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Estimation of RC slab-column joints effective strength using
neural networks

Abstract

The nominal strength of slab-column joints made of high-

strength concrete (HSC) columns and normal strength con-

crete (NSC) slabs is of great importance in structural design

and construction of concrete buildings. This topic has been

intensively studied during the last decades. Different types

of column-slab joints have been investigated experimentally

providing a basis for developing design provisions. However,

available data does not cover all classes of concretes, rein-

forcements, and possible loading cases for the proper calcu-

lation of joint stresses necessary for design purposes. New

numerical methods based on modern software seem to be

effective and may allow reliable prediction of column-slab

joint strength. The current research is focused on analysis

of available experimental data on different slab-to-column

joints with the aim of predicting the nominal strength of slab-

column joint. Neural networks technique is proposed herein

using MATLAB routines developed to analyze available ex-

perimental data. The obtained results allow prediction of

the effective strength of column-slab joints with accuracy

and good correlation coefficients when compared to regres-

sion based models. The proposed method enables the user to

predict the effective design of column-slab joints without the

need for conservative safety coefficients generally promoted

and used by most construction codes.
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1 INTRODUCTION

The use of flat-plate system in tall buildings is rapidly increasing due to its advantages on

structural performance and construction process over conventional RC (reinforced concrete)

construction [10]. As a result this system has been adopted and widely used for many structures

that were recently constructed such as large-scale supermarket, store and underground garage,

bridge decks, etc. Using RC flat plate system in the basement and residential floors of tall
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buildings is often mandatory to reduce story height and to enable rapid construction. The use

of flat plate floors for the basement parking areas also minimizes the amount of excavation so

that total construction time and cost can effectively be reduced [19].

Flat plate slab [6] is a very common and competitive structural system, in which columns

directly support floor slabs without beams. Such system of construction usually consists of

high strength concrete (HSC) columns and normal strength concrete (NSC) slabs or floors.

The slabs are laid with NSC mainly for the purpose of achieving the economy and improving

the ductile behavior. However, in some cases the presence of intervening weaker concrete slab

layer affects the column load carrying capacity. The column strength is reduced as compared

to its actual axial compressive strength [22].

Flat-plate systems are popular gravity systems permitting architectural flexibility, more

clear space, simple formwork, shorter construction time and simple arrangement of electrical

and mechanical systems. Buildings with such systems are technology-friendly and conducive to

modern design concepts. Compared to a typical beam-slab system, the flat-plate slab-column

system should be able to save structural costs by about 20%. Absence of efficient load transfer

mechanism has been one of flat-plate system’s weak point that may lead to a brittle punching

shear failure at the region of slab-column joint [7, 24]. It was found that the effective moment of

inertia concept, together with the Direct Design Method, can be used for computing deflections

of irregular flat plate floors [24]. Additionally, the results obtained indicated that at higher

load levels, beyond the serviceability limit state, the use of reduced modulus of elasticity will

improve the predicted deflections considerably [24]. The problem of brittle punching failure due

to the transfer of shearing forces and unbalanced moments at the flat plate-column connection

was investigated to study the effects of various interdependent factors that govern the punching

shear resistance and behavior of the flat plate-column connections as well as their inclusion

in current Codes [7]. It was shown that the problem of displacement-induced unbalanced

moment and the accompanying shear forces at flat plate-column connections can be effectively

addressed by providing shear reinforcement in slabs.

To understand the load transfer mechanism and predict the effective strength of the joint

when two different strengths of concrete are used in columns and slab, several experimental

investigations have been conducted [2, 8, 9, 15, 17, 20, 21]. The test results, obtained for

slab-column specimens, were analyzed to determine the maximum difference between column

and floor concrete strengths that yield no decrease in the column load-carrying capacity and

the allowable load-carrying capacity of the column if this difference is exceeded [2].

The modern ACI code [1] provisions for estimating the strength of a slab-column joint are

based upon the outcomes of this research [2]. It was also shown that the ACI code is unsafe

for higher ratios of column to slab concrete strengths [8]. A separate design equation, as a

function of column and slab concrete strengths, was proposed that tend to negate the ACI

equation for estimating the joint effective strength [8].

