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New Analytical Approach to Nonlinear Behavior Study of Asym-
metrically LCBs on Nonlinear Elastic Foundation under Steady
Axial and Thermal Loading

Abstract

In this paper, nonlinear behavior analysis of an asymmetri-

cally laminated composite beam (LCB) on nonlinear founda-

tion under axial and in-plane thermal loading is considered.

To solve the obtained governing equation, a novel method

based on Laplace transform is used. The resulted approx-

imate analytical solution allows us the parametric study of

different parameters which influence the nonlinear behavior

of the system. The numerical results illustrate that proposed

technique yields a very rapid convergence of the solution as

well as low computational effort. The accuracy of the pro-

posed method is verified by those available in literatures.
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1

1 INTRODUCTION2

Beam is one of the important mechanical elements and has numerous applications in different3

fields of engineering and industries such as civil, marine and aerospace structures or vehicles.4

Among these, laminated composite beams with high stiffness and strength to weight ratio are5

increasingly used in many engineering structures.6

In most applications, they are subjected to non-linear vibrations which lead to material7

fatigue and structural damage due to increment of the oscillation amplitude. Therefore, it is8

necessary and very important to study dynamic nonlinear behavior and natural responses of9

these structures at large amplitudes. Furthermore, it is desirable to provide an accurate anal-10

ysis towards the understanding of the non-linear vibration characteristics of these structures.11

Generally, it is often difficult to find an analytical solution for a given nonlinear problem12

unless some simplifying assumptions are considered. Therefore, the application of different13

numerical techniques seems to be obligatory. It should be noted that it is hard to have a com-14

plete understanding of a nonlinear problem out of numerical results. Furthermore, numerical15

difficulties appear if a nonlinear problem has singularities or multiple solutions.16
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However, closed form solutions are more interesting to research community even if they are17

approximate solutions since they have various advantages such as ease of parametric studies and18

considering of physics of the problem. Among approximate analytical solutions for nonlinear19

problems, one may refer to the homotopy perturbation method (HPM) [8], the variational iter-20

ation method (VIM) [9], the modified Lindstedt-Poincare method (MLPM)[11], the harmonic21

balance method (HBM) [4], the energy balance method (EBM)[20], the parameter-expansion22

method (PEM) [19] and He’s variational method (HVM) [12].23

Most studies for nonlinear vibration and buckling analysis of beams are concerned with24

isotropic and symmetrically LCBs, [1, 3, 6, 15, 16]. Due to the bending-stretching coupling25

in asymmetrically laminated beams, their nonlinear vibrations analyses are significantly dif-26

ferent from that of isotropic beams and symmetrically LCBs. A few studies can be found in27

the literature for nonlinear analysis of asymmetrical LCBs [2, 7, 14]. For example, Patel et28

al.[14] used a three-nodded shear flexible beam element in order to investigate nonlinear free29

flexural vibrations and post-buckling of orthotropic laminated beams resting on a class of two30

parameter elastic foundation. Gunda et al. [7] employed the Rayleigh-Ritz method to study31

large amplitude vibration analysis of LCB with symmetric and asymmetric layup orientations.32

Baghani et al. [2] employed the variational iteration method for large amplitude free vibrations33

and post-buckling analysis of asymmetrically LCBs on nonlinear elastic foundation.34

In this paper, geometrically nonlinear vibration and post-buckling analysis of asymmet-35

rically LCB on nonlinear foundation under axial and in-plane thermal loading is considered.36

First, Galerkin method is used and the governing nonlinear partial differential equation is re-37

duced to a single nonlinear ordinary differential equation. Afterwards, a novel method based38

on Laplace transform [13] that is called Laplace iteration method (LIM) is applied to obtain39

analytical solution for the nonlinear governing equation. Finally, an approximate analytical40

expression will be obtained which allows us to study effect of different parameters on nonlin-41

ear behavior of the system. In this paper for the first time, the effect of thermal loading in42

addition to the other effects is taking into account. The proposed technique yields very rapid43

convergence of the solution as well as low computational effort.44

2 SYSTEM DYNAMICS45

Consider a straight LCB of length l, width b, total thickness h and mass per unit length m46

which rests on an elastic nonlinear foundation subjected to an axial force of magnitude P̃ and47

a thermal load i.e. temperature varies linearly from Tb at bottom side to Tt at top side of the48

beam as shown in Figure 1. A Cartesian coordinate is located while its origin is at left end49

and its x̃ direction crosses through the neutral axis of the beam.50

If w̃ and ũ are the transverse and longitudinal displacements of the beam along the z̃ and51

x̃ directions, respectively, ε0 shows the beam’s neutral axis strain, κ points up the flexural or52

bending strain of the beam which is known as the curvature and εth represents the thermal53

strain. Employing the Von Karman large deformation assumption, the strain–displacement54

relation with considering thermal effect can be shown as [10]55
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Figure 1 Schematic of the straight LCB on a nonlinear foundation and subjected to an axial force and thermal
loading

