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Abstract 
For the new type of steel-concrete inclined column transfer structure (NSCICTS) with better lateral stiffness and 
ductility, the existing damage model and hysteresis model are difficult to accurately express the asymmetry of 
its test restoring force curve and the serious pinching phenomenon of the hysteresis curve, respectively. In this 
paper, an asymmetric damage model is firstly established according to the asymmetry of the curve, and the 
comparison with the existing symmetric damage model shows that the asymmetric damage model proposed can 
reflect the actual damage of the component or structure. Then, a simplified hysteresis loop model with a longer 
slip segment is established, and the damage formulas of the stiffness and residual deformation are established. 
Finally, the hysteresis rules are given, and the comparison with the test hysteresis curve shows that the proposed 
model can better simulate the structural mechanical properties. The model provides a theoretical basis for the 
overall nonlinear seismic analysis of the NSCICTS and other similar structures. 
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1 INTRODUCTION 

In concrete high-rise buildings, a transfer layer is required between the upper shear wall and the lower frame column 
(Su and Cheng 2009, Pilz, S.E. et al. 2019). Currently, in engineering, the reinforced concrete inclined column transfer 
structure (RCICTS) is generally adopted. Lu, Z.A. (2018) makes a comparative analysis of RCICTS and the solid belly beam 
transfer structure from the aspects of period, displacement, stiffness ratio, and section size of the transfer beam, etc, the 
results show that the transfer structure of reinforced concrete inclined column can enhance the lateral stiffness of the 
transfer layer and the superstructure by direct transfer force, and effectively avoid the formation of weak layer. The elastic-
plastic time-history analysis of RCICTS was carried out in (Zhao, S.L. et al. 2020), and the study showed that the seismic 
performance of the whole structure and each component could be improved by strengthening the construction of the 
inclined column joints. The inclined column joint was carried out in (Hua, H.Y. 2022), and it was found that the most 
unfavorable axial force did not necessarily appear when the plate thickness was zero, the fiber finite element software was 
used to verify the inclined column joint, and a practical design process for the inclined column joint was proposed. Some 
studies have shown that the application of traditional RCICTS in frame-supported short-leg shear wall structures has the 
following problems: 1) the damage to the net span section of the transfer beam between inclined columns is more serious; 
2) The ductility and energy dissipation of RCICTS are lower than those of reinforced concrete beam transfer structures 
(Zhong, S.S. et al. 2007, QI, Y. et al. 2012). Based on the above problems, in order to improve the seismic performance of 
traditional RCICTS, strengthen the ductility of the transfer beam section between inclined columns, and make RCICTS more 
widely used in practical engineering, the research group proposes a new type of inclined column transfer structure with 
steel sections (NSCICTS), as shown in Figure 1. The NSCICTS is to arrange steel sections in the transfer beam and inclined 
column, and the NSCICTS has a steel-reinforced concrete transfer beam and a steel-reinforced concrete inclined column. 
The steel-reinforced concrete inclined columns can improve the lateral stiffness of the transfer layer, and the steel section 
of the transfer beam between inclined columns can be used as the main energy-dissipating beam segment. The test study 
of vertical constant load and horizontal reciprocating displacement loading was completed with the axial compression ratio 
changed and other geometric dimensions, reinforcement, and section steel unchanged (Zhang, J. et al. 2021, Li et al. 2015). 
According to the test results, the hysteresis curve and skeleton curve of a single specimen have obvious left-right 
asymmetry, and the pinching of the hysteresis curve is serious. To apply the NSCICTS to high-rise concrete building 
structures, it is particularly important to establish a restoring force model for seismic analysis of the NSCICTS according to 
the characteristics of its hysteresis curve and skeleton curve. 

Damage variable which is defined by the ratio of the cumulative amount of a certain physical quantity to its limit 
allowable amount in the response process, can describe the damage degree of a component or structure. Structures 
under the action of earthquakes will produce different degrees of damage, with the accumulation of damage, and the 
mechanical properties such as strength and stiffness of the structure will continuously decrease, which will lead to 
structural damage. Since the nature of structural damage under seismic action is caused by the accumulation of 
irreversible damage, and the damage performance of the structure determines the seismic performance of the structure 
(Wei, B.C.et al. 2018), it is necessary to consider the damaging effect of the structure into the restoring force model. 

At present, there are mainly the following damage variable models. Park and Ang (1985) assume that the load-
displacement relationship of a structure under monotonic loading conforms to the ideal rigid-plastic model, and 
according to the ratio of ultimate deformation under seismic action to ultimate deformation under monotonic loading, 
and a linear combination of the ratio of the hysteretic energy under seismic action to the total energy under monotonic 
loading, a linear damage model is proposed, as shown in formula (1). Chen, L.Z. et al. (2010) proposed a modified form 
of the Park-Ang model, in which the total energy under monotonic loading is adopted as that of the ideal elastic-plastic 
model, as shown in formula (2). Zheng et al. (2012) proposed that the ultimate deformation under monotonic loading 
again after half-cycle loading minus the initial yield deformation replaces the ultimate deformation in the (Park and Ang, 
1985) under monotonic loading; the total energy under monotonic loading again is taken as the total energy in the (Park 
and Ang, 1985) under the monotonic loading, and the model is similar to the ideal elastic-plastic model, as shown in 
formula (3). Qi, Z.Y. et al. (2016) further proposed that, without relying on the results of monotonic loading tests, the 
ultimate deformation under monotonic loading in the (Park and Ang, 1985) is changed to the ultimate deformation of 
the unidirectional skeleton curve obtained under low cycle reciprocating loading minus its initial cracking deformation, 
and the total energy under monotonic loading is changed to the total energy of the unidirectional skeleton curve, as 
shown in formula (4). It can be seen that the denominators of the deformation and energy terms in the above literature 
have only considered the indexes of monotonic or unidirectional load-displacement curves, and have not considered the 
difference between the indexes of load-displacement curves in the positive and negative directions. Then these damage 
models are symmetric damage variables and cannot consider the asymmetry of damage. Given this, it is necessary to 
establish a new damage model based on the stress characteristics of the NSCICTS. 
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At present, relevant scholars have carried out a large number of tests and theoretical research on the restoring force 
model of various reinforced concrete components or structures, and the common skeleton curve models are divided into 
curve type and folded line type. The curve type has a higher computational accuracy but the formula is complicated and 
not easy to use, which makes the folded line type more application. The Clough hysteresis model proposed by Clough 
and Johnston (1966) considers the stiffness degradation during reloading, and the unloading stiffness is equal to the yield 
(initial) stiffness, which is widely used for flexural components with shuttle-shaped hysteresis curves. Tohma and Hwang 
(1987) showed that the modified Takeda model to describe components or structures with shear deformation can better 
reflect the main characteristics of hysteresis curves with a pinching effect (as shown in Figure 5(a)), and the model is 
simple and easy to use, but it is not suitable for hysteresis curves with severe pinching. Based on the test results of the 
shear wall, the Ozcebe shear hysteresis model was established by Ozcebe and Saatcioglu (1989), which is a more 
commonly used hysteresis model considering the pinching effect, as shown in Figure 5(b), the unelastic unloading 
reaches the zero point of the load, with this zero point as the starting point for pinching. Then, the model pinches in 
reverse, and the load at the endpoint of pinching is the cracking load. Mazza F. (2019) proposed a nonlinear model based 
on plasticity and damage mechanism for seismic analysis of unelastic structures. By comparing the restoring force model 
with constant damage index and the restoring force model with variable damage index, the variable damage index was 
obtained, which could more accurately describe the cyclic degradation performance of structures. Carrero T. et al. (2020) 
conducted a cyclic loading test study on three types of CLT hybrid nodes, and established a restoring force model by 
considering six kinds of stiffness: elastic stiffness, elasto-plastic stiffness with hardening during loading, elasto-plastic 
stiffness with softening at advanced deformations of loading, unloading stiffness, reloading stiffness and continued 
unloading stiffness. Zuo Y. et al. (2021) considered the characteristics of stiffness degradation, strength degradation, slip 
phenomenon and pinch effect in the hysteretic curve of the test, and 7 feature points were defined to establish a 
multilinear restoring force model by analyzing the skeleton curve and hysteretic curve of the test. The assumptions of 
the pinching start and pinching endpoints in the above literature are different from the test results of the NSCICTS in this 
paper, and the pinching slip segment of the hysteresis loop of this test is longer than that of the model in the (Ozcebe 
and Saatcioglu 1989, Zhang and Yang 1999), i.e., the hysteresis loop of the NSCICTS has a more serious pinch effect, so 
the model in the above literature is no longer applicable. Given this, it is necessary to establish a new hysteresis curve 
model to address the establishment of a restoring force model in similar situations (Li, H.N. et al.2020, Wang, T. et al. 
2021, Hu, S. et al. 2024). 

