
discussed by Ganapathi et al.[8]. Semi-analytical model for composite plates subjected to linear 
thermal load has been developed by Kant, et al.[9]. Three dimensional thermal analysis of compo-
site laminated plates subjected to linear thermal load is discussed by Reddy and Savoia [10]. The 
global-local higher order theory is derived by Zhen and Wanji [11, 12] for laminated plates subject-
ed to linear thermal load. Rohwer, Rolfes, and Sparr [13] discussed higher order theories for thermal 
stresses in layered plates subjected to linear thermal load. A new efficient higher order zigzag theory 
is presented for laminated plates under linear thermal loading by Kapuria and Achary [14]. Ther-
mal flexural analysis of symmetric laminated plates subjected to linear thermal load is presented by 
Ali, et al. [15] by using displacement-based higher order theory. For the evaluation of displacements 
and stresses in functionally graded plates subjected to thermal and mechanical loadings, a two-
dimensional higher-order deformation theory is developed by Matsunaga [16]. Analytical solution 
for bending of cross-ply laminated plates under thermo-mechanical single sinusoidal loading is pre-
sented by Zenkour [17] using unified shear deformation plate theory. Fares and Zenkour [18] devel-
oped mixed variational formula for the thermal bending and thermo-mechanical bending under 
linear thermal load. Ghugal and Kulkarni [19] presented thermal stresses in cross-ply laminated 
plates subjected to linear thermal load through the thickness of plate using refined shear defor-
mation theory.  

However, from a review of the above literature it is found that displacements and stresses are 
evaluated under linear thermal load without considering the effect of non linear variation of thermal 
load across the thickness of plate. It is found that, the complete set of results of thermal stresses 
and displacements of laminated plates subjected to nonlinear thermal load through the thickness of 
laminated plate is not available in the literature. The objective of this paper is to present an equiva-
lent single layer shear deformation theory for evaluation of displacements and stresses of cross-ply 
laminated plates subjected to non-linear thermal load across the thickness of plate. 
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2 THEORETICAL FORMULATION 

Consider a rectangular cross-ply laminated plate of length a, width b, and total thickness h com-
posed of orthotropic layers. The material of each layer is assumed to have one plane of material 
property symmetry parallel to x-y plane. The coordinate system is such that the mid-plane of the 
plate coincides with x-y plane, and z axis is normal to the middle plane. The upper surface of the 
plate (z = −h / 2)  is subjected to a thermal load T (x, y, z) . The region of the plate in (0-x, y, z) 
right handed Cartesian coordinate system is    
 

0 ≤ x ≤ a; 0 ≤ y ≤ b; − h
2
≤ z ≤ h

2
 (1) 

 
2.1 The displacement field 

The displacement field at a point located at (x, y, z) in the plate is of the form [20]: 

 

u(x, y, z,t) = u0 (x, y)− z
∂w(x, y)

∂x
+ h
π
sinπ z

h
ϕ(x, y)  

 

v(x, y, z,t) = v0 (x, y)− z
∂w(x, y)

∂y
+ h
π
sinπ z

h
ψ (x, y)  

 
w(x, y, z,t) = w(x, y)  

(2) 

 

Here (u,v,w)  are the axial displacements along x, y and z directions respectively, and are 
functions of the spatial co-ordinates; (u0,v0,w0 )  are the displacements of a point on the mid-
plane, and ϕ  and ψ  are the rotations about the y and x axes in xz and yz planes due to bending. 
The generalized displacements (u0,v0,w,ϕ,ψ )  are functions of the (x, y)  co-ordinates. Trigono-
metric shear deformation theory, represents richer kinematics of the theory and does not require 
shear correction factor, whereas the classical laminate plate theory and first order shear defor-
mation theory adequately describe the kinematic behaviour of most laminates. Present theory can 
yield more accurate displacements and stresses for thin and thick laminates. 

The normal and shear strains are obtained within the framework of linear theory of elasticity. 
The infinitesimal strains associated with the displacement field (2) are as follows: 
 

ε x =
∂u
∂x

,  ε y =
∂v
∂y

,  γ xy =
∂u
∂y

+ ∂v
∂x

, γ zx =
∂u
∂z

+ ∂w
∂x

,  γ yz =
∂v
∂z

+ ∂w
∂y

 (3) 

 
The stress-strain relationship for the kth layer in a laminated plate under thermal loading can 

be written as 
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σ x

σ y
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⎫

⎬
⎪⎪

⎭
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Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
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⎥
⎥
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ε x −α xT
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⎧
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⎫
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⎭
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τ yz

τ xz

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ k( )

=
Q44 0

0 Q55

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
k( )

γ yz

γ xz

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ k( )