Interior column specimens were also tested with and without load acting on a slab [17].

The slab loading on the tested specimens was of service nature and it was applied together

with the ultimate axial load that acted on the column portions. It was shown that the slab
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loading develop significant tensile strains in the slab’s top steel in the slab-column joint region.

They recommended that the effective strength of the joint should not only be a function of

column and slab concrete strengths but also of the joint aspect ratio (ratio of slab thickness

to column dimension, h/c).

One interior slab-column joint was tested with extreme load acting on the slab and service

axial load applied on the column [9]. It was reported that the joint strength is highly influenced

by the bending action of the slab. It was found that the surrounding slab confinement increased

the strength and ductility of the joint [15]. It was also reported that the use of fiber-reinforced

concrete in slabs at interior columns increases the strength and stiffness of the joints.

A double headed shear stud rails was used in the surrounding slabs in order to improve the

punching shear resistance of the test specimens [20, 21]. The slabs were loaded with ultimate

load and columns with service axial load. The effects of surrounding slab confinement, ratio of

slab thickness to column dimension (aspect ratio, h/c), intensity of slab load, slab reinforcement

ratio, column concrete strength and slab concrete strength were investigated. It was found

that the application of slab load reduces the column axial load carrying capacity. It was also

observed that the ACI code [1] provisions are unsafe and non-conservative for test specimens

with high aspect (h/c) and column to slab concrete strength ratios. The Canadian standard

[5] was found safe but conservative for test specimens with low aspect (h/c) ratios. A new

design expression, incorporating all of the above-mentioned parameters that is able to predict

the joint effective strength more reliably than the ACI code [1] and Canadian standards [5]

was proposed. Schematic views of different types of the tested slab-column joints are shown

in Fig. 1.

Figure 1 Schematic views of slab-columns connection: (a) interior column (b) edge column (c) corner column
(d) sandwich column (following [13]).

In this research the data of previous experimental researchers [2, 8, 9, 15, 17, 20, 21],

involving the testing of slab-column connections with HSC columns and NSC slabs has been

used. Analysis of the accumulated test data employing the neural network technique has been

performed in order to develop a new procedure for predicting the effective strength of the slab-

column joint. A neural network has the capability of realizing a greater variety of nonlinear

relationship of considerable complexity [3, 23]. In neural networking the data is presented to the

network in the form of input and output parameters, and the optimum nonlinear relationship

is found by minimizing a penalized likelihood.

In fact, the network tests many kinds of relationship in its search for an optimum fit.
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As in regression analysis, the results then consist of a specification of the function, which in

combination with a series of coefficients (called weights), relates the inputs to the outputs.

The search for the optimum representation can be computer intensive, but once the process

is completed (that is, the network has been trained), the estimation of outputs is very rapid.

This work has been applied to the complex problem of predicting the capacity of an interior

slab-column connection.

The present study, applying neural networking, is also aimed at focusing efforts on bringing

simplicity and improving the reliability of the proposed estimation procedure. Additionally,

the use of test data covering a large range of column and slab concrete strengths, column and

slab reinforcement ratios, surrounding slab confinement, and wide range of slab thickness to

column dimension ratio (aspect ratio, h/c) greatly enhances the scope of the present study.

2 AIMS AND SCOPE OF THE RESEARCH

Despite the availability of large number of models, the problem of column-slab joint effective

strength has remained inconclusive. It is felt that this is partly due to the complexity of

the phenomenon involved and partly because of the limitations of statistical regression, an

analytical tool commonly used by most of the investigators. Neural networks (NN) have

advantages over statistical models like their data-driven nature, model-free form of predictions,

and tolerance to data errors [11, 12, 16, 18]. The objective of this study is to reanalyze the

data considered in earlier studies by employing the NN technique with a view towards finding

out if better predictions are possible.