This article establishes the skeleton curve model of the structure using a three-line model based on the asymmetric 
hysteresis curve and skeleton curve obtained from the test of three NSCICTS. Based on the skeleton curves, a new two-
parameter damage model considering the asymmetry is proposed, which uses the skeleton curves as the load-
displacement model. Then, a new hysteresis curve model is proposed according to the phenomenon that the test 
hysteresis curve has a long slip segment. By comparing with the test results, the damage-based hysteresis curve model 
is verified, which provides a theoretical basis for the elastic-plastic time-history analysis of NSCICTS and a computational 
model for other similar structures.  

2 TEST RESULTS AND MODEL ESTABLISHMENT IDEAS OF THE NSCICTS 

2.1 Test results 

In the test, three 1/6 scale-down models were designed and fabricated, numbered MT1, MT2, and MT3 respectively, 
with corresponding axial compression ratios n of 0.2, 0.25, and 0.3 respectively, and the angles of the inclined columns 
were all 65°. Each specimen consists of six parts, including a transfer beam, frame support column, inclined column, shear 
wall, transmission beam and foundation beam (Zhang, J et al. 2021), as shown in Figure 1. Two 400kN mechanical jacks 
were applied to both sides of the transmission beams to simulate the vertical concentrated load of the self-weight of the 
superstructure, and one 1000kN servo actuator (MTS) was applied to the right side of the transmission beams to simulate 
the horizontal recurrent displacement loading of the seismic action. The whole process of test loading adopts 
displacement loading, with displacement increment Δ =1.12mm, and each cycle is loaded three times. The cyclic loading 
after yielding of MT1, MT2 and MT3 are 14Δ, 17Δ, 20Δ, 25Δ, 30Δ, 14Δ, 17Δ, 20Δ, 25Δ, 30Δ, 35Δ, 40Δ, 14Δ, 17Δ, 20Δ, 25Δ, 
30Δ, 35Δ, 40Δ, respectively. 

During the loading process of the three groups of specimens, plastic hinges were easily formed at the junction of 
the transfer beam and the inclined column, and at the foot of the frame pillar and the inclined column, in which the 
damage in the middle of the transfer beam and the transmission beam was more serious than that in other positions, 
and there were penetrating cracks on both sides in the inclined column and the foot of the frame pillar. The yield 
sequence of steel bars in each part of specimen MT1, MT2 and MT3, as shown in Figure 1 (a), (b), (c); specimen MT1, 
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MT2, and MT3 actual broken diagrams as shown in Figure 2 (a), (b), (c); hysteresis curves of the three specimens as shown 
in Figure 3 (a), (b), (c), all of which are "anti-S" type and have obvious pinching effect. From Figures 1, 2, and 3, it can be 
seen that the yielding sequence of steel bars, failure mode, skeleton curve, and hysteresis curve in the three specimens 
have obvious left-right asymmetry, which is due to the different damage of the left and right parts of the structure. 

 

Figure 1 Yield sequence of each part of the specimen. 

 

Figure 2 Actual diagram of specimen failure. 

 

Figure 3 Hysteretic and skeleton curve of the test model 
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2.2 Establishment ideas for damage models 

The damage models established in the Park and Ang (1985), Chen, L.Z. et al. (2010), Zheng, S.S. et al. (2012), Qi, 
Z.Y. et al. (2016) are as follows: 

𝐷𝐷𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖
𝛿𝛿𝑢𝑢

+ 𝛽𝛽 ∫𝑑𝑑𝐸𝐸𝑖𝑖
𝑃𝑃𝑦𝑦𝛿𝛿𝑢𝑢

 (1) 

𝐷𝐷𝑖𝑖 = (1 − 𝛽𝛽) 𝛿𝛿𝑖𝑖𝑖𝑖
𝛿𝛿𝑢𝑢

+ 𝛽𝛽 ∫𝑑𝑑𝐸𝐸𝑖𝑖
𝑃𝑃𝑦𝑦(𝛿𝛿𝑢𝑢−𝛿𝛿𝑦𝑦)

 (2) 

𝐷𝐷𝑖𝑖 = (1 − 𝛽𝛽)∑ ( 𝛿𝛿𝛿𝛿𝑗𝑗𝑖𝑖𝑗𝑗𝑗𝑗

𝛿𝛿𝑖𝑖𝑢𝑢−𝛿𝛿𝑦𝑦
𝑐𝑐

𝑁𝑁1∑∫（
𝑑𝑑𝐸𝐸𝑖𝑖
𝐸𝐸𝑖𝑖𝑢𝑢

）
𝑐𝑐

𝑗𝑗=1 ) (3) 

𝐷𝐷𝑖𝑖 = 𝛽𝛽 𝛿𝛿𝑖𝑖𝑖𝑖−𝛿𝛿𝑐𝑐𝑐𝑐
𝛿𝛿𝑢𝑢−𝛿𝛿𝑐𝑐𝑐𝑐

+ 𝛾𝛾 ∫𝑑𝑑𝐸𝐸𝑖𝑖
𝐸𝐸𝑛𝑛

 (4) 

Where: 𝐷𝐷𝑖𝑖 is the damage index of the 𝑖𝑖𝑡𝑡ℎhalf-cycle; 𝛿𝛿𝑖𝑖𝑖𝑖 is the maximum deformation up to the 𝑖𝑖𝑡𝑡ℎ half-cycle; 𝛿𝛿𝑗𝑗𝑖𝑖𝑗𝑗𝑗𝑗 in 
formula (3) is the deformation corresponding to the 𝑗𝑗𝑡𝑡ℎ half-cycle (if it is the maximum deformation up to the 𝑗𝑗𝑡𝑡ℎ half-
cycle, the value is the maximum deformation for this purpose; otherwise, the first term on the right side of the equals 
sign of formula (3) is zero); 𝑑𝑑𝐸𝐸𝑖𝑖  is the hysteresis dissipation of the 𝑖𝑖𝑡𝑡ℎ  half-cycle; 𝛿𝛿𝛿𝛿  is the yield displacement under 
monotonic loading; 𝛿𝛿𝑢𝑢 is the ultimate deformation under monotonic loading; 𝛿𝛿𝑖𝑖𝑢𝑢 and 𝐸𝐸𝑖𝑖𝑢𝑢 are the ultimate deformation 
and energy dissipation after loading the 𝑖𝑖𝑡𝑡ℎ half-cycle again monotonically; 𝑃𝑃𝛿𝛿 is the yield load under monotonic loading; 
𝛿𝛿𝑐𝑐𝑐𝑐, 𝛿𝛿𝑢𝑢, and 𝐸𝐸𝑛𝑛 in formula (4) are the initial cracking deformation, ultimate deformation, and its energy dissipation of the 
unidirectional skeleton curve obtained by low- cycle repeated loading, respectively, and 𝑁𝑁1 is the number of half-cycles 
that produce the maximum deformation 𝛿𝛿𝑗𝑗𝑖𝑖𝑗𝑗𝑗𝑗 for the first time, 𝛽𝛽 and 𝛾𝛾 are the combination coefficients, and 𝐶𝐶 is the 
test parameter. 