 

(4) 

 
where lamina reduced stiffnesses Qij

k( )  are as follows 

 

Q11
k( ) = E1

k( )

1− µ12
k( )µ21

k( ) , Q22
k( ) = E2

k( )

1− µ12
k( )µ21

k( ) , Q12
k( ) = µ12

k( )E1
k( )

1− µ12
k( )µ21

k( ) , 

 
Q66

k( ) = G12
k( )  ,Q44

k( ) = G23
k( ) , Q55

k( ) = G13
k( )  

 

(5) 

 
where Ei  are Young’s moduli; µij  are Poisson’s ratios and Gij  are shear moduli, α x  and α y  are 

the coefficients of linear thermal expansion in x and y directions respectively and thermal load 
across the thickness is assumed to be   
 

),()(),(),(),,( 321 yxT
h
zyxT

h
zyxTzyxT ψ++=

 
(6) 

 

where T1,T2 andT3  are thermal loads and ψ (z) = h
π
sinπ z

h
. The nonlinear term associated with 

thermal load T3  is the trigonometric function in terms of thickness coordinate.  
 
2.2 Governing Equations and Boundary Conditions  

Using the expressions for strains, stresses, and principle of virtual work, variational consistent 
differential equations and boundary conditions for the plate under consideration are obtained. 
The principal of virtual work when applied to the plate leads to: 
 

σ xδε x +σ yδε y +τ yzδγ yz +τ zxδγ zx +τ xyδγ xy( ) dx dy dz = 0
0

a

∫
0

b

∫
−h/2

h/2

∫  (7) 

 
where the symbol δ  denotes variational operator. In Eq. (7) mechanical load is taken as zero 
since the plate is subjected to pure nonlinear thermal load. Employing the Green’s theorem in 
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above equation successively and collecting the coefficients of δu0 ,δv0 ,δw,δφ ,δψ  we can obtain 
the governing equations as follows: 
 

δu0 : − A11
∂2u0
∂x2

− A66
∂2u0
∂y2

− (A12 + A66 )
∂2v0
∂y∂x

+ B11
∂3w
∂x3

+ (B12 + 2B66 )
∂3w
∂y2 ∂x

− E11
∂2ϕ
∂x2

− E66
∂2ϕ
∂y2

− (E12 + E66 )
∂2ψ
∂y∂x

+ (L11 + L12 )
∂T1
∂x

+ (P11 + P12 )
∂T2
∂x

+ (R11 + R12 )
∂T3
∂x

= 0

 (8) 

 

δv0 : − A22
∂2v0
∂y2

− A66
∂2v0
∂x2

− (A12 + A66 )
∂2u0
∂y∂x

+ B22
∂3w
∂y3

+ (B12 + 2B66 )
∂3w
∂x2 ∂y

− E22
∂2ψ
∂y2

− E66
∂2ψ
∂x2

− (E12 + E66 )
∂2ϕ
∂y∂x

+ (L12 + L22 )
∂T1
∂y

+ (P12 + P22 )
∂T2
∂y

+ (R12 + R22 )
∂T3
∂y

= 0

 (9) 

 

δw : − B11
∂3u0
∂x3

− (B12 + 2B66 )
∂3u0
∂x∂y2

+ ∂3v0
∂y∂x2

⎛
⎝⎜

⎞
⎠⎟
− B22

∂3v0
∂y3

+ D11
∂4w
∂x4

+ 2(D12 + 2D66 )
∂4w

∂x2 ∂y2
+ D22

∂4w
∂y4

− F11
∂3ϕ
∂x3

− F22
∂3ψ
∂y3

− (F12 + 2F66 )
∂3ϕ

∂x∂y2
+ ∂3ψ
∂x2 ∂y

⎛
⎝⎜

⎞
⎠⎟

+ (S11 + S12 )
∂2T1
∂x2

+ (T11 +T12 )
∂2T2
∂x2

+ (U11 +U12 )
∂2T3
∂x2

+ (S12 + S22 )
∂2T1
∂y2

+ (T12 +T22 )
∂2T2
∂y2

+ (U12 +U22 )
∂2T3
∂y2

= 0

 (10) 

 

