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Abstract 
In this paper a consistent theory is developed for size-dependent 
thermoelasticity in heterogeneous anisotropic solids.  This theory 
shows that the temperature change can create not only thermal 
strains, but also thermal mean curvatures in the solids.  This 
formulation is based on the consistent size-dependent continuum 
mechanics in which the couple-stress tensor is skew-symmetric.  
Here by including scale-dependent measures in the energy and 
entropy equations, the general expressions for force- and couple-
stresses, as well as entropy density, are obtained.  Next, for the 
linear material the constitutive relations and governing coupled 
size-dependent thermoelasticity equations are developed.  For 
linear material, one can see that the thermal properties are char-
acterized by the classical symmetric thermal expansion tensor and 
the new size-dependent skew-symmetric thermal flexion tensor.  
Thus, for the most general anisotropic case, there are nine inde-
pendent thermoelastic constants.  Interestingly, for isotropic and 
cubic materials the thermal flexion tensor vanishes, which shows 
there is no thermal mean curvature. 
Keywords: scaling, size effect, thermoelasticity 
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1 INTRODUCTION 

Within the framework of the consistent continuum mechanics, couple-stresses inevitably ap-
pear along with the force-stresses to describe the interaction of constituents of the matter.  
Accordingly, the force-stress tensor is not symmetric.  Neglecting the couple-stresses results in 
what is called the classical continuum mechanics, which provides a reasonable basis for ana-
lyzing the behavior of materials when the size-dependency can be ignored.  However, experi-
ments usually do not agree with the classical theory in the regions, where the gradients of 
strains and rotations are very high.  These regions include areas near the boundary surfaces, 
such as holes, notches and cracks, where the size dependency is observed.  This may be espe-
cially important in fracture mechanics, where considering the couple stresses not only ac-
counts for the size dependency, it also provides new failure criteria and crack growth law.  
Therefore, a consistent size-dependent continuum theory is necessary to account for the 
length scale effect due to the microstructure of materials.  The new progress in micromechan-
ics, nanomechanics and nanotechnology requires this advanced size dependent modeling of 
continuum in different branches of multi-physics disciplines, such as thermoelasticity. 
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Thermoelasticity is a multi-physics discipline, which investigates the interaction of the 
field of deformation with the field of temperature.  It combines, on the basis of the thermo-
dynamics of the irreversible processes, two separately physical phenomena, namely the theory 
of elasticity and the theory of heat conduction.  Classical thermoelasticity describes the rela-
tion between temperature change and strain in solids (Biot, 1956; Nowacki, 1962).  However, 
the classical theory cannot address the size dependency, because it does not include any 
length dependent parameter in its formulation. Therefore, it is necessary to develop a size-
dependent thermoelasticity, which accounts for the microstructure of the material by intro-
ducing higher gradients of deformation.  It is interesting to note that the classical theory of 
thermoelasticity predicts that for two-dimensional simply connected isotropic regions, a 
steady state temperature field with zero boundary tractions will not affect the in-plane stress 
field.  This rather surprising conclusion is the result of simplicity of classical thermoelasticity.  
The new size-dependent thermoelasticity predicts a stress boundary layer for this case, which 
is more important in small scale bodies.   

 
Ahmadi and Firoozbakhsh (1975) have developed a size-dependent thermoelasticity theory 

by considering the first gradient of the strain tensor.  This development is within the frame-
work of the strain gradient theory (Mindlin, 1964; Mindlin and Eshel, 1968).  However, the 
strain gradient tensor is not the fundamental measure of deformation in a consistent size-
dependent continuum theory.  The micropolar theory has also been extended to include 
thermal effects by Nowacki (1966a,b,c) and Eringen (1970).  Nevertheless, microrotation, 
which brings extraneous degrees of freedom, is not a proper continuum mechanical concept. 

Recently, Hadjesfandiari and Dargush (2011) have developed the consistent continuum 
mechanics for solids.  In this theory, the couple-stress tensor is skew-symmetric and the body 
couple is not distinguishable from the body force.  The work also demonstrates that the 
stresses are fully determinate, and the measure of deformation energetically-conjugate to cou-
ple-stress is the skew-symmetrical mean curvature tensor.  This theory involves only true 
continuum kinematical quantities without recourse to any additional artificial degrees of free-
dom.  An initial incomplete version of this theory was developed by Mindlin and Tiersten 
(1962), and Koiter (1964), which used the displacement field, its corresponding true continu-
um rotation and the gradient of the rotation as the curvature tensor.  However, this curva-
ture tensor is not a proper measure of deformation and creates indeterminacy in the couple-
stress tensor. 

 
Establishing the skew-symmetric character of the couple-stress tensor resolves the quest 

for the consistent size-dependent continuum mechanics, which provides a fundamental basis 
for the development of size-dependent material response.  Therefore, this development can be 
extended quite naturally into many branches of continuum mechanics involving different 
multi-physics disciplines.  Hadjesfandiari (2013) has already developed a size-dependent pie-
zoelectricity for dielectric materials.  Here we concentrate to develop the coupled size-
dependent thermoelasticity for solids. 
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In the following section, we provide an overview of the thermomechanical equations.  This 
includes the equations for the kinematics, mechanics and thermodynamics of size-dependent 
small deformation continuum mechanics.  Here by including scale-dependent measures in the 
energy and entropy equations, the general thermoelastic expressions for force- and couple-
stresses, as well as entropy density, are obtained.  In Section 3, the constitutive relations for 
linear size-dependent heterogeneous anisotropic thermoelastic materials also are derived along 
with the governing equations.  Section 4 provides the general theory of size-dependent ther-
moelasticity for linear isotropic material.  This section includes the size-dependent thermoe-
lastic waves as well.  Finally, Section 5 contains a summary and some general conclusions.  
 
2 GOVERNING SIZE-DEPENDENT THERMOMECHANICAL EQUATIONS 

Consider a heterogeneous anisotropic elastic solid material occupying a volume V  bounded 
by a surface  A .  Assume the body is undeformed and is stress-free at a uniform absolute 
temperature   T0  when there is no external force.  This initial state is referred as the reference 

or natural state of the body, and the absolute temperature   T0  is called the reference tempera-
ture.  When the body is subjected to external forces and heat sources, it undergoes a temper-
ature change field   ϑ = T −T0 , and an accompanying deformation specified by the displace-
ment field  u .  These quantities may depend on position and time.  Here, we assume infinites-
imal deformation and temperature changes, where  
 

  

∂ui
∂x j

<<1 , 

  

∂2ui
∂x j ∂xk

<< 1
lS

, 0

0 0

1T T
T T
ϑ −= <<  (1) 

 
The parameter lS  represents the smallest characteristic length in the body.  By these as-

sumptions, the mechanical and thermal properties of the material can be taken constants 
during deformation and temperature change. 