The limit allowable amount of deformation index in formula (1) is the maximum deformation of the ideal rigid 
plasticity model, and the limit allowable amount of energy index is the maximum energy of the ideal rigid plasticity model, 
as shown in Figure 4 (a); it is essentially considered that the dynamic load-displacement of the component or structure 
obeys the model of ideal rigid-plasticity. The deformation index limit allowances of formulas (2) and (3) are the maximum 
deformation of ideal elastoplasticity and the maximum residual deformation of ideal elastoplasticity, and the limit 
allowances of energy indexes are the maximum energy of ideal elastoplasticity, as shown in Figure 4 (b); these two 
formulas essentially consider that the dynamic load-displacement of the component or structure obeys the ideal 
elastoplasticity model. The limit allowable amount of deformation index in formula (4) is the limit deformation of the 
unidirectional skeleton curve minus the initial cracking deformation, and the limit allowable amount of energy index is 
the energy of the unidirectional skeleton curve, as shown in Figure 4 (c); it is essentially considered that the dynamic 
load-displacement of the component or structure obeys the model of skeleton curve.  

 
Figure 4 Model of damage variables 

Taking the deformation index and energy index of the skeleton curve as the index limit allowable values ensures that the 
sources of the numerator and denominator of the damage variables are unified in the test results under cyclic loading, which 
can truly reflect the damage degree of the structure under cyclic loading. Formula (4) focuses on the cracking of the specimen 
and introduces the cracking deformation, however, for most of the structures, the yield deformation is an important factor to 
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consider the structural damage. The denominator terms of the above damage variable models all consider the indicators of 
monotonic or unidirectional load-displacement curves as the limit allowable values, which is essentially a symmetric damage 
model. For the structures in this paper, and most structures with symmetric geometry and symmetric reinforcement, the 
skeleton curves are asymmetric (Hung, C.C. et al. 2013), so it is necessary to improve the formula (4). The skeleton curve is 
divided into positive and negative segments, and the damage variables are divided into positive and negative damage. The 
deformation and energy index limit allowable values of the positive damage variable are the maximum residual deformation 
and energy of the skeleton curve in the positive direction, respectively. The deformation and energy term numerator of the 
positive damage variable are the residual deformation and hysteresis energy dissipation of each positive half hysteresis loop, 
respectively; the deformation and energy index limit allowable values of the negative damage variable are the maximum 
residual deformation and energy of the skeleton curve in the negative direction, and the deformation and energy term 
numerator of the negative damage variable are the residual deformation and hysteresis dissipation of each negative half 
hysteresis loop, respectively. The deformation and energy term numerator of the negative damage variable are the residual 
deformation and hysteresis energy dissipation of each negative half hysteresis loop, respectively. 

2.3 Establishment ideas for the hysteresis loop model considering the pinching effect 

The pinching effect of a hysteresis loop in concrete components or structure is caused by the sliding of two cracked 
surfaces, which were formed during the previous loading process. It is generally believed that the starting point of 
pinching is the zero point of unloading, such as point A or C in Figure 5, and the end point of the pinching is on the 
skeleton curve or at the point where the cracking load is reached, such as point B or D in Figure 5. However, as shown in 
Figure 5, the pinching starting point of the test hysteresis loop is A 'or C' point, and the pinching endpoint is B 'or D' point, 
which indicates that the modified Takeda hysteresis loop model (Tohma and Hwang 1987) and Ozcebe hysteresis loop 
model (Ozcebe and Saatcioglu  1989) are not suitable for the test hysteresis loops in this paper, and a new hysteresis 
loop model needs to be established. 

In this paper, according to the characteristics of the test hysteresis loop, the endpoint of inelastic unloading is 
considered to be the starting point of pinching, and the starting point of reverse reloading is considered to be the end 
point of pinching, as shown in point A' (point C') and point B' (point D') in Figure 5. The straight line connecting the 
starting and ending points passes through the residual deformation point, and the slope of this straight line is the pinching 
stiffness. The area of the test hysteresis loop and the area of the hysteresis loop model in this paper are equal to 
determine the pinching stiffness so that the starting point and the endpoint of the pinching can be better matched with 
the test, which can actually reflect the sliding process of the NSCICTS. 

 

Figure 5 Existing hysteresis loop pinching model 

3 ESTABLISHMENT OF SKELETON CURVE MODEL 

Since the cracking points of the skeleton curves of specimens MT1, MT2 and MT3 in Figure 3 are not obvious, in this 
paper, the load applied at the end of the transmission beam when the strain of the transfer beam reinforcement reaches 
the yield strain for the first time (at 14Δ) is taken as the yield load, and the displacement at this time is taken as the yield 
displacement. Due to the difference between the positive and negative skeleton curves, a three-fold line skeleton curve 
model with elastic segments (OA, OD), strength-hardening segments (AB, DE), and strength-degradation segments (BC, 
EF) is adopted as shown in Figure 6. The skeleton curve model includes the following six key points, namely yield points 
A and D, peak load points B and E, and limit points C and F. 
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Figure 6 Trilinear model of skeleton curve 

Regression analysis is carried out on the test skeleton curves to determine the coordinates of the six key points of the 
skeleton curve model and the fitting calculation formulas for elastic stiffness, hardening stiffness, and softening stiffness, which 
are shown in the Appendix (A-1.1~A-1.11). The calculated key point coordinates of the skeleton curve are shown in Table 1, and 
the error between the fitted calculated values of the six key point coordinates and the test values is less than 10%. The comparison 
between the calculated skeleton curves and the tested skeleton curves is shown in Figure 7, which shows that the trilinear skeleton 
curve model adopted in this paper can better describe the stress performance of the NSCICTS under seismic action. 