δϕ : − E11
∂2u0
∂x2

− E66
∂2u0
∂y2

− (E12 + E66 )
∂2v0
∂y∂x

+ F11
∂3w
∂x3

+ (F12 + 2F66 )
∂3w
∂x∂y2

− H11
∂2ϕ
∂x2

− H66
∂2ϕ
∂y2

+C55ϕ − (H12 + H66 )
∂2ψ
∂y∂x

+ (V11 +V12 )
∂T1
∂x

+ (W11 +W12 )
∂T2
∂x

+ (X11 + X12 )
∂T3
∂x

= 0

 (11) 
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δψ : − E22
∂2v0
∂y2

− E66
∂2v0
∂x2

− (E12 + E66 )
∂2u0
∂x∂y

+ F22
∂3w
∂y3

+ (F12 + 2F66 )
∂3w
∂x2 ∂y

− H66
∂2ψ
∂x2

− H22
∂2ψ
∂y2

+C44ψ − (H12 + H66 )
∂2ϕ
∂x∂y

+ (V12 +V22 )
∂T1
∂y

+ (W12 +W22 )
∂T2
∂y

+ (X12 + X22 )
∂T3
∂y

= 0

 (12) 

 
The associated boundary conditions are of the form: 

1) Along the edges x = 0and x = a , following are the boundary conditions 
 

δu0 : A11

∂u0

∂x
+ A12

∂v0

∂y
− B11

∂2w
∂x2 − B12

∂2w
∂y2 + E11

∂ϕ
∂x

+ E12

∂ψ
∂y

− ( L11 + L12 )T1 − ( P11 + P12 )T2 − ( R11 + R12 )T3 = Nx = 0  or u0  is prescribed.
 (13) 

 

δv0 : A66(
∂u0

∂y
+
∂v0

∂x
)− 2B66

∂2w
∂x∂y

+ E66(
∂ϕ
∂y

+ ∂ψ
∂x
) = Nxy = 0  or v0  is prescribed.  (14) 

 

∂w : B11

∂2u0

∂x2 + ( B12 + 2B66 )
∂2v0

∂x∂y
+ 2B66

∂2u0

∂y2 − D11

∂3w
∂x3 − ( D12 + 4D66 )

∂3w
∂y2∂x

+ F11

∂2ϕ
∂x2 + ( F12 + 2F66 )

∂2ψ
∂x∂y

+ 2F66

∂2ϕ
∂y2 − ( S11 + S12 )

∂T1

∂x
− (T11 +T12 )

∂T2

∂x

− (U11 +U12 )
∂T3

∂x
=Vx = 0  or w is prescribed.

 (15) 

 
∂δw
∂x

: − B11
∂u0

∂x
− B12

∂v0

∂y
+ D11

∂2w
∂x2 + D12

∂2w
∂y2 − F11

∂ϕ
∂x

− F12
∂ψ
∂y

+ (S11 + S12 )T1 + (T11 +T12 )T2 + (U11 +U12 )T3 = Mx = 0  or ∂w
∂x

 is prescribed.
 (16) 

 

δϕ : E11
∂u0

∂x
+ E12

∂v0

∂y
− F11

∂2w
∂x2 − F12

∂2w
∂y2 + H11

∂ϕ
∂x

+ H12
∂ψ
∂y

− (V11 +V12 )T1 − (W11 +W12 )T2 − (X11 + X12 )T3 = Mx
s = 0  or ϕ  is prescribed. 

 (17) 

 

δψ : E66 (∂u0

∂y
+ ∂v0

∂x
)− 2F66

∂2w
∂x∂y

+ H66 (∂ϕ
∂y

+ ∂ψ
∂x

) = Mxy
s = 0  or  ψ  is prescribed.  (18) 
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2) Along the edges y = 0and y = b , following are the boundary conditions 
 

δu0 : A66 (∂u0

∂y
+ ∂v0

∂x
)− 2B66

∂2w
∂x∂y

+ E66 (∂ϕ
∂y

+ ∂ψ
∂x

) = Nxy = 0 or u0  is prescribed. (19) 

 

δv0 : A12
∂u0

∂x
+ A22

∂v0

∂y
− B12

∂2w
∂x2 − B22

∂2w
∂y2 + E12

∂ϕ
∂x

+ E22
∂ψ
∂y

− (L12 + L22 )T1 − (P12 + P22 )T2 − (R12 + R22 )T3 = Ny = 0 or v0  is prescribed.
 (20) 

 

δw : (B12 + 2B66 ) ∂
2u0

∂x∂y
+ B22

∂2v0

∂y2 + 2B66
∂2v0

∂x2 − D22
∂3w
∂y3 − (D12 + 4D66 ) ∂3w

∂x2 ∂y

+ (F12 + 2F66 ) ∂2ϕ
∂x∂y

+ F22
∂2ψ
∂y2 + 2F66

∂2ψ
∂x2 − (S12 + S22 ) ∂T1

∂y
− (T12 +T22 ) ∂T2

∂y

− (U12 +U22 ) ∂T3

∂y
=Vy = 0   or  w  is prescribed.