The infinitesimal strain and rotation tensors are defined as 
 

eij = u i, j( ) =
1
2
ui, j + uj ,i( )  (2) 

 

ω ij = u i, j[ ] =
1
2
ui, j − uj ,i( )  (3) 

 
respectively.  Since the true tensor  

ω ij  is skew-symmetrical, one can introduce its corre-

sponding dual pseudo rotation vector as 
 

  
ω i =

1
2
ε ijkω kj  (4) 
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where  

ε ijk  is the permutation tensor or Levi-Civita symbol.  The consistent infinitesimal 

pseudo skew-symmetric mean curvature tensor defined by Hadjesfandiari and Dargush (2011) 
as 
 

κ ij =ω i, j[ ] =
1
2
ω i, j −ω j ,i( )  (5) 

 
Since this tensor is also skew-symmetrical, its corresponding dual true mean curvature 

vector is 
 

  
κ i =

1
2
ε ijkκ kj  (6) 

 
By some manipulation, one can obtain 
 

  
κ i =

1
2
ω ji, j =

1
4

u j, ji −
1
4
∇2ui  (7) 

 
The external forces, heat sources and heating produce internal stresses and heat fluxes in 

the body.  The internal stresses are represented by true force-stress  
σ ij  and pseudo couple-

stress  
µij  tensors.  The components of these force-stress and couple-stress tensors are shown 

in Fig. 1.  The force-traction vector  ti
n( )  and moment-traction vector  mi

n( )  through a surface 

element  dA  in the volume with outward directed unit normal vector  ni  are given 
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Figure 1  Components of force- and couple-stress tensors in the original inconsistent theory. 

 

 
ti

n( ) =σ jin j  (8) 

 

 
mi

n( ) = µ jin j  (9) 

 
The force-stress tensor  

σ ji  is generally non-symmetric and can be decomposed as 

 
σ ji =σ ji( ) +σ ji[ ]  (10) 

 
where σ ji( )  and σ ji[ ]  are the symmetric and skew-symmetric parts, respectively.  Based on 

the new development in size-dependent continuum mechanics (Hadjesfandiari and Dargush, 
2011), the pseudo couple-stress tensor  

µij  is skew-symmetrical 

 
µ ji = −µij  (11) 

 
The components of the force-stress  

σ ij  and couple-stress  
µij  tensors in this consistent 

theory are shown in Fig. 2.   
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Figure 2  Components of force- and couple-stress tensors in the present consistent theory. 

 

Since  
µij  is skew-symmetric, the moment-traction  mi

n( )  given by (9) is tangent to the sur-

face.  As a result, the couple-stress tensor  
µij  creates only bending moment-traction on any 

arbitrary surface in matter. The force-traction  ti
n( )  and the consistent bending moment-

traction  mi
n( ) acting on an arbitrary surface with unit normal vector  ni  are shown in Fig. 3. 

 
Figure 3  Force-traction   t

n( )
  and the consistent bending moment-traction   m

n( )
. 
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The true couple-stress vector µi  dual to the pseudo-tensor µij  is defined as 

 

kjijki ε µµ  
2
1=

 
(12) 

 
Consequently, the surface moment-traction vector tangent to the surface mi

n( ) reduces to 
 

 
mi

n( ) = µ jin j = ε ijkn jµk  (13) 

 
To formulate the fundamental equations, we consider an arbitrary part of this heterogene-

ous anisotropic elastic body occupying a volume Va  enclosed by boundary surface  Aa .  In 
infinitesimal deformation theory, the displacement vector field  u  is so small that the velocity 
and acceleration fields can be approximated by   !u  and   !!u , respectively.  As a result, the linear 
and angular equations of motion for this part of the body are written as 

 

  
ti

n( ) dA
Aa

∫ + ρ fi
Va

∫ dV = ρ!!ui
Va

∫ dV  (14) 

 

  
ε ijk x jtk

n( ) + mi
n( )⎡

⎣
⎤
⎦dA

Aa

∫ + ε ijk x jρ fk
Va

∫ dV = ε ijk x jρ!!uk
Va

∫ dV  (15) 

 
where  fi  is the body force per unit mass of the body, and ρ  is the mass density.  Hadj-

esfandiari and Dargush (2011) have shown that the body couple density is not distinguishable 
from body force in size-dependent couple stress continuum mechanics and its effect is simply 
equivalent to a system of body force and surface traction.   

By using Eqs. (8) and (9) for tractions in the equations of motion (14) and (15), along 
with the divergence theorem, and noticing the arbitrariness of volume Va , we finally obtain 
the differential form of the equations of motion as 
 

   
σ ji, j + ρ fi = ρ!!ui  (16) 

 
µ ji, j + ε ijkσ jk = 0  (17) 

 
We note that the angular equation of motion (17) gives the skew-symmetric part of the 

force-stress tensor as 
 

[ ] [ ]jijqpipqji ε ,, 
2
1 µµσ −=−=

 
(18) 
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Therefore, the independent linear equation of motion reduces to  
 

   
[σ ji( ) + µ j ,i⎡⎣ ⎤⎦

], j + ρ fi = ρ!!ui  (19) 

 
Now, we consider the first law of thermodynamics for this body.  Heat conduction arises 

from the irreversible transfer of heat energy due to the temperature gradient in the body.  
The heat conduction energy flow is represented by heat flux or thermal flux vector  qi .  The 

amount of heat flux energy flow  q
n( ) through the surface element  dA  with outward directed 

unit normal vector  ni  is given by (Carslaw and Jaeger, 1959) 

 

 q
n( ) = qini  (20) 

 
The energy equation for the arbitrary volume Va can be written as  

 

   