Table 1 Calculated values of coordinates fitted to key points of skeleton curves of each specimen 

Loading direction Specimen y
+∆ (mm) yF +

(kN) m
+∆ (mm) mF +

(kN) 
+
u∆ (mm) 

+
uF (kN) 

Forward loading MT1 11.95 378.90 43.28 597.64 48.31 507.45 
MT2 11.68 396.88 37.94 620.24 43.10 527.85 
MT3 11.46 412.20 34.08 639.34 39.80 542.30 

Loading direction Specimen y
−∆ (mm) yF −

(kN) m
−∆ (mm) mF −

(kN) u
−∆ (mm) uF −

(kN) 
Reverse loading MT1 -12.81 -348.57 -40.74 -524.91 -46.22 -443.43 

MT2 -11.90 -369.58 -32.09 -541.89 -40.20 -466.98 
MT3 -9.51 -387.33 -26.41 -556.19 -32.70 -469.20 

 
Figure 7 Comparison of calculated and experimental skeleton curves 
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4 DAMAGE MODEL OF THE NSCICTS 

4.1 Establishment of damage model 

Based on the above analysis, this paper proposes a damage model considering the asymmetry of structural forces, 
which assumes that the damage 𝐷𝐷 = 0 before reaching the yield load, and the damage begins to develop after reaching 
the yield load. The model expression is as follows: 

𝛥𝛥𝐷𝐷𝑖𝑖± = （1 − 𝛾𝛾)(𝛥𝛥𝛿𝛿𝑖𝑖
𝑝𝑝±

𝛿𝛿𝑝𝑝
± )𝑐𝑐 + 𝛾𝛾(𝐸𝐸𝑖𝑖

±

𝐸𝐸𝑛𝑛
±)𝑐𝑐                                             (5) 

𝐷𝐷𝑗𝑗 = ∑ 𝛥𝛥𝐷𝐷𝑖𝑖±𝑗𝑗
𝑖𝑖=1  (6) 

Where: 𝛥𝛥𝐷𝐷𝑖𝑖
± is the damage increment of positive and negative half-cycle of level 𝑖𝑖𝑡𝑡ℎ; 𝛥𝛥𝛿𝛿𝑖𝑖

𝑝𝑝± is the residual deformation 
increment of positive and negative half-cycle of level 𝑖𝑖𝑡𝑡ℎ and level (𝑖𝑖 − 1)𝑡𝑡ℎ, which is zero if the absolute value of residual 
deformation of level 𝑖𝑖𝑡𝑡ℎ is smaller than the absolute value of residual deformation of level (𝑖𝑖 − 1)𝑡𝑡ℎ; 𝛿𝛿𝑝𝑝± is the residual 
deformation of unloading point of the skeleton curve in the positive and negative directions; 𝐸𝐸𝑖𝑖

± is the hysteresis energy 
dissipation of positive and negative half-cycle of level 𝑖𝑖𝑡𝑡ℎ; 𝐸𝐸𝑛𝑛± is the energy dissipation of positive and negative direction 
of the skeleton curve; 𝛾𝛾 is the combination coefficient; and 𝐶𝐶 is the test parameter. 

The residual deformation increment and energy dissipation of positive and negative half cycles in the damage 
increment formula are defined as shown in Figure 8, where 1 is the positive half cycle of the (𝑖𝑖 − 1)𝑡𝑡ℎ cycle, and 2 is its 
negative half cycle; 3 is the positive half cycle of the 𝑖𝑖𝑡𝑡ℎ cycle, and 4 is its negative half cycle. Figure 9 is the skeleton 
curve, the unloading starting point is determined as follows: get the slope of the straight line connecting the peak load 
point A(A') and the limit point B(B'), draw a straight line at the point B(B') according to this slope, and the intersection 
point of this straight line and the yield load B is the unloading starting point C(C'). The unloading stiffness is taken as 
elastic stiffness 𝐾𝐾𝛿𝛿±. The denominator in the damage increment formula is taken according to the residual deformation 
and energy dissipation values in the skeleton curve in Figure 9. 

 
Figure 8 Damage model semi-cycle definition 

 
Figure 9 The skeleton curve 
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4.2 Determination of the combination factor 𝜸𝜸 and test parameter 𝑪𝑪 

Theoretically, when the damage index 𝐷𝐷 = 0, the structure is in a non-destructive state; when the damage index 
𝐷𝐷 = 1, the structure is completely destroyed. The combination coefficient 𝛾𝛾 and test parameter 𝐶𝐶 are introduced in 
formula (5) so that the damage index 𝐷𝐷 = 1 when the structure is completely destroyed; the combination coefficient 𝛾𝛾 
reflects the degree of contribution of the displacement term and energy term to the damage. These two parameters are 
determined as follows: firstly, the combination coefficient 𝛾𝛾 is determined, and the test parameter 𝐶𝐶 is calculated from 
formula (6) when the damage index 𝐷𝐷 = 1. After the analysis of the test data, when the combination coefficient 𝛾𝛾 =
0.15, the test parameters 𝐶𝐶 of the three groups of specimens are relatively close, and the relationship between the test 
parameters 𝐶𝐶 and the axial compression ratio n is given in Figure 10. 

 

Figure 10 Relationship between test parameter 𝐶𝐶 and axial pressure ratio n 

As shown in Figure 10, it can be seen that the test parameter has a non-linear relationship with the axial compression 
ratio n. The expression is obtained by regression analysis as follows: 

𝐶𝐶 = 83.526𝑛𝑛2 − 42.315𝑛𝑛 + 6.389，𝑅𝑅2 = 1 (7) 

Where: 𝑪𝑪-test parameter, n-axial pressure ratio 

4.3 Validation of the damage model 

The yield displacements of the three groups of specimens MT1, MT2, and MT3 are at 14Δ, and the maximum loading 
cycles of the three groups of specimens reach 30Δ, 40Δ, and 40Δ, respectively, when loading to failure. The damage 
began to develop after the structure reached the yield load, with 14Δ loading cycles as the level 1st, at this time, 𝐷𝐷1

± =
0; after that, the damage began to develop, and the number of cycles calculated for MT1, MT2, and MT3 were level 5th, 
7th, and 7th, respectively. In the case of combination coefficient 𝛾𝛾 = 0.15, the test parameters 𝐶𝐶 of each specimen are 
calculated by formula (7), then the parameter 𝛿𝛿𝑝𝑝±  and 𝐸𝐸𝑛𝑛±  in the damage model are calculated, then the damage 
increment of each positive and negative half cycle is calculated by formula (5), and finally the damage variables are 
calculated by formula (6). The comparison of the results of the asymmetric damage model established in this paper and 
the symmetric damage model in the (Qi, Z.Y. et al. 2016) (note: for the comparison with the damage model in this paper, 
𝛿𝛿𝑐𝑐𝑐𝑐in formula (4) is replaced by 𝛿𝛿𝛿𝛿) is shown in Figure 11. It can be seen that the damage variables calculated in the (Qi, 
Z.Y. et al. 2016) are relatively small, which will underestimate the actual damage of the component or structure, 
especially in the early cycle of MT1 and MT2 damage, which shows that the asymmetric damage model proposed in this 
paper can reflect the actual damage of the component or structure. 
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Figure 11 Comparison of calculated values of damage 

5 ESTABLISHMENT OF THE HYSTERESIS LOOP MODEL 

5.1 Hysteresis loop simplification 

The hysteresis loop of the NSCICTS after yielding has a long sliding section and serious pinching. According to the previous 
analysis, the simplified walking path of the 𝑖𝑖𝑡𝑡ℎ cycle is shown in Figure 12. From point E → point A → point G → point B → 
point I → point C → point K → point D → point E on the skeleton curve, a cycle is completed. In Figure 12, point E is the peak 
load point of the positive cycle, the point I is the peak load point of the negative cycle, and its load value is equal to that of 
point E. Point G is the positive residual deformation point, and point K is the negative residual deformation point; the point L 
is the point very close to point E in the positive loading segment of the hysteresis curve, and the slope of the LE straight line is 
the positive loading stiffness 𝐾𝐾𝑖𝑖𝑐𝑐+; the point F is the point very close to point E in the positive unloading segment of the hysteresis 
curve, and the slope of the EF straight line is the positive unloading stiffness 𝐾𝐾𝑖𝑖𝑢𝑢+ ; Point H is the point very close to point I in the 
negative loading segment of the hysteresis curve, and the slope of the straight line HI is the negative loading stiffness 𝐾𝐾𝑖𝑖𝑐𝑐−; Point 
J is the point very close to point I in the negative unloading segment of the hysteresis curve, and the slope of the straight line 
IJ is the negative unloading stiffness 𝐾𝐾𝑖𝑖𝑢𝑢− . Points A and C are the starting point of the negative and positive pinching, 
respectively; and points B and D are the ending point of the negative and positive pinching, respectively; the slope of the 
straight line AB is the negative pinching stiffness 𝐾𝐾𝑖𝑖𝑖𝑖−, and the slope of the straight line CD is the positive pinching stiffness 𝐾𝐾𝑖𝑖𝑖𝑖+. 