ε = εm + εth (1)

where56

εm = ε0 + z̃κ, ε0 = ∂ũ
∂x̃
+ 1

2
(∂w̃
∂x̃
)2 , κ = −∂2w̃

∂x̃2 , εth = αth∆T, ∆T =∆T0 + z̃∆T1 (2)

And z̃ measures the distance of beam’s material element from midline, αth is coefficient of57

thermal expansion. Moreover, ∆T0 is temperature variation at midline of the beam and ∆T158

stands for temperature difference between top and bottom sides and they can be presented as:59

∆T0 = Tt+Tb

2
, ∆T1 = Tt−Tb

h
(3)

The force and moment resultants per unit length based on the classical laminate beam60

theory can be written as [10, 18]:61

{ Nx̃

Mx̃
} = [ A11 B11

B11 D11
]{ ε0

κ
} − [ A11th B11th

B11th D11th
]{ ∆T0

∆T1
} (4)

where its stiffness coefficients are given as follows [10, 18]:62

A11 =
n

∑
k=1

Q̄
(k)
11 (hk − hk−1) , A11th =

n

∑
k=1

Q̄
(k)
11 α

(k)
th (hk − hk−1)

B11 = 1
2

n

∑
k=1

Q̄
(k)
11 (h2

k − h2
k−1) , B11th = 1

2

n

∑
k=1

Q̄
(k)
11 α

(k)
th (h

2
k − h2

k−1)

D11 = 1
3

n

∑
k=1

Q̄
(k)
11 (h3

k − h3
k−1) , D11th = 1

3

n

∑
k=1

Q̄
(k)
11 α

(k)
th (h

3
k − h3

k−1)

(5)

Each layer k is referred to by the z̃ coordinates of its lower face (hk−1) and upper face (hk)63

and Q̄
(k)
11 is the elements of the stiffness matrix in the x̃ direction, n is the number of laminas64

and α
(k)
th is coefficient of thermal expansion of the kth layer.65

Finally, using the Extended Hamilton’s principle [17, 18], the governing equation of trans-66

verse vibration of an LCB including thermal effect and axial stretching on a nonlinear elastic67

foundation can be obtained as68
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m
∂2w̃

∂t̃2
+ b(D11 −

B2
11

A11
) ∂

4w̃

∂x̃4
+ β∂

2w̃

∂x̃2
= Fw̃ (6)

where69

β = [P̃ + b (A11th∆T0 +B11th∆T1) − bA11

2l ∫
l
0 (

∂w̃
∂x̃
)2 dx̃ − bB11

2l
( ∂w̃

∂x̃
∣(l,t̃) −

∂w̃
∂x̃
∣(0,t̃))]

Fw̃ = −k̃Lw̃ − k̃NLw̃
3 + k̃Sh

∂2w̃
∂x̃2

(7)

k̃L and k̃NL are linear and nonlinear elastic foundation coefficients, k̃Sh is the shear stiffness70

of the elastic foundation.71

By defining non-dimensional variables72

x = x̃
l
, w = w̃

r
, t = t̃

√
b

ml4
γ, r =

√
I
A

(8)

it can be written in a simple form as73

∂2w
∂t2
+ ∂4w

∂x4 +KLw +KNLw
3 −KSh

∂2w
∂x2

+ [P + F0th + F 1th −B ∫
1
0 (

∂w
∂x
)2 dx −Λ ( ∂w

∂x
∣(1,t) −

∂w
∂x
∣(0,t))]

∂2w
∂x2 = 0

(9)

where r is the radius of gyration of the beam’s cross-section, and74

KL = k̃Ll4

bγ
KNL = k̃NLr2l4

bγ
KSh = k̃Shl

2

bγ

P = P̃ l2

bγ
F0th = l2∆T0A11th

γ
F1th = l2∆T1B11th

γ

B = A11r
2

2γ
Λ = B11r

γ
γ = (D11 − B2

11

A11
)