∂
∂t

1
2
ρ !ui !ui +U⎛

⎝⎜
⎞
⎠⎟

dV
Va

∫ = ti
n( ) !ui + mi

n( ) !ω i − q n( )( )dA
Aa

∫ + ρ fi !ui +Q( )
Va

∫ dV  (21) 

 
where   U  is the internal energy per unit volume and  Q  is the quantity of heat generated in 
unit time and unit volume.  This equation shows that the rate of change of total energy of 
the system in the volume  Va  is equivalent to the power of the external forces, moments and 
the heat power received by thermal conduction.  By substituting from Eqs. (8), (9) and (20), 
this equation becomes 
 

   

∂
∂t

1
2
ρ !ui !ui +U⎛

⎝⎜
⎞
⎠⎟

dV
Va

∫ = σ ji !uinj + µ ji !ω in j − qini( )dA
Aa

∫ + ρ fi !ui +Q( )
Va

∫ dV  (22) 

 
Then by using the divergence theorem and equations of motion (16) and (17), and notic-

ing the arbitrariness of volume Va , one can obtain the energy balance in differential form 
 

   
!U =σ ji( ) !eij + µ ji !κ ij − qi,i +Q  (23) 

 
The second law of thermodynamics for this volume can be written as 
 

 

∂
∂t

S dV
Va

∫ ≥ −q n( )

T
dA

Aa

∫ + Q
TVa

∫ dV  (24) 
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where  S  is the internal entropy per unit volume.  By using Eq. (20) for the heat flux  q
n( )  in 

Eq. (24), along with the divergence theorem, and noticing the arbitrariness of volume Va , we 
obtain the Clausius-Duhem inequality 
 

   

!S ≥ −
qi

T
⎛
⎝⎜

⎞
⎠⎟ ,i

+ Q
T

 (25) 

 
which can also be written as  
 

   
!S ≥ −

qi,i

T
+

qiT,i

T 2 + Q
T  (26) 

 
By combining Eqs. (23), and (26) to eliminate  Q , we have 

 

   
− !U −T !S( ) +σ ji( ) !eij + µ ji !κ ij −

qiT,i

T
≥ 0  (27) 

 
It turns out that for our development we should define the Helmholtz free energy density 

 F  by using the Legendre transformation as 
 

 F =U −TS  (28) 
By differentiating with respect to time, we obtain 
 

  !F = !U − S !T − !ST  (29) 
 
Then by introducing Eq. (29) in Eq. (27), we obtain 
 

   
− !F + S !T( ) +σ ji( ) !eij + µ ji !κ ij −

qiT,i

T
≥ 0  (30) 

 
However, for the simple elastic body the free energy density is a function of the independ-

ent variables  
eij ,  

κ ij  and  T ; that is  

 

  
F = F eij ,κ ij ,T( )  (31) 

 
If we differentiate  F  with respect to time, we obtain 
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,, , eij ijT e Tij ij

ij ij
ij ij

F F FF e T
e T

κκ

κ
κ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
& &&&  (32) 

 
This can be simply written as 

 

  
!F = ∂F

∂eij

!eij +
∂F
∂κ ij

!κ ij +
∂F
∂T
!T  (33) 

 
Then by using Eq. (33) in Eq. (30), we obtain 
 

   
σ ji( ) −

∂F
∂eij

⎛

⎝
⎜

⎞

⎠
⎟ !eij + µ ji −

∂F
∂κ ij

⎛

⎝
⎜

⎞

⎠
⎟ !κ ij − S + ∂F

∂T
⎛
⎝⎜

⎞
⎠⎟
!T −

qiT,i

T
≥ 0  (34) 

 
This inequality should be satisfied for all independent arbitrary rates  !eij ,   

!κ ij  and   !T .  

Hence, their corresponding coefficients in Eq. (34) must vanish.  Therefore, we find the fol-
lowing general constitutive relations for the symmetric part of the force-stress tensor σ ji( ) , 

couple-stress tensor  
µ ji  and entropy  S :  

 

  
σ ji( ) =

1
2

∂F
∂eij

+ ∂F
∂eji

⎛

⎝
⎜

⎞

⎠
⎟

 
 

(35) 
 

  
µ ji =

1
2

∂F
∂κ ij

− ∂F
∂κ ji

⎛

⎝
⎜

⎞

⎠
⎟  (36) 

 

 
S = − ∂F

∂T
 (37) 

 
As a result, the Clausius-Duhem inequality Eq. (34) reduces to  
 

  
qiT,i ≤ 0  (38) 

 
which means the transfer of heat in the opposite direction of temperature gradient.  This is 
the simple result of the second law of thermodynamics.   
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The relations (28) and (31) show that  
 

  
U =U eij ,κ ij ,S( )  (39) 

 
As a result, we have the rate equation 

 

  
!U =σ ji( ) !eij + µ ji !κ ij +T !S  (40) 

 
By using Eq. (40) in the energy balance Eq. (23), we obtain the equation of entropy balance 
in differential form 
 

   
T !S = −qi,i +Q  (41) 

 
Let us return to the constitutive equations (35-37).  If we further agree to construct the func-
tional F , such that 
 

 

∂F
∂eij

= ∂F
∂eji

 (42) 

 

 

∂F
∂κ ij

= − ∂F
∂κ ji

 (43) 

 
we can write in place of Eqs. (35) and (36) 
 

 
σ ji( ) =

∂F
∂eij

 (44) 

 

 
µ ji =

∂F
∂κ ij

 (45) 

 
It should be noticed that if we consider the Helmholtz free energy in the form 

  
F = F eij ,κ i ,T( ) , we obtain   

 

  
µi = − 1

2
∂F
∂κ i

 (46) 
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for the couple-stress vector.  Then by using this in Eq. (18) we obtain the skew-symmetric 
part of the force-stress tensor 

 
σ ji⎡⎣ ⎤⎦

 as 

 

  

σ ji⎡⎣ ⎤⎦
= −µ i, j⎡⎣ ⎤⎦

= 1
4

∂F
∂κ i

⎛
⎝⎜

⎞
⎠⎟ , j

− 1
4

∂F
∂κ j

⎛

⎝
⎜

⎞

⎠
⎟

,i

 (47) 

 
Therefore, for the total force-stresses, we generally have 
 

  

σ ji =
1
2

∂F
∂eij

+ ∂F
∂eji

⎛

⎝
⎜

⎞

⎠
⎟ +

1
4

∂F
∂κ i

⎛
⎝⎜

⎞
⎠⎟ , j

− 1
4

∂F
∂κ j

⎛

⎝
⎜

⎞

⎠
⎟

,i

 (48) 