 
Figure 12 Establishment of the 𝑖𝑖𝑡𝑡ℎ hysteresis loop model in this paper 

The specific method is to find out the actual data of the above points L, E, F, G, H, I, J, and K in the test hysteresis loop, as 
well as the area of the positive and negative hysteresis loops. The simplified hysteresis loop should ensure that the simplified 
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positive area of the hysteresis loop is the same as the positive area of the test hysteresis loop, and the simplified negative area 
of the hysteresis loop is the same as the negative area of the test hysteresis loop, and then inversely calculated the positive 
pinching stiffness and negative pinching stiffness of the simplified hysteresis loop. Then two straight lines passing through point 
K and point G are obtained from the pinching stiffness, and the intersection of these two straight lines with the IJ line and EF 
line are determined, namely the positive pinching starting point C and the negative pinching starting point A. Determine the 
intersection of these two straight lines with the LE line and HI line, namely the positive pinching ending point D and the negative 
pinching ending point B. The specific calculation formula is shown in the Appendix (A-2.3~A-2.6). 

5.2 Performance degradation analysis 

Combined with the test data, it can be seen that with the loading and unloading, the loading, unloading, and 
pinching stiffness of the three groups of specimens gradually decreases, and the residual deformation gradually 
increases. This paper assumes that the structure starts to produce damage after yielding, and establishes a hysteresis 
loop model based on the damage of the loading, unloading, degradation of the pinching stiffness, and increase of the 
residual deformation. 

Define the forward loading and unloading stiffness degradation law of the structure, and the reverse loading and 
unloading stiffness degradation law as follows: 

𝐾𝐾𝑖𝑖𝑐𝑐+ = (1 − 𝛽𝛽𝑖𝑖𝑐𝑐+)𝐾𝐾𝑖𝑖−1𝑐𝑐+  (8) 

𝐾𝐾𝑖𝑖𝑢𝑢+ = (1 − 𝛽𝛽𝑖𝑖𝑢𝑢+ )𝐾𝐾𝑖𝑖−1𝑢𝑢+  (9) 

𝐾𝐾𝑖𝑖𝑐𝑐− = (1 − 𝛽𝛽𝑖𝑖𝑐𝑐−)𝐾𝐾𝑖𝑖−1𝑐𝑐−  (10) 

𝐾𝐾𝑖𝑖𝑢𝑢− = (1 − 𝛽𝛽𝑖𝑖𝑢𝑢− )𝐾𝐾𝑖𝑖−1𝑢𝑢−  (11) 

Where: 𝐾𝐾𝑖𝑖𝑐𝑐+ , 𝐾𝐾𝑖𝑖−1𝑐𝑐+  is the loading stiffness at the 𝑖𝑖𝑡𝑡ℎ , (𝑖𝑖 − 1)𝑡𝑡ℎ  cycle of forward loading, 𝐾𝐾𝑖𝑖𝑢𝑢+ , 𝐾𝐾𝑖𝑖−1𝑢𝑢+  is the unloading 
stiffness at the 𝑖𝑖𝑡𝑡ℎ, (𝑖𝑖 − 1)𝑡𝑡ℎ cycle of forward unloading; 𝐾𝐾𝑖𝑖𝑐𝑐−, 𝐾𝐾𝑖𝑖−1𝑐𝑐−  is the loading stiffness at the  𝑖𝑖𝑡𝑡ℎ, (𝑖𝑖 − 1)𝑡𝑡ℎ cycle of 
reverse loading, 𝐾𝐾𝑖𝑖𝑢𝑢− , 𝐾𝐾𝑖𝑖−1𝑢𝑢−  is the unloading stiffness at the 𝑖𝑖𝑡𝑡ℎ, (𝑖𝑖 − 1)𝑡𝑡ℎ cycle of reverse unloading; and 𝛽𝛽𝑖𝑖𝑐𝑐+ , 𝛽𝛽𝑖𝑖𝑢𝑢+ , 𝛽𝛽𝑖𝑖𝑐𝑐− , 𝛽𝛽𝑖𝑖𝑢𝑢−  
are the stiffness degradation coefficients of the 𝑖𝑖𝑡𝑡ℎ cycle under forward loading, forward unloading, reverse loading and 
reverse unloading, respectively. 

The stiffness degradation coefficient takes values between [0,1] and the closer its value is to 1, the more serious the 
degradation of the structural performance. Wang, B. (2010) defines the degradation coefficient, which is defined 
according to its idea, such as for 𝛽𝛽𝑖𝑖𝑐𝑐+ , as follows: 

𝛽𝛽𝑖𝑖𝑐𝑐+ = (
𝛥𝛥𝐷𝐷𝑖𝑖+

1 − 𝐷𝐷𝑖𝑖−1− )𝜑𝜑 

Where: 𝛥𝛥𝐷𝐷𝑖𝑖+ is the damage increment of the positive hysteresis loop in the 𝑖𝑖𝑡𝑡ℎ cycle, 1 − 𝐷𝐷𝑖𝑖−1−  is the remaining damage 
value before the start of this forward hysteresis loop, and 𝜑𝜑 is the correlation coefficient. Fitting the calculation of 𝛽𝛽𝑖𝑖𝑐𝑐+  
according to the above formula has 𝜑𝜑 = 0.699, and the coefficient of determination R2 = 0.269, which indicates a poor 
fitting effect. In addition, the degradation coefficient 𝛽𝛽𝑖𝑖𝑐𝑐+  is defined using 𝛥𝛥𝐷𝐷𝑖𝑖+ in the above formula, but the 𝛥𝛥𝐷𝐷𝑖𝑖+ of the 
𝑖𝑖𝑡𝑡ℎ time is unknown, which is inconvenient to apply. Based on the above two problems, the derivation of the degradation 
coefficient formula in this paper is shown in the Appendix (A-3.1~A-3.8), and the results are as follows: 

𝛽𝛽𝑖𝑖𝑐𝑐+ = ( 𝛥𝛥𝐷𝐷𝑖𝑖−1
−

1−𝐷𝐷𝑖𝑖−1
+ ⋅ 1

𝛥𝛥𝐷𝐷𝑖𝑖−1
+ )𝐶𝐶𝑐𝑐+                                         (12) 

𝛽𝛽𝑖𝑖𝑢𝑢+ = ( 𝛥𝛥𝐷𝐷𝑖𝑖−1
−

1−𝐷𝐷𝑖𝑖−1
+ ⋅ 1

𝛥𝛥𝐷𝐷𝑖𝑖−1
+ )𝐶𝐶𝑢𝑢+                                         (13) 

𝛽𝛽𝑖𝑖𝑐𝑐− = ( 𝛥𝛥𝐷𝐷𝑖𝑖
+

1−𝐷𝐷𝑖𝑖−1
− ⋅ 1

𝛥𝛥𝐷𝐷𝑖𝑖−1
− )𝐶𝐶𝑐𝑐−                                         (14) 

𝛽𝛽𝑖𝑖𝑢𝑢− = ( 𝛥𝛥𝐷𝐷𝑖𝑖
+

1−𝐷𝐷𝑖𝑖−1
− ⋅ 1

𝛥𝛥𝐷𝐷𝑖𝑖−1
− )𝐶𝐶𝑢𝑢−                                         (15) 