(10)

To achieve the aims of the paper, the solution of Eq. (9) is assumed to be75

w(x, t) = φ(x)η(t) (11)

where φ(x) is the first normal mode of the beam [17] that is defined for simply supported and76

fixed-fixed boundary conditions in Table 1 and η(t) is an unknown time dependent function.77

Table 1 The first normal modes for beam with various boundary conditions

Boundary Condition φ(x)
Simply Supported φ(x) = sin (πx)

Fixed-Fixed φ(x) = (sinh(qx) − sin(qx)) − sinh(q)−sin(q)
cosh(q)−cos(q) (cosh(qx) − cos(qx)) , q = 4.730041

Applying the Galerkin method [17], Eq. (9) yields78

d2η(t)
dt2

+ [α1 + (P + F0th + F 1th)αP + αL + αSh]η(t) + α2η
2(t) + (αNL + α3)η3(t) = 0 (12)
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Figure 2 The first normal functions of the beam with a) Simply supported, b) Fixed-Fixed boundary conditions

where79

Now, it can be assumed that the beam is subjected to an initial displacement according80

to its first modal shape and zero initial velocity. So, the initial conditions of Eq. (12) can be81

presented as82

α1 = ∫
1
0 φ(iv)φdx

∫ 1
0 φ2dx

, α2 = −Λ (φ′(1) − φ′(0))αP , α3 = −BαP ∫
1
0 φ′2dx

αP = ∫
1
0 φ′′φdx

∫ 1
0 φ2dx

, αSh = −KShαP , αL =KL, αNL =KNL
∫ 1
0 φ4dx

∫ 1
0 φ2dx

(13)

η(0) = A, dη(0)
dt
= 0 (14)

where according to the Fig. 2, A denotes the non-dimensional maximum amplitude of oscilla-83

tion at the beam’s center.84

Based on the Eq. (12) the nonlinear post-buckling load of the considered LCB can be85

written as86

PNB = −
[α1 + αP + αL + αSh] + α2A + (αNL + α3)A2

αP
− (F0th + F 1th) (15)

Neglecting the A in Eq. (15), the linear buckling load will be derived as87

PLB = −
α1 + αP + αL + αSh

αP
− (F0th + F 1th) (16)

The next step is to find the natural frequency of the system. Since the governing equation88

Eq. (12) is nonlinear, the free vibration of the system has a nonlinear natural frequency89

which is introduced by ωNL. Indeed, the nonlinear free vibration response of the system η(t)90

and its nonlinear natural frequency ωNL depend on the system parameters, the boundary91

condition and the initial conditions. Eq. (12) is strongly nonlinear and nobody can find an92

exact analytical closed form solution for η(t) and ωNL. Although numerical methods can be93

implemented to get over this problem but, they cannot offer any suitable way for parametric94
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study. Therefore, it will be valuable if a powerful analytical approximate method exists that95

presents an accurate approximation of η(t) and ωNL while providing the ability to parametric96

study of the problem.97

3 DESCRIPTION OF THE PROPOSED METHOD98

Using the Laplace Transformation method an analytical approximated technique is proposed99

to present an accurate solution for nonlinear differential equations. To clarify the basic ideas100

of proposed method consider the following second order differential equation,101

ü(t) +N { u(t)} = 0 (17)

with artificial zero initial conditions and N is the nonlinear operator. Adding and subtracting102

the term ω2u(t), the Eq. (17) can be written in the form103

ü(t) + ω2u(t) = L{ u(t)} = f (u(t)) (18)

where L is the linear operator and104

f (u(t)) = ω2u(t) −N { u(t)} (19)

Taking Laplace transform of both sides of the Eq. (18) in the usual way and using the105

homogenous initial conditions gives106

(s2 + ω2)U(s) = I{f (u(t))} (20)

where s and I are the Laplace variable and operator, correspondingly. Therefore it is obvious107

that108

U(s) = I{f (u(t))} G(s) (21)

where109

G(s) = 1

s2 + ω2
(22)

Now, implementing the Laplace inverse transform of Eq. (21) and using the Convolution110

theorem offer111

u(t) =
t

∫
0

f (u(τ) ) g(t − τ)dτ (23)

where112

g(t) = I−1 {G(s)} = 1

ω
sin (ωt) (24)
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Substituting Eq. (19) and (24) into (23) gives113

u(t) =
t

∫
0

(ω2u(τ) −N { u(τ)}) 1
ω
sin (ω(t − τ))dτ (25)