The current research is focused on analysis of available experimental data on different

column-slab joints with the aim of predicting the effective column-slab joint strength. For this

reason the NN technique was employed. Original MATLAB routines [13] were developed to

analyze the available experimental data. NN toolbox is used to analyze the experimental data

[14] and predict the effective column-slab joints strength. The prediction should have high

accuracy and high correlation coefficients, compared to the regression based models in order

to enable using the predicted results in effective design of column-slab joints with no need to

conservative safety coefficients presently used in the codes.

3 EXISTING MODELS FOR ESTIMATING THE COLUMN-SLAB JOINT EFFECTIVE
STRENGTH

A large number of regression models, mostly empirical, based on mechanics of structures

and materials are available for the prediction of the effective strength of a column-slab joint

[1, 2, 5, 8, 17, 20, 22]. ACI code [1] suggests that there is no reduction in column strength for

ratios of column concrete strength to slab concrete strength up to 1.4. For higher ratios, based

on the experiments by Bianchini et al. [2], the following expression for predicting the effective

strength of the joint was proposed:

f ′ceff = 0.75f ′cc + 0.35f ′cs; (1)
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where, f ′cc and f ′cs are strength of column and slab concrete respectively.

Gamble and Klinar [8] proposed the following as a lower bound relationship for estimating

the strength of a column-slab joint:

f ′ceff = 0.47f ′cc + 0.67f ′cs; (2)

They reported that the ACI code [1] equation is adequate for column concrete strength to

slab concrete strength ratio of 1.4. However, for higher ratios ACI code [1] design provision

overestimates the effective strength of the joints and is therefore unsafe.

In existing design provisions to cover the high strength concrete, for higher ratios of col-

umn concrete strength to slab concrete strength, the Canadian Standard CSA-A23.3:1994 [5]

presents the following design expression:

f ′ceff = 0.25f ′cc + 1.05f ′cs; (3)

The effective strength prediction using CSA A23.3 [5] design provisions appears to be safe

but highly conservative.

A striking feature of the test programs conducted by both Bianchini et al. [2] and Gamble

and Klinar [8] was the absence of slab load. In fact in a prototype structure, load on the slab

will produce significant tensile straining in the top flexural slab reinforcement in the vicinity

of the column. It would seem reasonable to assume that such strain will have a detrimental

effect on the ability of the surrounding slab to confine the column-slab joint [17]. Ospina

and Alexander [17] developed a new design model incorporating the effect of the ratio of

slab thickness to column dimension (aspect ratio, h/c). The design equation, proposed for

predicting the effective strength of the joint, is given as under:

f ′ceff = (
0.25

h/c
) f ′cc + (1.4 −

0.35

h/c
) f ′cs; (4)

Besides the column and slab concrete strengths as well as the aspect ratio (h/c), the effects
of surrounding slab confinement and slab reinforcement ratio, rs, should also be considered in

predicting the effective strength of the joint [20]. Based on the induction of the new parameters,

the following predicting equation was devised:

f ′ceff = 0.35f ′cc + 0.384(
ρs + 4.12
h/c + 1.47

)λf ′cs; (5)

Recently a mechanics of materials approach, commonly used for composite materials, was

applied for the theoretical analysis of the problem [22]. This approach with the use of the

available test data lead to a new regression model for calculating the effective strength of the

joint. Additionally, it was reported that the new experiments [8, 9, 15, 17, 20, 21] tend to

negate the limiting ratio of 1.4 between the two concrete strengths, which ACI [1] allows in

Sec. 10.15 of its building code to be used without considering any adverse affects on the axial

load carrying capacity of the columns. The effective strength of the joint concrete was found
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to be proportional to the ratio of product and sum of the two concrete strengths, as given

below:

f ′ceff = 2.25(
f ′ccf

′
cs

f ′cc + f ′cs
) ; (6)

This observation leads to the comparison of column specimens’ behavior with that of com-

posite materials. The accumulated test data provides a strong evidence for the applicability of

some mechanics principles of composite materials to the sandwiched concrete. Additionally, it

is observed that most of the models presented above were developed by different researchers

mainly for their own data, except the model proposed by Shah et al. [20], which has used a

wide variety of data.