 
Now, we consider the entropy density function  S .  The relation (37) shows that 

 

  
S = S eij ,κ ij ,T( )  (49) 

 
By differentiating with respect to time, we have 
 

   

!S = ∂S
∂eij

⎛

⎝
⎜

⎞

⎠
⎟

κ ij ,T

!eij +
∂S
∂κ ij

⎛

⎝
⎜

⎞

⎠
⎟

eij ,T

!κ ij +
∂S
∂T

⎛
⎝⎜

⎞
⎠⎟

eij ,κ ij

!T  (50) 

 
Using Eq. (50) in Eq. (40) for   !U , we obtain 
 
 

   

!U = T ∂S
∂eij

⎛

⎝
⎜

⎞

⎠
⎟

κ ij ,T

+σ ji( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
!eij + T ∂S

∂κ ij

⎛

⎝
⎜

⎞

⎠
⎟

eij ,T

+ µ ji

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
!κ ij +T ∂S

∂T
⎛
⎝⎜

⎞
⎠⎟

eij ,κ ij

!T  (51) 

 

This expression shows that the quantity 

  

T ∂S
∂T

⎛
⎝⎜

⎞
⎠⎟

eij ,κ ij

is the measure of internal energy 

change rate in unit volume of the body during a change in temperature at constant strain 
and curvature.   Consequently, we realize that this quantity is the specific heat at constant 
strain and curvature and denote it by  cv , that is 

 

  

cv =
∂U
∂T

⎛
⎝⎜

⎞
⎠⎟

eij ,κ ij

= T ∂S
∂T

⎛
⎝⎜

⎞
⎠⎟

eij ,κ ij

= −T ∂2 F
∂T 2

⎛
⎝⎜

⎞
⎠⎟

eij ,κ ij

 (52) 
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Therefore, the relation for energy and entropy rate densities become 
 

   

!U = T ∂S
∂eij

⎛

⎝
⎜

⎞

⎠
⎟

κ ij ,T

+σ ji( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
!eij + T ∂S

∂κ ij

⎛

⎝
⎜

⎞

⎠
⎟

eij ,T

+ µ ji

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
!κ ij + cv

!T  (53) 

 

   

!S = ∂S
∂eij

⎛

⎝
⎜

⎞

⎠
⎟

κ ij ,T

!eij +
∂S
∂κ ij

⎛

⎝
⎜

⎞

⎠
⎟

eij ,T

!κ ij +
cv

T
!T  (54) 

 
The relation (54) will be used in our development in the next section. 

 
What has been presented so far is the size-dependent continuum mechanics theory of in-

finitesimal thermoelastic materials.  The fundamental thermoelastic equations in the volume 
 V  are 

 

   
[σ ji( ) + µ j ,i⎡⎣ ⎤⎦

], j + ρ fi = ρ!!ui     Linear momentum balance (55) 

 

   
!U =σ ji( ) !eij + µ ji !κ ij − qi,i +Q   Energy balance (56) 

 

   
T !S = −qi,i +Q  Entropy balance (57) 

 

  
qiT,i ≤ 0  Clausius-Duhem inequality (58) 

 
with the constitutive relations 
 

  

σ ji =
1
2

∂F
∂eij

+ ∂F
∂eji

⎛

⎝
⎜

⎞

⎠
⎟ +

1
4

∂F
∂κ i

⎛
⎝⎜

⎞
⎠⎟ , j

− 1
4

∂F
∂κ j

⎛

⎝
⎜

⎞

⎠
⎟

,i

 (59) 

 

  
µi = − 1

2
∂F
∂κ i

 (60) 

 

 
S = − ∂F

∂T
 (61) 

 
We notice that the these governing equations are subject to some prescribed compatible 

boundary conditions on the boundary  A .  From a mathematical point of view, we can speci-
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fy either the displacement vector ui  or the force-traction vector  ti
n( ) , the tangential compo-

nent of the rotation vector  ω i  or the tangent moment-traction vector  mi
n( ) , and the absolute 

temperature  T  or the normal heat flux  q
n( ) .  In a time dependent problem, we are also re-

quired to specify the initial conditions at an initial time, say   t = 0 , everywhere in the volume 
 V  to have a consistent initial boundary value problem.  These include initial deformation 

   
ui x,0( ) , velocity 

    
!ui x,0( )  and absolute temperature    

T x,0( ) .  
 
It is obvious that the reference or natural state is different from the initial state.  The 

body in its natural state is without any stresses, strains and curvatures, that is 
 

  
at T = T0 ,     eij = 0,        κ ij = 0,       σ ij = 0,       µij = 0    in V  (62) 

 
3 LINEAR THERMOELASTICITY THEORY 

For linear material, we consider the classical Duhamel’s generalization of Fourier heat con-
duction law (Duhamel, 1832) as 
 

  
qi = −kijT, j  (63) 

 
where  

kij  is the thermal conductivity tensor.  Therefore, the Clausius-Duhem inequality (58) 

reduces to  
 

  
kijT,iT, j ≥ 0  (64) 

Based on the non-equilibrium statistical mechanics, Onsager (1931) has shown that the 
tensor  

kij is symmetric 

 

 
kij = k ji  (65) 

 
Consequently, Eq. (64) proves that the non-singular symmetric conductivity tensor  

kij  is 

positive definite.  By introducing Eq. (63) in the entropy balance Eq. (57), we obtain   
 

   
T !S = kijT,i( )

, j
+Q  (66) 

 
for heterogeneous linear materials. 

It should be noticed that the classical theory of generalized Fourier heat conduction (63) 
predicts infinite speed of heat transport, which contradicts the physical facts.  As a result, 
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non-classical theories have been developed to incorporate a flux rate term into the Fourier's 
law of heat conduction and formulated a generalized theory admitting finite speed for thermal 
signals (e.g., Lord and Shulman, 1967).  These theories consider heat propagation as a wave 
phenomenon rather than a diffusion phenomenon.  However, in this paper we have not in-
cluded this formulation in our development.  In a future work, the formulation to incorporate 
a flux rate term into the Fourier's law of heat conduction in the framework of size-dependent 
thermoeleasticity will be developed to admit finite speed for thermal signals. 