Now, the actual initial conditions must be imposed. Finally the following iteration formu-114

lation can be used [5]115

un+1 = u0 +
1

ω

t

∫
0

(ω2un(τ) −N { un(τ)}) sin (ω(t − τ))dτ (26)

Knowing the initial approximation u0, the next approximations un, n > 0 can be determined116

from previous iterations. Consequently, the exact solution may be obtained by using:117

u = lim
n→∞

un (27)

In this method, the problems are initially approximated with possible unknowns and it can118

be applied in non-linear problems without linearization or small parameters. The approximate119

solutions obtained by the proposed method rapidly converge to the exact solution.120

4 IMPLEMENTATION OF THE PROPOSED METHOD121

Eq. (12) can be rewritten in the standard form Eq. (18)122

d2η(t)
dt2

+ ω2η(t) = f (η(t)) (28)

where123

f (η(t)) = ω2η(t) −N { η(t)} , λ1 = α1 + (P + F0th − F 1th)αP + αL + αSh

N {η(t)} = λ1η(t) + λ2η
2(t) + λ3η

3(t), λ2 = α2, λ3 = (αNL + α3)
(29)

Applying the proposed method, the following iterative formula is assembled124

ηn+1(t) = η0(t) +
1

ω

t

∫
0

f (ηn(τ)) sin (ω(t − τ))dτ (30)

Eq. (28) will be homogeneous, if f (η(t)) is considered to be zero. So, its homogeneous125

solution126

η0(t) = A cos(ωt) (31)

is considered as the zero approximation for using in iterative Eq.(30).127

Expanding f (η0(τ)), we have:128
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f (η0(τ)) = (−λ1A + ω2A − 3

4
λ3A

3) cos(ωt) − 1

4
λ3A

3 cos(3ωt) − 1

2
λ2A

2 (1 + cos(2ωt)) (32)

Considering the relation:129

1

ω

t

∫
0

(cos(mωτ)) sin (ω(t − τ))dτ =
⎧⎪⎪⎨⎪⎪⎩

cos(ωt)−cos(mωt)
ω2(m2−1) m ≠ 1

t sin(ωt)
2ω

m = 1
(33)

To avoid secular terms in the next iterations, the coefficient of the cos(ωt) in f (η0(τ))130

should be vanished. So the first approximation of the frequency is obtained as:131

ω =
√

λ1 +
3

4
λ3A2 (34)

Substituting Eq. (31) into (30) and neglecting the secular terms that are the coefficient of132

cos(ωt) in forcing function f (η) give133

η1(t) = 1
96ω2 {(32λ2A

2 + 96ω2A − 3λ3A
3) cos(ωt) + 16 λ2A

2 cos(2ωt)
+3λ3A

3 cos(3ωt) − 48λ2A
2} (35)

This is the first approximation of η(t). Substituting Eq. (35) in Eq. (30) and implementing134

the procedure for second time yields the second approximation ofη(t) as135

η2(t) =
1

1981808640

1

A3

⎛
⎜
⎝

I0 + I1 cos (ωt) + I2 cos (2ωt) + I3 cos (3ωt)
+I4 cos (4ωt) + I5 cos (5ωt) + I6 cos (6ωt)
+I7 cos (7ωt) + I8 cos (8ωt) + I9 cos (9ωt)

⎞
⎟
⎠

(36)

where Ii are given in Appendix.136

In this step, to avoid the secular terms the coefficient of cos(ωt) in forcing function must137

be zero. So,138

ω8 + β6ω
6 + β4ω

4 + β2ω
2 + β0 = 0 (37)

where139

β6 = (−52

25
λ3A

2 + 1
3
λ2A − λ1)

β4 = ( 3
26
λ2
3A

4 − 3
22
λ2λ3A

3 + ( 1
25
λ1λ3 + 5

2⋅3λ
2
2)A2 − 1

3
λ1λ2A)

β2 = (− 32

212
λ3
3A

6 + 1
25
λ2λ

2
3A

5 + 5
2⋅32λ

3
2A

3 − 79
25⋅3λ

2
2λ3A

2)

β0 = ( 3
216

λ4
3A

8 − 3
212

λ2λ
3
3A

7 + 3⋅5
29
λ2
2λ

2
3A

6 − 5
23⋅3)

(38)