4 AVAILABLE EXPERIMENTAL DATA

Table 1 shows the test data of column-slab specimens with HSC columns and NSC slabs

[2, 8, 9, 15, 17, 20] with total of 74 data points. The data consists of eight parameters viz.

slab thickness, column dimension, column reinforcement, slab reinforcement, slab confinement

factor, slab load, concrete strength of slab and column. The range of these parameters for the

data is given in Table 2. The data covers all the possible four cases of confinement viz. interior

column, edge column, corner column and sandwich column.

All the columns are square in size except two, as mentioned in Table 1, for which equivalent

square section has been considered. The experimental value of effective strength of joint, given

in the table, has been calculated from:

f ′ceff =
Pc − fyAst

0.85 (Ag −Ast)
(7)

where Pc is the maximum load carried by the column, Ast is the area of longitudinal steel

bars in the column, Ag is the gross cross-sectional area of the column section, fy is the yield

strength of column reinforcement, and f ′ceff is the effective concrete compressive strength.

The effective strength, f ′ceff , is notionally the cylinder strength of some hypothetical concrete

that combines the properties of both the column and slab concretes and can be expected to

be in between the range of column and slab concrete strengths.

5 NEURAL NETWORK MODEL

The manner, in which the data are presented for training, is the most important aspect of

the NN method. Often this can be done in more than one way, the best configuration being

determined by trial-and-error. It can also be beneficial to examine the input and output

patterns or data sets that the network finds difficult to learn. This enables a comparison of

the performance of the NN model for these different combinations of data.

In order to map the causal relationship related to the slab-column joint strength, two

separate input/output schemes (called Model-A1 and Model-A2) were employed. The first took
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Table 2 Range of parameters for the data of slab-column connections (74 data points).

S. no. Parameter Range

Basic parameters

1 Slab thickness, h (mm) 100 – 250

2 Column dimension, c (mm) 200 – 279

3 Column steel, ρc (%) 1.13 – 4.62

4 Slab steel, ρs (%) 0.00 – 1.81

5 Slab confinement factor, λ 0 – 4

6 Slab load per unit area, ps (kN/m2) 0 – 1361

7 Column concrete strength, f ′cc (MPa) 15.8 – 120.0

8 Slab concrete strength, f ′cs (MPa) 8.8 – 46.0

Additional non-dimensional parameters

1 h/c 0.5 – 1.2

2 ps/f ′cs 0 – 0.0425

3 f ′cc/f ′cs 1.35 – 6.33

the input of raw causal parameters while the second utilized their non-dimensional groupings.

This was done in order to check if the use of the grouped variables produced better results.

The Model-A1 thus takes the input in the form of causative factors namely, h, c, ρc, ρs, λ, ps,

f ′cc and f ′cs yields the output, the joint-effective strength, f ′ceff :

Model-A1: f ′ceff = f (h, c, ρc, ρs, λ, ps, f ′cc, f ′cs) ; (8)

The matrix of dimensions for the variables involved is:

A =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1 0 0 0

−1 1 1 −1 −1 −1 0 0 0

−2 0 0 −2 −2 −2 0 0 0

⎤⎥⎥⎥⎥⎥⎦
;

The columns of the above matrix correspond to the variables in the order in which they

appear in Eq. (8) and the rows of the matrix correspond to the three fundamental dimensions

viz. M (mass), L (Length) and T (Time). Though the number of fundamental dimensions

involved in the model is three but the rank of the above dimensional matrix is 2, thus accord-

ing to the Buckingham-PI theorem [4], the number of dimensionless parameters required for

modeling would be 9−2 = 7. The independent PI terms obtained from the nullity theorem are:

h/c, ρc, ρs, λ, ps/f ′cs, and f ′cc/f ′cs and the corresponding dimensionless output f ′ceff/f ′cc. The

Model A-2 employing these dimensionless variables is thus given by:

Model-A2:
f ′ceff

f ′cc
= g (h

c
, ρc, ρs, λ,

ps
f ′cs

,
f ′cc
f ′cs
) ; (9)

The current study used the data described above (74 data points) for the prediction of

joint effective strength. The training of the above two models was done using 67% of the data
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(49 data points) selected randomly. Validation and testing of the proposed models was made

with the help of the remaining 33% of observations (25 data points), which were not involved

in the derivation of the model.