Where: 𝛥𝛥𝐷𝐷𝑖𝑖−1+  and 𝛥𝛥𝐷𝐷𝑖𝑖−1−  are the damage increments of the positive and negative hysteresis loops in the (𝑖𝑖 − 1)𝑡𝑡ℎ  cycle, 
respectively, 𝛥𝛥𝐷𝐷𝑖𝑖+ is the damage increment of the positive hysteresis loop in the 𝑖𝑖𝑡𝑡ℎ cycle, 𝐷𝐷𝑖𝑖−1+  is the total damage amount after 
the completion of the positive hysteresis loop in the (𝑖𝑖 − 1)𝑡𝑡ℎ cycle, and 𝐷𝐷𝑖𝑖−1−  is the total damage amount after the completion 
of the negative hysteresis loop in the (𝑖𝑖 − 1)𝑡𝑡ℎ cycle, and 𝐶𝐶𝑐𝑐+, 𝐶𝐶𝑢𝑢+, 𝐶𝐶𝑐𝑐− and 𝐶𝐶𝑢𝑢− are the fitted correlation coefficients.  
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From formula (12), it can be seen that the denominator term 𝛥𝛥𝐷𝐷𝑖𝑖−1+  reduces the fluctuation of the numerator term 𝛥𝛥𝐷𝐷𝑖𝑖−1− , 
which increases the coefficient of determination R2 of formula fitting, and the fitting effect is better. In addition, the calculation of 
the degradation coefficient for this cycle relies on the damage variable values of previous cycles, which facilitates the application 
of the formula. The fitting calculation results of the correlation coefficient are shown in the Appendix (A-3.9~A-3.12). 

After the yield of the structure, the residual deformation increases continuously, and the pinching stiffness 
degenerates continuously, and the definition is as follows: 

𝛿𝛿𝑖𝑖
𝑝𝑝+ = (1 + 𝛽𝛽𝑖𝑖

𝑝𝑝+)𝛿𝛿𝑖𝑖−1
𝑝𝑝+  (16) 

𝛿𝛿𝑖𝑖
𝑝𝑝− = (1 + 𝛽𝛽𝑖𝑖

𝑝𝑝−)𝛿𝛿𝑖𝑖−1
𝑝𝑝−  (17) 

𝐾𝐾𝑖𝑖𝑖𝑖+ = (1 − 𝛽𝛽𝑖𝑖𝑖𝑖+)𝐾𝐾𝑖𝑖−1𝑖𝑖+  (18) 

𝐾𝐾𝑖𝑖𝑖𝑖− = (1 − 𝛽𝛽𝑖𝑖𝑖𝑖−)𝐾𝐾𝑖𝑖−1𝑖𝑖−  (19) 

Where: 𝛿𝛿𝑖𝑖−1
𝑝𝑝+ , 𝛿𝛿𝑖𝑖−1

𝑝𝑝+  are the positive and negative residual deformation of the (𝑖𝑖 − 1)𝑡𝑡ℎ cycle, respectively; 𝛿𝛿𝑖𝑖
𝑝𝑝+, 𝛿𝛿𝑖𝑖

𝑝𝑝−are 
the positive and negative residual deformation of the 𝑖𝑖𝑡𝑡ℎ cycle, respectively; 𝐾𝐾𝑖𝑖−1𝑖𝑖+ , 𝐾𝐾𝑖𝑖−1𝑖𝑖−  are the positive and negative 
pinching stiffness of the (𝑖𝑖 − 1)𝑡𝑡ℎ cycle, respectively; 𝐾𝐾𝑖𝑖𝑖𝑖+, 𝐾𝐾𝑖𝑖𝑖𝑖− are the positive and negative pinching stiffness of the 𝑖𝑖𝑡𝑡ℎ 
cycle, respectively; 𝛽𝛽𝑖𝑖

𝑝𝑝+ , 𝛽𝛽𝑖𝑖
𝑝𝑝−  are the coefficient of increase in the 𝑖𝑖𝑡𝑡ℎ  positive and negative residual deformation, 

respectively 𝛽𝛽𝑖𝑖𝑖𝑖+, 𝛽𝛽𝑖𝑖𝑖𝑖− are the degradation coefficient of the 𝑖𝑖𝑡𝑡ℎ positive and negative pinching stiffness, respectively.  

𝛽𝛽𝑖𝑖
𝑝𝑝+ = (𝛥𝛥𝐷𝐷𝑖𝑖−1

− +𝛥𝛥𝐷𝐷𝑖𝑖−1
+

𝐷𝐷𝑖𝑖−1
+ )𝐶𝐶+  (20) 

𝛽𝛽𝑖𝑖
𝑝𝑝− = (𝛥𝛥𝐷𝐷𝑖𝑖

++𝛥𝛥𝐷𝐷𝑖𝑖−1
−

𝐷𝐷𝑖𝑖−1
− )𝐶𝐶−  (21) 

𝛽𝛽𝑖𝑖𝑖𝑖+ = (𝛥𝛥𝐷𝐷𝑖𝑖−1
− +𝛥𝛥𝐷𝐷𝑖𝑖−1

+

1−𝐷𝐷𝑖𝑖−1
− )𝐶𝐶𝑙𝑙

+
 (22) 

𝛽𝛽𝑖𝑖𝑖𝑖− = (𝛥𝛥𝐷𝐷𝑖𝑖
++𝛥𝛥𝐷𝐷𝑖𝑖−1

−

1−𝐷𝐷𝑖𝑖
+ )𝐶𝐶𝑙𝑙

−
 (23) 

Where: 𝐷𝐷𝑖𝑖+ is the total damage amount after the completion of the positive hysteresis loop of the 𝑖𝑖𝑡𝑡ℎ cycle, and the rest 
of the damage is the same as above; 𝐶𝐶⬚

+, 𝐶𝐶⬚
−, 𝐶𝐶𝑖𝑖+ and 𝐶𝐶𝑖𝑖− are the fitted correlation coefficients. The fitted calculations of 

the correlation coefficients are shown in the Appendix (A-3.13~A-3.16). 
According to the correlation coefficients in the Appendix (A-3.13~A-3.16), the calculation results of formulas (12) to 

(15) and (20) to (23) are shown in Table 2. As can be seen from Table 2, the coefficients have no change law with the 
increase of the number of cycles, which is caused by the different damage values of each cycle. 

Table 2: Coefficients calculated by fitting formulas for three groups of specimens 
Specimen Load loop 𝜷𝜷𝒊𝒊𝒊𝒊+  𝜷𝜷𝒊𝒊𝒊𝒊+  𝜷𝜷𝒊𝒊𝒊𝒊−  𝜷𝜷𝒊𝒊𝒊𝒊−  𝜷𝜷𝒊𝒊

𝒑𝒑+ 𝜷𝜷𝒊𝒊
𝒑𝒑− 𝜷𝜷𝒊𝒊𝒊𝒊+ 𝜷𝜷𝒊𝒊𝒊𝒊− 

MT1 14∆ 0.040 0.040 0.146 0.070 0.230 0.217 0.161 0.152 
17∆ 0.048 0.048 0.169 0.136 0.279 0.186 0.154 0.131 
20∆ 0.046 0.046 0.050 0.118 0.293 0.172 0.161 0.181 
25∆ 0.052 0.052 0.332 0.179 0.143 0.162 0.161 0.152 
30∆ 0.052 0.052 0.236 0.183 0.148 0.171 0.156 0.126 