Now let us expand the Helmholtz free energy 
  
F = F eij ,κ ij ,T( )  into the Taylor expansion 

in the neighborhood of the reference state, where (  
eij = 0 ,   

κ ij = 0 ,   T = T0 ), that is 

 

   

F eij ,κ ij ,T( ) = F 0,0,T0( ) + ∂F 0,0,T0( )
∂eij

eij +
∂F 0,0,T0( )

∂κ ij

κ ij +
∂F 0,0,T0( )

∂T
T −T0( )

+ 1
2
∂2 F 0,0,T0( )

∂eij ∂ekl

eijekl +
1
2
∂2 F 0,0,T0( )
∂κ ij ∂κ kl

κ ijκ kl +
∂F 0,0,T0( )
∂eij ∂κ kl

eijκ kl

+
∂2 F 0,0,T0( )

∂eij ∂T
eij T −T0( ) + ∂2 F 0,0,T0( )

∂κ ij ∂T
κ ij T −T0( ) + 1

2
∂2 F 0,0,T0( )

∂T 2 T −T0( )2
+!

 (67) 

 
The constant   

F 0,0,T0( )  is the free energy corresponding to the reference state, which 

can be taken arbitrarily equal to zero.  Since there is no initial stresses in the reference state, 

the quantities   
  

∂F 0,0,T0( )
∂eij

 and 
  

∂F 0,0,T0( )
∂κ ij

 also vanish.  By assuming the entropy to be 

zero at the reference state, we take 
  

∂F 0,0,T0( )
∂T

 equal zero.  Therefore, for linear elastic size-

dependent thermoelasicity the free energy  F  can be considered as the homogeneous quadrat-
ic 
 

  
F = 1

2
Aijkleijekl +

1
2

Bijklκ ijκ kl +Cijkleijκ kl − aijeijϑ − bijκ ijϑ − 1
2

mϑ 2  (68) 

 
where the coefficients are defined as 
 

  
Aijkl =

∂2 F 0,0,T0( )
∂eij ∂ekl

, 
  
Bijkl =

∂2 F 0,0,T0( )
∂κ ij ∂κ kl

, 
  
Cijkl =

∂F 0,0,T0( )
∂eij ∂κ kl

  (69) 
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aij = −

∂2 F 0,0,T0( )
∂eij ∂T

, 
  
bij = −

∂2 F 0,0,T0( )
∂κ ij ∂T

 (70) 

 

  
m = −

∂2 F 0,0,T0( )
∂T 2  (71) 

 
Obviously, these tensors have the symmetry and skew-symmetry relations 
 

 
Aijkl = Aklij = Ajikl  (72) 

 
Bijkl = Bklij = −Bjikl  (73) 

 

 
Cijkl = C jikl = −Cijlk  (74) 

 

ij jia a= j (75) 
 

 
bij = −bji  (76) 

 
Since the material is heterogeneous, the mechanical and thermal tensor properties can 

vary from point to point in space.  However, we have assumed that these properties are con-
stants at each point during the deformation and temperature change. 

Consequently, by using the Helmholtz free energy density Eq. (68) in the general relations 
(35-37), we obtain the following constitutive relations  

 

 
σ ji( ) = Aijklekl +Cijklκ kl − aijϑ  (77) 

 

 
µ ji = Bijklκ kl +Cklijekl − bijϑ  (78) 

 

 
S = aijeij + bijκ ij + mϑ  (79) 

 
The tensors  

aij  and  
bij  represent the thermoelastic properties of the material.  The sym-

metric true tensor  
aij  is the coupling term between the temperature change ϑ  and the sym-

metric part of force-stress tensor 
 
σ ji( )  in Eq. (77), and the skew-symmetric pseudo tensor  

bij  

is the size-dependent coupling term between the temperature and the couple-stress tensor  
µ ji  

in Eq. (78).  We will shortly explore further characters of these thermoelastic tensors and the 
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quantity  m .  Consequently, for the most general case, the number of distinct components for 
Aijkl ,  

Bijkl ,  
Cijkl ,  

aij ,  
bij  and are 21, 6, 18, 6, and 3, respectively.  Therefore, the most gen-

eral linear thermoelastic anisotropic material, including  m , is described by 55 independent 
constitutive coefficients. 
 

The equations (77) and (78) can be considered as the generalized Duhamel-Neumann rela-
tions for a heterogeneous anisotropic size-dependent body.  Interestingly, by using entropy 
density Eq. (79) and free energy Eq. (68) in Eq. (28), we obtain  

 

  
U = F + ST = 1

2
Aijkleijekl +

1
2

Bijklκ ijκ kl +Cijkleijκ kl +
1
2

mϑ 2  (80) 

 
for density function  U .  This expression is a positive definite quadratic form without explicit 
thermomechanical coupling.  This shows that the tensors Aijkl ,  

Bijkl  and  
Cijkl  containing the 

elastic constitutive coefficients, and the parameter  m  are positive definite.  The tensor Aijkl  
is actually equivalent to its corresponding tensor in Cauchy elasticity.   

It is interesting to note that the Helmholtz free energy density F  can also be written in 
terms of the mean curvature vector as 

 
 
 

  
F = 1

2
Aijkleijekl +

1
2

Bijκ iκ j +Cijkeijκ k − aijeijϑ − biκ iϑ − 1
2

mϑ 2  (81) 

 
where 
 

  
Bijkl =

1
4
ε ijpε klq Bpq

 
 

(82) 
 

  
Cijkl =

1
2

Cijmεmlk  (83) 

 

  
bij =

1
2
εmjibm  (84) 

 
and the symmetry relations  
 

jiij BB =  (85) 
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Cijk = Cjik  (86) 
 
hold. It is seen that the tensor  

Bij  is positive definite.  Note that the number of distinct 

components for true tensors  
Bij  and  

Cijk , and true vector  bi  are 6, 18 and 3, respectively.  