 (21) 

 
∂δw
∂y

: − B12

∂u0

∂x
+ B22

∂v0

∂y
⎛
⎝⎜

⎞
⎠⎟
+ D12

∂2w
∂x2 + D22

∂2w
∂y2 − F12

∂ϕ
∂x

− F22

∂ψ
∂y

+ ( S12 + S22 )T1 + (T12 +T22 )T2 + (U12 +U22 )T3 = My = 0   or 
∂w
∂y

 is prescribed.

 (22) 

 

δφ : E66(
∂u0

∂y
+
∂v0

∂x
)− 2F66

∂2w
∂x∂y

+ H66(
∂φ
∂y

+ ∂ψ
∂x
) = Mxy

s = 0  or  φ   is prescribed.  (23) 

 

δψ : E12

∂u0

∂x
+ E22

∂v0

∂y
− F12

∂2w
∂x2 − F22

∂2w
∂y2 + H12

∂φ
∂x

+ H22

∂ψ
∂y

− (V12 +V22 )T1 − (W12 +W22 )T2 − ( X12 + X 22 )T3 = My
s = 0  or  ψ   is prescribed.

 (24) 

 
3) At corners x = 0, y = 0( ), x = 0, y = b( ), x = a, y = 0( )  and x = a, y = b( )  the following condi-
tion hold: 
 

B66
∂u0

∂y
+ ∂v0

∂x
⎛
⎝⎜

⎞
⎠⎟
− 2D66

∂2w
∂x∂y

+ F66
∂ϕ
∂y

+ ∂ψ
∂x

⎛
⎝⎜

⎞
⎠⎟
= Mxy = 0  or w is prescribed.  (25) 

 
where laminate stiffness coefficients Aij  and Bij … etc, appeared in above equations are defined in 

terms of reduced stiffness coefficients Qij
(k )  for the layers k =1, 2,,…, n as follows: 
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)6,2,1,(,),,1(),,( 2

1

)(
1

==∑ ∫
=

+

jidzzzQDBA
n

k

z

z

k
ijijijij

k

k  
(26a) 

 

∑ ∫
=

+

⎟
⎠
⎞⎜

⎝
⎛=

n

k

z

z

k
ijijijij

k

k

dz
h
zhz

h
zhQHFE

1

)(
1

sin,,1sin),,( π
π

π
π  

(26b) 

 

(Lij ,Pij ,Rij ) = α i
(k )Qij

(k ) 1, z
h
,ψ (z)
h

⎛
⎝⎜

⎞
⎠⎟

zk

zk+1

∫
k=1

n

∑ , (i = x, y)  (26c) 

 

(Sij ,Tij ,Uij ) = α i
(k )Qij

(k ) z, z
2

h
,ψ (z)z

h
⎛
⎝⎜

⎞
⎠⎟zk

zk+1

∫
k=1

n

∑ , (i = x, y)  (26d) 

 

(Vij ,Wij ,Xij ) = α i
(k )Qij

(k ) h
π
sinπ z

h
1, z
h
,ψ (z)
h

⎛
⎝⎜

⎞
⎠⎟

zk

zk+1

∫
k=1

n

∑ , (i = x, y)  (26e) 

 

Cij = Qij
(k ) cos2 π z

h
dz, (i, j = 4,5)

zk

zk+1

∫
k=1

n

∑  (26f) 

 
For symmetric cross-ply laminated plate stiffness coefficients Bij ,Eij ,Pij ,Rij ,Sij ,Vij = 0 . 

 

3 ILLUSTRATIVE EXAMPLE 

To assess the performance of present theory under combined linear and nonlinear thermal load, 
orthotropic, two-layer antisymmetric and three layer symmetric laminated plates are considered 
herein. 
 
Example  

Simply supported square orthotropic, two-layer antisymmetric, and three-layer symmetric lam-

inated plates subjected to temperature field T (x, y, z) = T1(x, y)+
z
h
T2 (x, y)+

ψ (z)
h

T3(x, y)   

through the thickness of plate are considered with following lamina material properties:  
 

E1
E2

= 25,G12 = G13 = 0.5E2,G23 = 0.2E2,µ12 = 0.25,
α y

α x

= 3 

 
α x  is coefficient of thermal expansion in the direction of fiber and α y  is coefficient of thermal 

expansion in transverse direction. 