MT2 14∆ 0.051 0.051 0.143 0.165 0.242 0.180 0.096 0.078 
17∆ 0.054 0.054 0.148 0.202 0.175 0.163 0.104 0.143 
20∆ 0.029 0.029 0.136 0.076 0.035 0.121 0.160 0.185 
25∆ 0.051 0.051 0.200 0.113 0.626 0.165 0.175 0.157 
30∆ 0.058 0.058 0.045 0.123 0.321 0.091 0.147 0.058 
35∆ 0.068 0.068 0.146 0.139 0.143 0.049 0.161 0.124 
40∆ 0.078 0.078 0.127 0.152 0.175 0.065 0.159 0.089 

MT3 14∆ 0.068 0.068 0.133 0.138 0.146 0.046 0.115 0.147 
17∆ 0.097 0.097 0.175 0.180 0.162 0.081 0.136 0.135 
20∆ 0.029 0.029 0.109 0.094 0.182 0.259 0.147 0.164 
25∆ 0.081 0.081 0.106 0.115 1.258 0.329 0.160 0.188 
30∆ 0.093 0.093 0.201 0.119 1.214 0.244 0.179 1.022 
35∆ 0.160 0.160 0.073 0.133 0.588 0.068 0.146 0.135 
40∆ 0.187 0.187 0.216 0.137 0.294 0.064 0.210 0.315 
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6 HYSTERESIS CURVE MODEL AND ITS VERIFICATION 

6.1 The proposal of hysteretic rule 

According to the simplified model of the hysteresis loop established in this paper and its degradation calculation 
formula for each performance index based on damage, the hysteresis curve model of the NSCICTS is established, as 
shown in Figure 13. The hysteresis rules of the hysteresis curve model is: 

(1) When the specimen is loaded and unloaded before reaching the yield point, the forward and reverse loading and 
unloading are loaded and unloaded according to the elastic stiffness, that is, walking along the OA (OD) segment in the figure. 

(2) After the specimen is loaded to the yield point A, it walks along the skeleton curve until it reaches any point 1, 
and then walks along 1 (maximum load point in the positive direction of the cycle ) → 2 (pinching starting point in 
the negative direction) → 3 (residual deformation point in the positive direction) → 4 (pinching ending point in the 
negative direction) → 5 (maximum load point in the negative direction of the cycle, which is equal to the load of 
point 1) → 6 (pinching starting point in the positive direction) → 7 (residual deformation point in the negative 
direction) → 8 (pinching ending point in the positive direction) → 1 to complete a cycle. According to the previous 
formula to calculate the loading stiffness, unloading stiffness, pinch stiffness, and residual deformation point, and 
to complete a cycle. Then continue to walk along the skeleton curve, continue the cycle, and calculate the loading 
stiffness, unloading stiffness, pinching stiffness, and residual deformation point. 

(3) After the specimen is loaded to the peak load point B, it points to the ultimate displacement point C along the 
skeleton curve and unloads according to the degradation stiffness. After walking to any point 1', similar to (2), 
complete a cycle along 1' → 2'→ 3' → 4'→ 5' → 6'→ 7' → 8'→ 1'. Then continue to walk along the skeleton curve 
and continue the cycle until all cycles are completed. The loading stiffness, unloading stiffness, pinching stiffness, 
and residual deformation points are calculated in the cycle. 

 

Figure 13 Schematic diagram of hysteresis curve model of the NSCICTS 

6.2 Comparison of the hysteresis curve model and traditional model 

Since the establishment of Ozcebe model needs to consider the cracking load, and the cracking load is often difficult 
to be determined in the test, inaccurate cracking load will also affect the accuracy of hysteresis model. Therefore, a 
hysteresis loop in MT1 was selected for comparison with the modified Takeda hysteresis model in this paper. As shown 
in Figure 14, it can be seen that the loading stiffness and unloading stiffness defined in this paper are in good agreement 
with the test hysteresis loop. In addition, the pinching stiffness determined in this paper by the equal area of the 
experimental hysteresis loop and the hysteresis loop model also accurately reflects the slip phenomenon of the 
hysteresis curve of NSCICTS, at the same time, the residual deformation defined based on damage is also partly in 
agreement with the test. However, the modified Takeda model does not consider the degradation of unloading stiffness, 
and the unloading stiffness of the model is consistent with the loading stiffness, so it can be seen that it is not applicable 
to the hysteretic curve with serious pinching in this paper. 
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Figure 14 Comparison between hysteresis model in this paper and hysteresis model in modified Takeda 

6.3 Comparison of the hysteresis curve model and experiment 

According to the proposed hysteresis curve model, the calculated hysteresis curve of the NSCICTS can be obtained, 
which is compared with the experimental hysteresis curve, and the results are shown in Figure 15. The calculated curve 
is in good agreement with the test curve, indicating that the restoring force model proposed in this paper can effectively 
simulate the mechanical properties of the NSCICTS. The model provides a theoretical basis for the overall nonlinear 
analysis of the NSCICTS, and also provides a restoring force model for other similar structures. 

 
Figure 15 Comparison between calculated hysteresis curve and experimental hysteresis curve 

7 CONCLUSION 

This paper researchs the restoring force model based on the test results of the NSCICTS with low-cycle reciprocating 
loading, and the main conclusions are as follows: 

(1) According to the characteristics of asymmetric stress performance of the NSCICTS, the damage model considering 
the asymmetric structural stress is established by taking the skeleton curve (load-displacement curve) as a model. 

(2) Comparison of the asymmetric damage model in this paper with the existing symmetric damage model, the 
symmetric damage model underestimates the damage to the components or structures, and the asymmetric 
damage model can reflect the actual damage of the components or structure. 
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(3) According to the NSCICTS hysteresis loop has a long slip segment and serious pinching, this paper establishes the 
simplified model of the hysteresis loop and its degradation formula considering the loading, unloading, and pinching 
stiffness of damage, as well as the calculation formula of residual deformation increase. 

(4) The hysteresis rule of the hysteresis curve is established in this paper, and the calculated hysteresis curves are 
in good agreement with the test hysteresis curves, which provides a theoretical basis for the elastic-plastic time-
history analysis of the NSCICTS. 
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APPENDIX 1 – Data fitting and formula derivation. 

Symbol Meaning 

Superscript “+”, “-” Represent the positive and negative directions of the skeleton curve and hysteresis loop respectively 

y
F ±

, y

±∆
 

The yield load, and yield displacement of the skeleton curve, respectively 

mF ±

, m

±∆
 

Load and displacement at the peak load of the skeleton curve, respectively 

uF ±

, u
±∆

 
Load and displacement at the ultimate displacement of the skeleton curve, respectively 

eK ±
, pK ±

, dK ±

 
The elastic stiffness, hardening stiffness, and degradation stiffness of the skeleton curve, respectively 

1 The fitting calculation formula for the coordinates and stiffness of key points in a three-line skeleton curve model 
1.2 Fitting formula for yield loads and their displacements and elastic stiffness 
Based on the test results the calculation formula was determined by software regression analysis as follows: 

+ 2.315 0.103
y e n−∆ = ⋅ , 2 0.851R =          (A-1.1) 

1.371 0.732
y e n− −∆ = − ⋅ , 2 0.991R =          (A-1.2) 

6.271 0.208
yF e n+ = ⋅ , 2 0.988R =          (A-1.3) 

6.270 0.259
yF e n− = − ⋅ , 2 0.973R =          (A-1.4) 

±
±

±=
∆

y
e

y

F
K             (A-1.5) 

Where: 2R is the coefficient of determination of the statistic measuring the goodness of fit; n is the axial pressure ratio. 
1.2 Fitting formula for peak loads and their displacements and hardening stiffness  
The calculation formula is as follows: 

2.819 0.589
m e n+ −∆ = ⋅ , 2 0.998R =          (A-1.6) 

1.986 -1.069
m e n−∆ = − ⋅ , 2 0.939R =          (A-1.7) 

6.661 0.116
mF e n+ = ⋅ ,    2 0.997R =          (A-1.8) 

6.492 0.413
mF e n− = − ⋅ ,  

2 0.856R =          (A-1.9) 

m y
p

m y

F F
K

± ±
±

± ±

−
=

∆ − ∆
 (A-1.10) 

1.3 Fitting formula for ultimate loads and their displacements and softening stiffness  

The ultimate load 
±

uF  is 0.85 times the peak load 
±

mF , which is calculated as shown in formula (1.11), and the 

ultimate displacement 
±∆u  is calculated as shown in formula (1.12). The reduction coefficient is introduced to calculate 

the softening stiffness, and its calculation formula is shown in formulas (1.13) ~ (1.15). 