By using the Helmholtz free energy density Eq. (81) in the general relations (35), (46) and 
(37), we obtain the following constitutive relations  
 

 
σ ji( ) = Aijklekl +Cijkκ k − aijϑ  (87) 

 

  
µi = − 1

2
Bijκ j −

1
2

Ckjiekj +
1
2

biϑ  (88) 

 

 
S = aijeij + biκ i + mϑ  (89) 

 
The skew-symmetric part of the force-stress tensor for a homogeneous material is found as 
 

  
σ ji⎡⎣ ⎤⎦

= −µ i, j⎡⎣ ⎤⎦
= 1

4
Bimκ m, j −

1
4

Bjmκ m,i +
1
4

Ckmiekm, j −
1
4

Ckmjekm,i −
1
4

biϑ, j +
1
4

bjϑ,i  (90) 

 
We notice the appearance of the third order gradient of deformation   

κ i, j  in Eq. (90) for 

the skew-symmetric part of force-stress tensor 
 
σ ji⎡⎣ ⎤⎦

 is the result of angular equation of mo-

tion (18), which is not a constitutive equation.  Consequently, the constitutive relation for the 
total force-stress tensor in a homogeneous material is 

 

  

σ ji = Aijklekl +Cijkκ k − aijϑ + 1
4

Bimκ m, j −
1
4

Bjmκ m,i

+ 1
4

Ckmiekm, j −
1
4

Ckmjekm,i −
1
4

biϑ, j +
1
4

bjϑ,i

 (91) 

 
The physical character of the symmetric tensor  

aij  and skew-symmetric tensor  
bij  can be 

investigated by writing Eqs. (77) and (78) as  
 

 
σ ji( ) = Aijkl ekl −α klϑ( ) +Cijkl κ kl − βklϑ( )  (92) 

 
( ) ( )ji ijkl kl kl klij kl klB C eµ κ β ϑ α ϑ= − + −  (93) 

 
where 
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Aijklα kl +Cijklβkl = aij  (94) 

 

 
Cklijα kl + Bijklβkl = bij  (95) 

 
The true tensor ijα  and pseudo tensor ijβ  are the new thermoelastic tensors with the ob-

vious symmetry and skew-symmetry relations  
 

 
α ij =α ji  (96) 

 

 
βij = −β ji  (97) 

 
It is seen that the quantities  

α ijϑ  and  
βijϑ  in Eqs. (92) and (93) are the strain and mean 

curvature tensors created by the temperature change   ϑ = T −T0 , respectively. Hence, they 
represent the thermal strain and thermal mean curvature tensors in an unrestrained body 

 

 
eij

Th =α ijϑ  (98) 

 

 
κ ij

Th = βijϑ  (99) 

 
While the symmetric tensor  

α ij  is the classical coefficient of thermal expansion tensor, the 

new size-dependent skew-symmetric tensor  
βij  may be called the coefficient of thermal flex-

ion tensor.   Although, there is generally no restriction on the tensors  
α ij  and  

βij , in most 

cases  
α ij  is positive definite.  It is obvious that for the most general anisotropic case, the 

number of distinct components for  
α ij  and  

βij  are 6, and 3, respectively.  Consequently, the 

constitutive relations (92) and (93) can be written as  
 

 
σ ji( ) = Aijkl ekl − ekl

Th( ) +Cijkl κ kl −κ kl
Th( )  (100) 

 

 
µ ji = Bijkl κ kl −κ kl

Th( ) +Cklij ekl − ekl
Th( )  (101) 

 
The tensors  

eij − eij
Th  and  

κ ij −κ ij
Th  represent the mechanical strain and mean curvature 

tensors, respectively.  Similarly, Eqs. (87) and (88) can also be written as 
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σ ji( ) = Aijkl ekl −α klϑ( ) +Cijk κ k − βkϑ( )  (102) 

 

  
µi = − 1

2
Bij κ j − β jϑ( )− 1

2
Ckji ekj −α kjϑ( )  (103) 

 
where 
 

 
Aijklα kl +Cijkβk = aij  (104) 

 

 
Ckjiα kj + Bijβ j = bi  (105) 

 
These set of 9 independent equations (104) and (105) give 9 independent coefficients  

α ij  

and  βi . The dual relation between thermal flexion true vector  βi  and thermal flexion pseudo 

tensor  
βij  is given by 

 

 
βi = ε ijkβkj  (106) 

 
Hence, the thermal mean curvature vector in the unrestrained body is defined as 
 

 κ i
Th = βiϑ  (107) 

 
Therefore 
 

 
σ ji( ) = Aijkl ekl − ekl

Th( ) +Cijk κ k −κ k
Th( )  (108) 

 

  
µi = − 1

2
Bij κ j −κ j

Th( )− 1
2

Ckji ekj − ekj
Th( )  (109) 

 
It should be noticed that the effect of thermal flexion moduli always appears along with 

couple-stresses.  This means that if we neglect the couple stresses (Bij = 0 , Cijk = 0 ), all 

other size-dependent effects disappear as well  (  
βij = 0 ).   

 
Now, we try to define the positive quantity  m  in the Helmholtz free energy Eq. (81).  For 

this purpose, let us return to the Taylor expansion Eq. (67) for Helmholtz free energy and 
neglect all powers higher than second in  

eij  and  
κ ij , but keep all terms depending on tem-
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perature and collect them in one function  
C = C ϑ( ) .  Consequently, for Helmholtz free en-

ergy we have 
 

   
F !=

1
2

Aijkleijekl +
1
2

Bijklκ ijκ kl +Cijkleijκ kl − aijeijϑ − bijκ ijϑ +C ϑ( )  (110) 

 
where  

C = C ϑ( )  is a function depending on temperature term only with   
C 0( ) = 0 .  By 

using this form of  F  in the entropy density function Eq. (37), we obtain 
 

 
S = aijeij + biκ i −

∂C ϑ( )
∂T

 (111) 

 
Consequently, Eq. (52) gives 
 

  

cv = T ∂S
∂T

⎛
⎝⎜

⎞
⎠⎟

eij ,κ ij

= −T
∂2C ϑ( )
∂T 2  (112) 

 
which can be written as 
 

  

∂2C ϑ( )
∂T 2 = −

cv

T
 (113) 

 
By integrating this relation, and noticing that at the natural state,   F = 0  and   S = 0 , we 
obtain  
 

  

∂C ϑ( )
∂T

= −
cv

T
dT

T0

T

∫  (114) 

 
For the linear theory  cv  is constant.  Thus, this integral becomes 
 

  
−
∂C ϑ( )
∂T

= cv ln T
T0

 (115) 
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By using this in Eq. (111) for the entropy density, we obtain 
 