S.K. Kulkarni et al./ Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory     1009 

Latin American Journal of Solids and Structures 10(2013) 1001 – 1023 

 

3.1 The solution scheme 

Here we concern with the close form solutions of simply supported square and rectangular plates. 
The boundary conditions for simply supported edges are  
 

v0 = w =ψ = Nx = Mx = Mx
s = 0  at x = 0 and x = a  

 
u0 = w =ϕ = Ny = My = My

s = 0  at y = 0 and y = b  
(27) 

 
The following is the solution form for u0 (x, y),v0 (x, y),w(x, y),ϕ(x, y),ψ (x, y)  that satisfies 

above boundary conditions exactly; 
 

u0 (x, y) = u0mn cos
mπ x
a
sin nπ y

bn=1

∞

∑
m=1

∞

∑  (28a) 

 

v0 (x, y) = v0mn sin
mπ x
a
cos nπ y

bn=1

∞

∑
m=1

∞

∑  (28b) 

 

w(x, y) = wmn sin
mπ x
a
sin nπ y

bn=1

∞

∑
m=1

∞

∑  (28c) 

 

ϕ(x, y) = ϕmn cos
mπ x
a
sin nπ y

bn=1

∞

∑
m=1

∞

∑  (28d) 

 

ψ (x, y) = ψ mn sin
mπ x
a
cos nπ y

bn=1

∞

∑
m=1

∞

∑  (28e) 

 
Thermal load is expanded in double Fourier sine series as follows: 

 

T1( x,y ) = T1mn sin
mπ x
a
sin
nπ y
bn=1

∞

∑
m=1

∞

∑  

 

T2 (x, y) = T2mn sin
mπ x
a
sin nπ y

bn=1

∞

∑
m=1

∞

∑  

 

T3(x, y) = T3mn sin
mπ x
a
sin nπ y

bn=1

∞

∑
m=1

∞

∑  

(28f) 

 
 



1010     S.K. Kulkarni et al./ Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory 

Latin American Journal of Solids and Structures 10(2013) 1001 – 1023 

 

For single sinusoidal thermal load m = n =1( ) , series coefficients lead to 

T1mn = T2mn = T3mn = T0 , where, the maximum intensity of thermal load is T0 . Substitution of so-
lution form given by equations (28a)-(28f) into governing equations (8)-(12) results into a system 
of the algebraic equations which can be written into a matrix form as follows: 
 

K[ ] δ{ } = f{ }  (29) 
 

where K[ ]  is the symmetric stiffness matrix, δ{ } = u0mn ,v0mn ,wmn ,ϕmn ,ψ mn{ }T  and f{ }  is the 
generalized force vector.  

From solution of these equations unknown coefficients δ{ }  can be obtained readily. Substitut-
ing these coefficients into equations (28a)-(28f), generalized displacements and rotations can be 
obtained and subsequently inplane stresses and transverse stresses can be obtained. Although the 
transverse shear stress components can be calculated from the constitutive relations, these stress-
es may not satisfy the continuity conditions at the interface between layers. Hence transverse 
shear stresses in orthotropic, symmetric and antisymmetric cross-ply laminated plates are ob-
tained by using three dimensional stress equilibrium equations of elasticity. These equations are 
as follows. 
 

∂σ x

∂x
+
∂τ yx

∂y
+
∂τ zx
∂z

= 0  (30a) 

 
∂τ xy

∂x
+
∂σ y

∂y
+
∂τ zy
∂z

= 0  (30b) 

 
∂τ zx
∂x

+
∂σ zy

∂y
+
∂τ zz
∂z

= 0  (30c) 

 
Substitute the expressions of inplane normal stress (σ x ) and inplane shear stress (τ xy )  in the 

equation (30a) and inplane normal stress σ y  and inplane shear stress (τ xy )  in the equation (30b) 

and integrate them with respect to thickness coordinate z in a layerwise manner. The integration 
constants are obtained by imposing the stress boundary conditions of kth layer on the upper and 
lower surfaces of the kth layer. Using this procedure final expressions for transverse shear stresses 
are obtained to evaluate these stresses through the thickness of laminated plate.     
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4 RESULTS 

In this paper, displacements and stresses are determined for square orthotropic, antisymmetric 
and symmetric laminated plates subjected to non-linear thermal load across the thickness of 
plate. Results are presented in the following normalized forms for the purpose of discussion. 

Normalized displacements (u ,v ,w)  and thermal stresses (σ x ,σ y ,τ xy ,τ zx ,τ zy )  for orthotropic 

plate: 
 

u = u 0, b
2
,− h
2

⎛
⎝⎜

⎞
⎠⎟

1
α1T0a

2 ,v = v
a
2
,0,− h

2
⎛
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⎞
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1
α1T0a

2 ,w = w a
2
, b
2
,0⎛
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⎞
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10 × h
α1T0b

2

σ x =σ x
a
2
, b
2
,− h
2

⎛
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⎞
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1
α1T0E2a

2 ,σ y =σ y
a
2
, b
2
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2

⎛
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⎞
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1
α1T0E2a
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1
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2 ,
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1
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2 ,τ yz = τ yz
a
2
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⎞
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1
α1T0E2a