0.85
u m

F F± ±=             (A-1.11) 
0.15= m

u m
e

F
Kα

±
± ±

± ±∆ + ∆            (A-1.12) 

218.297 8.197 0.355n nα + = − + − , 2 1R =         (A-1.13) 
212.095 4.507 0.023n nα − = − + + ,  2 1R =         (A-1.14) 

d e
K K± ± ±= α             (A-1.15) 

2 Hysteresis loop pinching stiffness and pinching point coordinate solution 
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Let the positive loading stiffness of original hysteresis loop be =
∆ ∆

+ −
−

E L
ir

E L

P PK , the positive unloading stiffness be 

=
∆ ∆

+ −
−

E F
iu

E F

P PK , the negative loading stiffness be =
∆ ∆

− −
−

I H
ir

I H

P PK , the negative unloading stiffness be =
∆ ∆

− −
−

I J
iu

I J

P PK . Let the 

positive pinch stiffness be il
K +

 and the negative pinch stiffness be 
-

il
K . 

According to Figure 12, the areas of the positive half cycle and negative half cycle are: 
0.5( ) ) 0.5 )( ) 0.5( ) )

        0.5( ) )

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆

+ = − + − + − − − − − − −

− − −

（ （ （

（

C D K D E D D E D E D A G A E A A

E A E A

E P P P P P

P P

P
 (A-2.1) 

0.5( )( ) )( ) 0.5( ) ) 0.5( )( )
         ( )( ) 0.5( ) )

∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

− = − − + − − + − − − − − −

− − − − −

（ （

- （

C G B B B I B B I B I K C C

C I C C I C I

E P P P P P P
P P P

  (A-2.2) 

The positive and negative half cycle areas of the test hysteresis loop are 
+
TE  and 

−
TE , respectively. Let + +=C TE E  and 

− −=C TE E , and the pinching stiffness 
+
ilK  and 

-
ilK  can be obtained. From the pinch stiffness, the coordinates of pinch 

starting point and ending point can be obtained as follows: 

∆
+

+

−

−
∆ − ∆ +

=
−

G iu E E
A

iu

il

il

K K P
K K , 

( )+ +
−

− += ∆ − ∆ +
−A iu G iu E E

il

iuil

K
P K K P

K K      (A-2.3) 

∆ 
− −

− −
∆ − ∆ +

=
−

G I I
B

iril

iril

K K P
K K ,

( )
−

− −
− −= ∆ − ∆ +

−B G I I
il

ir ir
iril

K
P K K P

K K      (A-2.4) 

∆ 
+ −

+ −
∆ − ∆ +

=
−

K I I
C

iuil

iuil

K K P
K K , 

( )∆ ∆
+

− −
+ −= − +

−C K I I
il

iu iu
iuil

K
P K K P

K K      (A-2.5) 
∆ ∆
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+ +
− +

=
−

K E E
D
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K K P
K K , 

( )∆ ∆
+

+ +
+ += − +

−D K E E
il

ir ir
iril

K
P K K P

K K      (A-2.6) 

3 Derivation of the expression of the cyclic degradation coefficient and calculation of its correlation coefficient 
3.1 Derivation of expressions for cyclic degradation coefficient 

Let: 
+=(1 )

ir i e
K D K+ +− , 

+

1 -1
=(1 )

i r i e
K D K+ +

−
− , 

that is: 
+

ir i
K D+∆ = ∆ , 

+

1 1i r i
K D+

− −
∆ = ∆ , 

+ + +
-1 1

+ +
1 -1 -1

1 1 + )= =
1 1

+ −
−

+
−

− − ∆ + ∆
− −

（ir i i i i

i r i i

K D D D D
K D D

, i.e.
+

+1
+

1 -1

=1 ( )=1
1

β
+ −

−
+
−

∆ + ∆
− −

−
ir i i

ir
i r i

K D D
K D

. 

Let: 
+

+
1 1

= =α
+

+
− −

∆ ∆
∆ ∆

ir i

i r i

K D
K D

, α  is a constant 

that is: 

+
+ + + +

+1 1 1 1 1
1+ + + +

1 1 1 1 1 1 1
+ +

+1 1 1
1+ +

1 1 1

=
1= (1 )( ) ( )

1 1 1

1   ( )
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− − + −
− − − − −
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− − − − − − −

−
− − −

− −
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Let: 
+

1 1
=

i i
D D−

− −
∆ ⋅ ∆β , then simplify the above equation as follows: 

+ + +1
1 1+ +

-1 1

1 ( )
1

αβ
β

−
−

− −
−

∆
= ∆ + ∆

− ∆
i

ir i i
i i

D D D
D D  

Let: + +
1 1( )=α ε

β− −∆ + ∆i iD D , introduce correlation coefficients to construct the above equation as follows: 

1
+ +

1 1

1=( )
1

β ε
+

−
+ −

− −

∆
⋅ ⋅

− ∆
rCi

ir
i i

D
D D

, at this point, let =1ε  again to obtain the following formula: 

1
+ +

1 1

1=( )
1

β
+

−
+ −

− −

∆
⋅

− ∆
rCi

ir
i i

D
D D            (A-3.1) 

The formulas for the remaining coefficients β +
iu  , β −

ir  and β −
iu  are also similar to the above formula, namely: 
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1
+ +

1 1

1=( )
1

β
+

−
+ −

− −

∆
⋅

− ∆
uCi

iu
i i

D
D D            (A-3.2) 

1 1
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Let: 
+

1=δ δ+ +p p
i iD ,

+
1 1 1=δ δ+ +

− −
p p

i iD , that is: 
+ +

1 1 1
+

1 1 1 1

+= = =1+δ
δ

+ − + − +
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∆ + ∆ ∆ + ∆p
i i i i i i i
p

i i i i

D D D D D D
D D D  

Let: -1i i
D D+ +∆ ≈ ∆ , that is: 
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=1+ 1+δ
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pi i i
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D D
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, introducing correlation coefficients to construct the above equation as follows: 
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And the formula for coefficient a is also similar to the above equation, namely: 
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1

=( )β
−

+ −
− −

−
−

∆ + ∆p Ci i
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D D
D            (A-3.6) 

Similar to the above derivation, the degradation coefficient of pinching stiffness can be obtained as follows: 

1 1

1
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1

β
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+ − −
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∆ + ∆
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∆ + ∆
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lCi i
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i

D D
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3.2 Fitting calculation results of correlation coefficients 
The fitting calculation results of the correlation coefficient and its determination coefficient are as follows: 

1
+ +

1 1
2
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