  
S = aijeij + biκ i + cv ln T

T0

= aijeij + biκ i + cv ln 1+ ϑ
T0

⎛
⎝⎜

⎞
⎠⎟

 (116) 

 

However, by the restriction 0

0 0

1T T
T T
ϑ −= << , for small temperature change, this rela-

tion can be written as 
 

  
S = aijeij + biκ i +

cv

T0

ϑ  (117) 

 
By comparing Eqs. (117) and (89), we find 
 

  
m =

cv

T0

 (118) 

 

Therefore, when 
0

1
T
ϑ <<  

 

  
F = 1

2
Aijkleijekl +

1
2

Bijκ iκ j +Cijkeijκ k − aijeijϑ − biκ iϑ −
cv

2T0

ϑ 2  (119) 

 
and 
 

  
U = F + ST = 1

2
Aijkleijekl +

1
2

Bijκ iκ j +Cijkeijκ k +
cv

2T0

ϑ 2  (120) 

 
When the constitutive relations force-stress tensor (91), entropy density (117) and thermal 

flux vector (63) are written in terms of displacements and temperature for homogeneous ma-
terial, we obtain 

 

  

σ ji = Aijkluk ,l +
1
4

Cijk um,mk −∇
2uk( ) + 1

4
Ckmiuk ,mj −

1
4

Ckmjuk ,mi

+ 1
16

Bik um,mkj −∇
2uk , j( )− 1

16
Bjk um,mki −∇

2uk ,i( )− aijϑ − 1
4

biϑ, j +
1
4

bjϑ,i

 (121) 
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S = aijui, j +

1
4

bi um,mi −∇
2ui( ) + cv

T0

ϑ  (122) 

 

  
qi = −kijT, j  (123) 

 
By carrying these forms into the linear motion Eq. (16) and the entropy balance Eq. (41), 

one obtains the governing equations for size-dependent homogeneous thermoelasticity as fol-
lows: 

 

   

Aijkluk ,lj +
1
4

Cijk um,mjk −∇
2uk , j( ) + 1

4
Ckmi∇

2uk ,m − 1
4

Ckmjuk ,mij

+ 1
16

Bik ∇2um,mk −∇
2∇2uk( )− 1

16
Bjk um,mkij −∇

2uk ,ij( )
−aijT, j −

1
4

biT, jj +
1
4

bjT,ij + ρ fi = ρ!!ui

 (124) 

 

   
aij !eij + bi !κ i( )T0 + cv

!T = kijT,ij +Q  (125) 

 
These are the coupled size-dependent thermoelasticity equations.  It should be noticed 

that the expression 
   

aij !eij + bi !κ i( )T0  is the coupling term in the entropy balance Eq. (125), 

which involves the thermal and mechanical terms.  If this term can be neglected, we obtain 
the uncoupled heat conduction equation 

 

   
cv
!T = kijT,ij +Q  (126) 

 
which is no longer size-dependent. 
 
As we mentioned, the prescribed boundary conditions on the surface of the body can be any 

compatible combination of ui , ω i ,  T  and ti
n( ) , mi

n( ) ,  q
n( ) .  The force-traction vector ti

n( ) , 

moment-traction mi
n( )  and normal heat flux  q

n( )  at any point on a surface  A , with outward 

unit normal vector  ni , are  
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ti
n( ) =σ jin j

=
Aijklekl +Cijkκ k − aijϑ + 1

4
Bimκ m, j −

1
4

Bjmκ m,i

+ 1
4

Ckmiekm, j −
1
4

Ckmjekm,i −
1
4

biϑ, j +
1
4

bjϑ,i

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

nj

 (127) 

 

  
mi

n( ) = ε ijkµknj = ε ijk − 1
2

Bkmκ m − 1
2

Cmnkemn +
1
2

bkϑ
⎛
⎝⎜

⎞
⎠⎟

nj  (128) 

 

  
q n( ) = qini = −kijT, jni  (129) 

 

4 ISOTROPIC LINEAR THERMOELASTIC MATERIAL 

For a heterogeneous isotropic material, the symmetry relations require 
 

 
kij = kδ ij  (130) 

 
Aijkl = λδ ijδ kl + µδ ikδ jl + µδ ilδ jk  (131) 

 
Bij = 16ηδ ij  (132) 

 
Cijk = 0  (133) 

 

 
α ij =αδ ij  (134) 

 

  
βij = 0,   βi = 0  (135) 

 

 
aij = aδ ij  (136) 

 

  
bij = 0,   bi = 0  (137) 

 
where the quantities can vary in the domain from point to point.  The moduli λ  and µ  have 
the same meaning as the Lamé constants for an isotropic material in Cauchy elasticity.  As 
we know, these two constants are related by 
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λ = 2µ ν

1− 2ν
= νE

1+ν( ) 1− 2ν( )  (138) 

 
where ν  is the Poisson ratio, and  E  is the modulus of elasticity or Young’s modulus. It is 
seen that 
 

  
3λ + 2µ = 2µ 1+ν

1− 2ν
= E

1− 2ν
= 3K  (139) 

 

where  K  is the bulk modulus of elasticity  
  
K = E

3 1− 2ν( ) .  We also notice that the material 

constant η   accounts for the couple-stresses in the isotropic material.   
 

It is seen that for the isotropic material the coefficient of thermal flexion tensor  
βij  van-

ishes and there is only one coefficient of the thermal expansion  α .  Therefore, the relations 
(98) and (99) show 

 

 
eij

Th =αδ ijϑ  (140) 

 

  κ i
Th = 0  (141) 

 
This means that no thermal shear strain and thermal mean curvature are created by the 
temperature change ϑ .  As a result, for the tensor  

aij , we obtain 

 

  
aij = Aijklα kl = 3λ + 2µ( )αδ ij  (142) 

 
which shows that 
 

  
a = 3λ + 2µ( )α = 3Kα  (143) 

 
As a result, the Helmholtz free energy and internal energy densities become 
 

  
F = 1

2
λejjekk + µeijeij +8ηκ iκ i −

1
2

cv

T0

ϑ 2 − 3λ + 2µ( )αϑekk  (144) 

 
 
 



1704      A. R. Hadjesfandiari / Size-dependent thermoelasticity 

Latin American Journal of Solids and Structures 11 (2014) 1679-1708 
 

  
S =

cv

T0

ϑ + 3λ + 2µ( )αekk  (145) 

 
respectively.  Therefore   
 

  
U = 1

2
λejjekk + µeijeij +8ηκ iκ i +

cv

T0

ϑ 2  (146) 

 
The following restrictions are necessary for positive definite energy density  U  

 

  3λ + 2µ > 0,        µ > 0,       η > 0,        cv > 0  (147) 
 

The ratio 
 

  

η
µ
= l2  (148) 

 
specifies the characteristic material length  l , which accounts for size-dependency in the small 
deformation couple stress elasticity theory under consideration here.   