2

 

 
Normalized displacements and thermal stresses for two-layer antisymmetric laminated plates: 

 

u = u 0, b
2
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Normalized displacements and thermal stresses for three-layer symmetric laminated plates: 

 

u = u 0, b
2
,− h
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Results obtained for normalized displacements and stresses are presented in Tables 1 and 2 

and in Figures 1 through 12. 
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Table 1 Normalized displacements and stresses for square orthotropic, two-layer antisymmetric and three layer symmetric cross-ply 

laminated plates subjected to nonlinear thermal load (T
1
= 0,T

2
= T

3
= 1)  for aspect ratio 4. 

 
Plate Theory u  v  w  σ x  σ y  τ xy  τ zx

EE  τ zy
EE  

00 Present 0.2844 0.3434 1.8919 -1.5424 1.3607 0.9862 0.0066 -0.1191 
 HSDT 0.2858 0.3141 1.8504 -1.6251 1.4518 0.9423 0.0453 -0.1504 
 FSDT 0.2814 0.3563 1.9279 -1.3164 1.3224 1.0018 0.0143 -0.1186 
 CPT 0.2874 0.2874 1.8293 -1.7270 1.5349 0.9027 0.0755 -0.1798 
00/900 Present 0.2914 0.3321 1.9460 -2.0811 2.0811 0.9794 -0.1246 -0.1246 
 HSDT 0.2934 0.3329 2.0156 -2.2418 2.2418 0.9839 -0.1250 -0.1268 
 FSDT 0.2926 0.3325 1.9899 -2.1765 2.1765 0.9820 -0.1268 -0.1262 
 CPT 0.2926 0.3325 1.9899 -2.1765 2.1765 0.9820 -0.1262 -0.1262 
0/90/0 Present 0.2855 0.3269 1.9405 -1.6163 1.4118 0.9620 0.0384 -0.1212 
 HSDT 0.2857 0.3139 1.8803 -1.6150 1.4527 0.9417 0.0672 -0.1317 
 FSDT 0.2810 0.3388 1.9463 -1.2646 1.3781 0.9734 0.0425 -0.1157 
 CPT 0.2873 0.2873 1.8292 -1.7249 1.5350 0.9027 0.1111 -0.1559 
 
 
Table 2   Normalized displacements and stresses for square orthotropic, two-layer antisymmetric and three layer symmetric cross-ply 

laminated plates subjected to nonlinear thermal load (T
1
= 0,T

2
= T

3
= 1)  for aspect ratio 10. 

 

Plate Theory u  v  w  σ x  σ y  τ xy  τ zx
EE  τ zy

EE  

00 Present 0.2867 0.3004 1.8464 -1.6898 1.4943 0.9223 0.0237 -0.0663 
 HSDT 0.2871 0.2874 1.8496 -1.7120 1.5018 0.9189 0.0254 -0.0674 
 FSDT 0.2860 0.3032 1.8520 -1.6323 1.4859 0.9256 0.0246 -0.0663 
 CPT 0.2874 0.2874 1.8293 -1.7270 1.5349 0.9027 0.0302 -0.0719 
00/900 Present 0.2924 0.3325 1.9827 -2.1609 2.1609 0.9816 -0.0504 -0.0504 
 HSDT 0.2930 0.3327 2.0007 -2.2040 2.2040 0.9828 -0.0503 -0.0506 
 FSDT 0.2926 0.3325 1.9899 -2.1765 2.1765 0.9820 -0.0505 -0.0505 
 CPT 0.2926 0.3325 1.9899 -2.1765 2.1765 0.9820 -0.0505 -0.0505 
0/90/0 Present 0.2869 0.2976 1.8599 -1.7015 1.5030 0.9189 0.0369 -0.0588 
 HSDT 0.2873 0.2977 1.8654 -1.7285 1.5025 0.9188 0.0381 -0.0588 
 FSDT 0.2857 0.3001 1.8583 -1.6103 1.4960 0.9203 0.0376 -0.0584 
 CPT 0.2873 0.2873 1.8292 -1.7249 1.5350 0.9027 0.0445 -0.0623 
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Figure 1 Variation of normalized inplane normal stress σ x  through the thickness of orthotropic plate for aspect ratio 10 
 

 
 

Figure 2 Variation of normalized inplane normal stress σ y  through the thickness of orthotropic plate for aspect ratio 10 
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Figure 3 Variation of normalized transverse shear stress τ zx  through the thickness of orthotropic plate for aspect ratio 10 and ob-

tained by equilibrium equations 
 

 
 