Solution of Eq. (37) gives estimation ω for the actual natural frequency of the system.140
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5 NUMERICAL RESULTS141

To illustrate the robustness of the proposed LIM method and to compare with other methods,142

some cases are studied. First, an isotopic beam in two cases of simply supported and fixed-143

fixed boundary conditions is taken. In these cases, the effects of thermal loading and elastic144

foundation are ignored. The amounts of the nonlinear to the linear frequency ratio ωNL/ωL are145

derived for four non-dimensional amplitudes A. Table 2 shows the results of three references146

as well as the numerical results that are computed by the fourth Runge-Kutta method in both147

cases. The two last columns in each case show the results based on LIM and by one step and148

two step iteration. As it is mentioned, the proposed method offers the results with excellent149

accordance with the numerical results even by one step iteration.150

Table 2 Comparison of nonlinear to linear frequency ratio, ωNL/ωL

Simply Supported Clamped–Clamped

Ref. Ref. Ref. Numerical Present Present Ref. Ref. Ref. Numerical Present Present

A [1] [16] [15] results[2] 1 step 2 step [1] [16] [15] results [2] 1 step 2 step

1 1.0891 1.0897 1.0897 1.0891 1.0892 1.0892 1.0221 1.0628 1.0572 1.0553 1.0566 1.0566

2 1.3177 1.3229 1.3228 1.3175 1.3179 1.3178 1.0856 1.2140 1.2125 1.2042 1.2058 1.2057

3 1.6256 1.6394 1.6393 1.6255 1.6263 1.6257 1.1831 1.3904 1.4344 1.4158 1.4179 1.4176

4 – – 1.9999 1.9758 1.9774 1.9761 1.3064 1.5635 1.6171 1.6658 1.6687 1.6679

In the second step, it is assumed that the composite beam is made by AS4/3501 Graphite–151

Epoxy. Its mechanical properties [21] are E11 = 138GPa, E22 = 8.9GPa, υ12 = 0.3, α
(1)
th =152

−0.5× 10−6/○C and α
(2)
th = 28.5× 10

−6/○C. To study the effect of cross-ply lay-up configuration153

on the nonlinear vibration of the considered LCB, three cases of configuration are used. Figure154

3 illustrates this effect on the nonlinear to the linear frequency ratio ωNL/ωL and Figure 4155

shows the influence on the ratio of the nonlinear post buckling load to buckling load PNB/PLB156

for both cases of boundary conditions, respectively. It can be seen that the nonlinear behavior157

of the LCB with [0/90/90/0], [0/90/0/90] and [90/0/0/90] lay-up configuration increases from158

lower values to higher values, respectively. So, the LCB behavioral response can be controlled159

by its lay-up configuration, passively.160

 

(a)

 

(b)

Figure 3 The effect of cross-ply lay-up configuration on the nonlinear to the linear frequency ratio
Left) Simply supported, Right) Fixed-Fixed boundary conditions
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10 H. Rafieipour et al / New Analytical Approach to Nonlinear Behavior Study of Asymmetrically LCBs on Nonlinear Elastic

Foundation under Steady Axial and Thermal Loading

 

(a)

 

(b)

Figure 4 The effect of cross-ply lay-up configuration on the post bucking to the bucking load ratio
Left) Simply supported, Right) Fixed-Fixed boundary conditions

 

(a)

 

(b)

Figure 5 The effect of the linear stiffness KL on the nonlinear to the linear frequency ratio
Left) Simply supported, Right) Fixed-Fixed boundary conditions

In the next step, the nonlinear behavior of the considered LCB due to elastic foundation is161

investigated. As the [90/0/0/90] lay-up has the most critical nonlinear behavior, this configu-162

ration is selected for the rest of the paper. Figure 5 to 7 demonstrate the effects of different163

stiffness values of KL, KNL and KSh on ωNL/ωL ratio for both boundary conditions, corre-164

spondingly. It can be seen that an increase in the linear and shearing layer stiffness of the165

foundation leads to decrement of the nonlinear to linear frequency ratio and also an increase166

in nonlinear stiffness augments this ratio. Also, the shearing layer stiffness has the strongest167

effect.168

Now, the axial loading is applied. Figure 8 shows the variation of the nonlinear to the169

linear frequency ratio ωNL/ωL due to change in the axial loading P . It shows that axial170

loading amplifies the nonlinear frequency ratio of the LCB.171

Finally, the thermal loading is considered. As it is seen in Figure 9, thermal loading172

increases the nonlinear to the linear frequency of the considered LCB. The results show that the173

linear and nonlinear natural frequencies decrease by increasing the thermal loading however,174

the decreasing rate of nonlinear frequency is less than linear natural frequency.175