Consequently, the constitutive relations for the symmetric part of the force-stress tensor, 
the couple-stress vector, and the heat flux vector can be written as 

 

  
σ ji( ) = λekkδ ij + 2µeij − 3λ + 2µ( )αϑ  (149) 

 

  µi = −8µl2κ i  (150) 
 

  
qi = −kϑ,i  (151) 

  
Interestingly, Eq. (149) can be written as 
 

  
eij − eij

Th = 1
E

1+ν( )σ ji( ) −νσ kk( )δ ij
⎡
⎣

⎤
⎦
 (152) 

 
or 
 

  
eij =

1
E

1+ν( )σ ji( ) −νσ kk( )δ ij
⎡
⎣

⎤
⎦ +α T −T0( )δ ij  (153) 
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For the skew-symmetric part of the force-stress tensor in a homogeneous material, we have 
 

  
σ ji⎡⎣ ⎤⎦

= −µ i, j⎡⎣ ⎤⎦
= 2µl2∇2ω ji  (154) 

 
which can also be written as  
 

  
σ ji⎡⎣ ⎤⎦

= 2µl2ε ijk∇
2ω k  (155) 

 
Therefore, for the total force-stress tensor, we have 
 

  
σ ji = λekkδ ij + 2µeij + 2µl2∇2ω ji − 3λ + 2µ( )α T −T0( )  (156) 

 
For the governing equations, we have 

 

   
λ + µ 1+ l2∇2( )⎡
⎣

⎤
⎦  uk ,ki + µ 1− l2∇2( )∇2ui − 3λ + 2µ( )αT,i + ρ fi = ρ!!ui  (157) 

 

   
3λ + 2µ( )αT0 !ekk + cv

!T = k∇2T +Q  (158) 

 
These are the coupled size-dependent thermoelasticity equations for a homogeneous iso-

tropic material.  As we noticed, the expression 
   
3λ + 2µ( )αT0 !ekk  is the coupling term in the 

energy Eq. (158), which involves the thermal and mechanical terms.  If this term can be ne-
glected, we obtain the uncoupled conduction equation 
 

   
cv
!T = kijT,ij +Q  (159) 

 
The governing equations (157) and (158) can also be written in vectorial form as 

 

    
λ + µ 1+ l2∇2( )⎡
⎣

⎤
⎦  ∇ ∇•u( ) + µ 1− l2∇2( )∇2u− 3λ + 2µ( )α∇T + ρf = ρ!!u  (160) 

 

    
3λ + 2µ( )αT0∇• !u+ cv

!T = k∇2T +Q  (161) 

 
Based on the Helmholtz decomposition theorem, we can introduce the scalar potential φ  

and vector potential  A  such that 
 

φ=∇ +∇u ×A  (162) 
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where the first and second terms in the right hand side of Eq. (162) represent the dilatational 
(irrotational) and equivoluminal (shear) components of deformation, respectively. 

Because of gauge freedom, we can arbitrarily take the gauge condition 
 

  ∇•A = 0  (163) 
 
As a result, the equation of motion (160) can be decomposed in two equations for the po-

tentials φ  and  A  as 
 

   
 λ + 2µ( )∇2φ − 3λ + 2µ( )αT + ρ fφ = ρ !!φ  (164) 

 

    
µ 1− l2∇2( )∇2A + ρfA = ρ !!A  (165) 

 
where we have assumed the decomposition 
 

  
f = ∇fφ +∇× fA  (166) 

 
When the heat sources and body forces are absent, we obtain the governing equations 
 

   
 c1

2∇2φ − 3λ + 2µ( ) 1
ρ
αT = !!φ  (167) 

 

    
c2

2 1− l2∇2( )∇2A = !!A  (168) 

 

   
3λ + 2µ( )αT0∇

2 !φ + cv
!T = k∇2T  (169) 

 
where    c1  and    c2  are the velocities of dilatational and shear waves in classical elastic waves, 
respectively, defined as 
 

  
 c1

2 = λ + 2µ
ρ

  , 
  
 c2

2 = µ
ρ

 (170) 

 
It is seen that the dilatational (irrotational) wave equation (167) is coupled to the temper-

ature equation (169).  This means that the propagation of dilatational wave is accompanied 
by a generation of heat. Therefore, the dilatational wave is damped and its energy is partly 
converted to heat. However, the shear wave equation (168) is uncoupled from the tempera-
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ture.  This means that this wave is not damped, but undergoes dispersion, as a result of size-
dependency.  Furthermore, the shear wave does not generate any temperature change. 
 

5 CONCLUSIONS 

The consistent size-dependent continuum mechanics is a practical theory, which enables us to 
develop many different multi-physics formulations that may govern the behavior of solid con-
tinua at the smallest scales.  The size-dependent formulations have the priority because of 
their importance in nanomechanics and nanotechnology.  Here, we have developed the size-
dependent thermoelascticity, which shows the possible thermal mean curvature in anisotropic 
material.  The most general anisotropic linear elastic material is described by 55 independent 
constitutive coefficients.  This includes three thermal flexion coefficients relating thermal 
mean curvatures to temperature change.  

The new size dependent thermoelascticity clearly shows that the thermal mean curvature 
disappears in isotropic couple stress materials, where the two Lamé parameters, one length 
scale, and one thermal expansion completely characterize the behavior.   

The present theory shows that couple-stresses are necessary for the development of any 
thermomechanical size-dependent effect.  Additional aspects of linear thermoelasticity, includ-
ing reciprocal theorem, fundamental solutions and computational mechanics formulations, 
will be addressed in forthcoming work.  Beyond this, the present theory should be useful for 
the development of other coupled size-dependent multi-physics formulations, such as piezo-
thermo-elasticity, which are also important for analysis at small scales.   
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