Figure 4 Variation of normalized transverse shear stress τ zy  through the thickness of orthotropic plate for aspect ratio 10 and ob-

tained by equilibrium equations 
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Figure 5 Variation of normalized inplane normal stress σ x  through the thickness of two-layer laminated plate for aspect ratio 10 
 

 
 

Figure 6 Variation of normalized inplane normal stress σ y  through the thickness of two-layer laminated plate for aspect ratio 10 
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Figure 7 Variation of normalized transverse shear stress τ zx  through the thickness of two-layer laminated plate for aspect ratio 10 
 

 
 

Figure 8 Variation of normalized transverse shear stress τ zy  through the thickness of two-layer laminated plate for aspect ratio 10 
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Figure 9 Variation of normalized inplane normal stress σ x  through the thickness of three-layer laminated plate for aspect ratio 10 
 

 
 

Figure 10 Variation of normalized inplane normal stress σ y  through the thickness of three-layer laminated plate for aspect ratio 10 
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Figure 11  Variation of normalized transverse shear stress τ zx  through the thickness of three-layer laminated plate for aspect ratio 10 
 

 
 

Figure 12 Variation of normalized transverse shear stress τ zy  through the thickness of three-layer laminated plate for aspect ratio 10 
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4.1 Discussion of results 

The results obtained for displacements and stresses in square orthotropic, two-layer and three-
layer laminated plates under non-linear thermal load are compared and discussed with the corre-
sponding results of classical plate theory (CPT), first order shear deformation theory (FSDT) and 
higher order shear deformation theory (HSDT) of Reddy [5]. It is to be noted that the complete 
results of displacements and stresses are specially generated using above theories for the purpose 
of comparison and discussion being not available in the literature for the present non-linear ther-
mal load.    
 
Inplane displacements (u ,v ) :  Inplane displacements for orthotropic, two layer and three 
layer laminated plate for aspect ratio 4 and 10 are presented in Tables 1 and 10. Inplane dis-
placements u  obtained by present theory are in good agreement with HSDT and FSDT, whereas 
CPT over predict the inplane displacements for thick and thin plate. Inplane displacement v  
obtained for orthotropic plate by present theory is comparable with HSDT, whereas FSDT over 
predict this displacement significantly compared to that of present theory and HSDT, whereas 
CPT under predict the inplane displacement v  for aspect ratio 4. For two layer and three layer 
cross-ply laminated plates, inplane displacements obtained by present theory, HSDT, FSDT and 
CPT are more or less identical for aspect ratio ratio 4 and 10.  
 
Transverse displacements w : The results of transverse displacements for aspect ratio 4 and 
10 are presented in Tables 1 and 2. Transverse displacement obtained for orthotropic plate by 
present theory for aspect ratio 4 is in good agreement with higher order shear deformation theory, 
whereas FSDT over predict the transverse displacement for aspect ratio 4. For aspect ratio 10, 
the results obtained by present theory, HSDT, FSDT and CPT are more or less identical for or-
thotropic plate. For two layer and three layer cross-ply laminated plate, results of this displace-
ments obtained by present theory, HSDT and FSDT are comparable for both the aspect ratios 4 
and 10, whereas CPT  underestimates this displacement considerably in case of three layer cross-
ply laminated plate.   
 
Inplane normal and shear stresses (σ x ,σ y ,τ xy ) : Results of these stresses are presented in 

Tables 1 and 2 for aspect ratios 4 and 10. Inplane normal stress σ x  obtained for orthotropic plate 
and symmetric laminated plate by present theory is comparable with HSDT, whereas FSDT un-
der predicts the normal stress σ x  and CPT yields much higher value for aspect ratio 4. For as-
pect ratio 10, results obtained by present theory are comparable with each other. The through 
thickness variation of normal stress σ x  for orthotropic plate and symmetric laminated plate are 
shown in Figures.1 and 9 indicating the severe effect of non-linear thermal load for aspect 10. 
Inplane normal stress σ y  obtained for orthotropic and symmetric laminated plate by present 

theory is comparable with HSDT and FSDT, whereas CPT over predicts the same for aspect 
ratio 4 and 10. The through thickness variation of σ y  for orthotropic plate is shown in Figure 2 

for aspect ratio 10 which depicts the curvilinear behaviour. Normal stresses obtained for two layer 
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laminated plate by present theory, HSDT, FSDT and CPT are more of less identical for aspect 
ratio 4 and 10. Variation of normal stresses through the thickness of antisymmetric laminated 
plate is shown in Figures 5 and 6. For three layer cross-ply laminated plate, distribution of this 
stress by CPT shows little departure in 900layer as shown in Figure 10. Inplane shear stresses τ xy  

obtained for orthotropic and symmetric laminated plates by present theory are comparable with 
HSDT, whereas FSDT overestimates the inplane shear stress and CPT underestimates it com-
pared to the results of present theory and HSDT for aspect ratio 4 and 10. Inplane shear stresses 
obtained for two layer laminated plate by present theory, HSDT, FSDT and CPT are more or 
less identical for aspect ratio 4 and 10 as shown in Tables 1 and 2.    
 