In the previous steps, the effect of each factor was studied, independently. So in the last176
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(a)

 

(b)

Figure 6 The effect of the nonlinear stiffness KNL on the nonlinear to the linear frequency ratio
Left) Simply supported, Right) Fixed-Fixed boundary conditions

 

(a)

 

(b)

Figure 7 The effect of the shear stiffness KSh on the nonlinear to the linear frequency ratio
Left) Simply supported, Right) Fixed-Fixed boundary conditions

 

(a)

 

(b)

Figure 8 The effect of the axial loading on the nonlinear to the linear frequency ratio Left) Simply supported,
Right) Fixed-Fixed boundary conditions
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(a)

 

(b)

Figure 9 The effect of the thermal loading on the nonlinear to the linear frequency ratio Left) Simply supported,
Right) Fixed-Fixed boundary conditions For [0/90/0/90] lay-up configuration and L/h=50

walk, effects of all factors are implemented simultaneously. Table 3 and 4 show the results for177

cases with simply supported and fixed-fixed boundary conditions, respectively.178

Table 3 Comparison of nonlinear frequency (ωNL) and nonlinear to linear frequency ratio (ωNL/ωL) due to
change of different factors for S-S LCB, [0/90/0/90] lay-up configuration, A=2 and L/h=50

Nonlinear Frequency Nonlinear to linear Frequency

(Tt, Tb) P KL KNL KNL

0 50 0 50

Ksh Ksh Ksh Ksh

0 25 0 25 0 25 0 25

(0,0) 0 0 13.796 20.771 17.622 23.439 1.3978 1.1197 1.7855 1.2635
50 15.423 21.935 18.919 24.468 1.2703 1.1049 1.5583 1.2325

3 0 12.771 20.051 16.821 22.810 1.5510 1.1306 2.0428 1.2862
50 14.475 21.253 18.159 23.864 1.3336 1.1131 1.6730 1.2499

(50,50) 0 0 13.047 20.244 17.036 22.978 1.5001 1.1275 1.9587 1.2798
50 14.731 21.436 18.363 24.025 1.3142 1.1108 1.6382 1.2450

3 0 11.994 19.506 16.217 22.337 1.7676 1.1400 2.3900 1.3054
50 13.749 20.738 17.585 23.411 1.4030 1.1201 1.7944 1.2645

(150,50) 0 0 11.935 19.464 16.171 22.301 1.7915 1.1408 2.4273 1.3071
50 13.693 20.698 17.541 23.376 1.4095 1.1206 1.8055 1.2656

3 0 10.864 18.696 15.328 21.642 2.8264 1.1561 3.9877 1.3383
50 12.664 19.976 16.738 22.745 1.5735 1.1318 2.0797 1.2887
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Table 4 Comparison of nonlinear frequency (ωNL) and nonlinear to linear frequency ratio (ωNL/ωL) due to
change of different factors for F-F LCB, [0/90/0/90] lay-up configuration, A=2 and L/h=50

Nonlinear Frequency Nonlinear to linear Frequency

(Tt, Tb) P KL KNL KNL

0 50 0 50
Ksh Ksh Ksh Ksh

0 25 0 25 0 25 0 25

(0,0) 0 0 27.778 32.868 32.425 36.899 1.2416 1.1562 1.4493 1.2980
50 28.668 33.622 33.195 37.575 1.2218 1.1477 1.4147 1.2827

3 0 27.102 32.300 31.844 36.392 1.2586 1.1631 1.4788 1.3104

50 28.014 33.067 32.628 37.077 1.2361 1.1539 1.4396 1.2938

(50,50) 0 0 27.283 32.451 31.999 36.527 1.2539 1.1612 1.4706 1.3071
50 28.189 33.215 32.779 37.210 1.2321 1.1522 1.4327 1.2908

3 0 26.594 31.876 31.410 36.015 1.2729 1.1686 1.5034 1.3203
50 27.523 32.653 32.205 36.707 1.2478 1.1587 1.4601 1.3026

(150,50) 0 0 26.555 31.844 31.376 35.986 1.2740 1.1690 1.5053 1.3211
50 27.485 32.621 32.173 36.679 1.2487 1.1591 1.4617 1.3033

3 0 25.846 31.257 30.775 35.466 1.2963 1.1771 1.5435 1.3356
50 26.802 32.049 31.587 36.169 1.2669 1.1663 1.4931 1.3162

6 CONCLUSION179

In this paper, the effects of different parameters such as vibration amplitude, nonlinear elastic180

foundation, axial and thermal loading on the nonlinear behavior of the LCBs such as natu-181

ral frequency and buckling load were investigated. For this purpose and to solve nonlinear182

governing equation, a new approach based on the Laplace transform method which is called183

LIM was implemented. This technique provides the ability for parametric study of the consid-184

ered problem. Results revealed that the presented method offers accurate solution with low185

computational effort.186

Moreover, the presented expression is valid for a wide range of vibration amplitudes while187

predictions of the other analytical techniques such as perturbation methods are valid for small188

amplitudes. Comparison between the results of the present study and other methods available189

in the literature shows the accuracy of the method. Results reveal that decreasing linear190

and shear parameters and increasing nonlinear parameters of foundation lead to increasing191

frequency and buckling load ratios. Furthermore, increasing axial force decreases absolute192

values of both linear and nonlinear frequencies as well as natural frequency ratio.193

Appendix: Ii coefficients in the second approximation of deflection.194

I0 = 990904320A((Π1+
21

16
Π3−2Π4)A2+(− 1

32
Π2

3+(−
49

512
Π5+

41

48
Π4)Π3−

2

3
Π2

4)

A+( 13

4096
Π2

5+
31

72
Π2

4)Π3−
23

36
Π3

4)

I1= 1981808640A4 + (−54190080Π5−1052835840Π3−1101004800Π1−7741440Π2 + 1761607680Π4)A3

+ (26512128Π2
3 + (−595574784Π4 + 101007360Π5)Π3−7741440Π2

5 + 399114240Π2
4)A2+

((−457900032Π2
4−3740640Π2

5)Π3 + 690880512Π3
4 + 574560Π3

5)A − 14364Π4
5
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I2 = 110100480A((Π1−3Π3+2Π4)A2+(− 1

64
Π2

3+(−2Π4−
51

1024
Π5)Π3+2Π2

4)

A+( 7
16

Π2
4+

3

512
Π2

5)Π3−
2

3
Π3

4)

I3 = (7741440Π2+54190080Π5+61931520Π3)A3+( 8547840Π2
3+ (3870720Π5−45158400Π4)Π3

+5806080Π2
5+41287680Π2

4

)A2

+ ((−181440Π2
5−16629760Π2

4)Π3−544320Π3
5+13762560Π3

4)A + 15120Π4
5

I4 = 20643840A(A2Π3−
1

10
Π3 (

49

16
Π5−6Π4+Π3)A+(−

2

45
Π2

4+
3

320
Π2

5)Π3+
4

45
Π3

4)

I5 = −483840A((Π2
3+(−

8

3
Π5−

40

9
Π4)Π3−4Π2

5)A+(−
32

27
Π2

4+
Π2

5

24
)Π3+

Π3
5

8
)

I6 = 147456AΠ3 ((Π3+
51

16
Π5)A−

3

8
Π2

5+
4

9
Π2

4)
195

I7 = 26880Π2
3A

2+10080Π2
5 (3Π5+Π3)A − 945Π4

5 I8 = 3840Π2
5AΠ3 I9 = 189Π4

5

Where196

Π1 = λ1A
2λ2

ω4 , Π2 = λ1A
3λ3

ω4 , Π3 = λ2A
4λ3

ω4 , Π4 = λ2A
2

ω2 , Π5 = λ3A
3

ω2

References197

[1] L. Azrar, R. Benamar, and R.G. White. A semi-analytical approach to the nonlinear dynamic response problem of198

s-s and c-c beams at large vibration amplitudes, part i: general theory and application to the single mode approach199

to free and forced vibration analysis. J Sound Vib, 224:183–207, 1999.200

[2] M. Baghani, R.A. Jafari Talookolaei, and H. Salarieh. Large amplitudes free vibrations and post-buckling analysis of201

unsymmetrically laminated composite beams on nonlinear elastic foundation. Appl Math Model, 35:130–138, 2011.202

[3] A. Barari. Non-linear vibration of euler-bernoulli beams. Latin American Journal of Solids and Structures, 8(2):139–203

148, 2011.204
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