Transverse shear stresses (τ zx ,τ zy ) : Transverse shear stresses for orthotropic, two layer anti-

symmetric and three layer symmetric laminated plate are presented in Tables 1 and 2 for aspect 
ratio 4 and 10. Transverse shear stresses (τ zx ,τ zy )obtained by present theory for orthotropic and 

symmetric laminated plate are comparable with HSDT and FSDT, whereas CPT yields much 
higher value for aspect ratios 4 and 10. Variation of transverse shear stresses through the thick-
ness of orthotropic and symmetric laminated plate is shown in Figures 3- 4 and 11-12 respectively 
for aspect ratio 10. The variations of τ zx  and τ zy  are different from each other with change in 

sign. The distribution of these stresses by CPT shows the considerable departure in the middle 
layer as compared to that of other theories (see Figures 11 and 12). Transverse shear stresses for 
two layer laminated plate obtained by present theory are in good agreement with HSDT, FSDT 
and CPT for aspect ratio 4 and 10 and its variation through the thickness with change in sign is 
shown in Figures 7 and 8 for aspect ratio 10.  
 
5 CONCLUSIONS 

Thermal response of orthotropic, two layer antisymmetric and three layer symmetric cross-ply 
laminated plates under non-linear thermal load across the thickness of plate has been studied by 
using present trigonometric shear deformation theory. The results are compared with classical 
plate theory, first order shear deformation theory and higher order shear deformation theory. 
Present theory gives good prediction of the thermal response of laminated plates in respect of 
displacements and stresses. The effect of non-linear variation of thermal load through the thick-
ness of laminated plate shows the significant effect on inplane normal and transverse shear stress-
es as observed from this investigation which validates the efficacy of the present theory. 
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Appendix 
 
 (a) Elements of stiffness matrix [K] 
 

k11 = A66
n2π 2

b2
+ A11

π 2m2

a2
, k12 = (A12 + A66 )

π 2nm
ba

, k13 = −B11
m3π 3

a3
− (B12 + 2B66 )

π 3mn2

ab2
,

k14 = E11
m2π 2

a2
+ E66

π 2n2

b2
, k15 = (E12 + E66 )

π 2nm
ba

 

k21 = k12, k22 = A22
n2π 2

b2
+ A66

π 2m2

a2
, k23 = −B22

n3π 3

b3
− (B12 + 2B66 )

π 3m2n
a2b

,

k24 = (E12 + E66 )
π 2nm
ba

, k25 = E22
n2π 2

b2
+ E66

π 2m2

a2
,

 

k31 = k13, k32 = k23, k33 = D11
m4π 4

a4
+ (2D12 + 4D66 )

π 4m2n2

a2b2
+ D22

n4π 4

b4
,

k34 = −F11
m3π 3

a3
− (F12 + 2F66 )

π 4mn2

ab2
, k35 = −F22

n3π 3

b3
− (F12 + 2F66 )

π 3m2n
a2b

 

k41 = k14 , k42 = k24 , k43 = k34 , k44 = H11
m2π 2

a2
+ H66

π 2n2

b2
+C55, k45 = (H12 + H66 )

π 2nm
ba

 

k51 = k15, k52 = k25, k53 = k35, k54 = k45, k55 = H66
m2π 2

a2
+ H22

π 2n2

b2
+C44  
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(b) Elements of load vector [f]  
 

f1 = − mπ
a
(L11 + L12 )T1mn + (P11 + P12 )T2mn + (R11 + R12 )T3mn[ ]

f2 = − nπ
b
(L12 + L22 )T1mn + (P12 + P22 )T2mn + (R12 + R22 )T3mn[ ]

f3 =
m2π 2

a2
(S11 + S12 )T1mn + (T11 +T12 )T2mn + (U11 +U12 )T3mn[ ]

+ n
2π 2

b2
(S12 + S22 )T2mn + (P12 + P22 )T2mn + (U12 +U22 )T3mn[ ]

f4 = − mπ
a
(V11 +V12 )T1mn + (W11 +W12 )T2mn + (X11 + X12 )T3mn[ ]

f5 = − nπ
b
(V12 +V22 )T1mn + (W12 +W22 )T2mn + (X12 + X22 )T3mn[ ]
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