Three neuron models namely, ‘tansig’, ‘logsig’ and ‘purelin’, have been used in the ar-

chitecture of the network with the back propagation algorithm implemented in originally de-

veloped MATLAB routines. In the back propagation algorithm, the feed-forward (FFBP),

cascade-forward (CFBP) and Elman back propagation (EBP) type network were considered

[3, 11, 12, 16, 18, 23]. Each input is weighted with an appropriate weight and the sum of the

weighted inputs and the bias forms the input to the transfer function. A transfer function

(also known as the network function) is a mathematical representation, in terms of spatial or

temporal frequency, of the relation between the input and output of a (linear time-invariant)

system. With optical imaging devices, for example, it is the Fourier transform of the point

spread function (hence a function of spatial frequency) i.e. the intensity distribution caused

by a point object in the field of view.

The transfer function is commonly used in analysis of single-input single-output (SISO)

filters. It is mainly used in signal processing, communication theory, and control theory. The

term is often used exclusively to refer to linear time-invariant systems (LTI). Most real systems

have non-linear input/output characteristics, but when operated within nominal (not “over-

driven”) parameters they behave close enough to linear LTI systems. The neurons employed

use the following differentiable transfer function to generate their output:

yj = f ⋅ (∑
i

Wijxi + ϕj) =
1

1 + e−(∑i Wijxi+ϕj)
; (10)

Linear transfer function:

yj = f ⋅ (∑
i

Wijxi + ϕj) =∑
i

Wijxi + ϕj ; (11)

Tan-sigmoid transfer function:

yj = f ⋅ (∑
i

Wijxi + ϕj) =
2

1 + e−2(∑i Wijxi+ϕj)
− 1; (12)

The weight, w, and biases, f , of these equations are determined to minimize the energy

function. The optimal architecture was determined by varying the number of hidden neurons.

The optimal configuration was based upon minimizing the difference between the neural net-

work predicted value and the desired output. In general, as the number of neurons in the layer

is increased, the prediction capability of the network increases in beginning and then becomes

stationary.

The performance of all NN model configurations was based on the mean percent error

(MPE), mean absolute deviation (MAD), root mean square error (RMSE), correlation coef-

ficient (CC), and coefficient of determination, R2, of the linear regression line between the

predicted values from the neural network model and the desired outputs. Training of NN
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models was stopped when either the acceptable level of error was achieved or when the num-

ber of iterations exceeded a prescribed maximum. The neural network model configuration

that minimized the MAE and RMSE and optimized the R2 was selected as the optimum and

the whole analysis was repeated several times.

6 SENSITIVITY ANALYSIS

Sensitivity tests were conducted to determine the relative significance of each of the indepen-

dent parameters (input neurons) on the joint effective strength (output) in both of the models

given by Eqs. (8) and (9). In the sensitivity analysis, each input neuron was in turn eliminated

from the model and its influence on prediction of effective strength of the joint was evaluated

in terms of the MPE, MAD, RMSE, CC and R2 criteria. The effect of elimination of two

and more independent variables on the effective strength of joint has also been studied. The

network architecture of the problem considered in the present sensitivity analysis consists of

one hidden layer with 12 neurons and the value of epochs has been taken as 100.

Table 3 Sensitivity analysis of Model A-1 with feed-forward back propagation for different sets of input vari-
ables.

Input variables MPE MAD RMSE CC R2

All (Eq. (8)) 1.30 7.90 6.69 0.97 0.94

No h 5.93 8.58 8.35 0.96 0.90

No c -2.05 9.19 7.29 0.97 0.92

No ρc 1.68 9.89 7.59 0.96 0.92

No ρs 3.06 5.99 6.45 0.97 0.94

No λ 6.63 13.70 8.15 0.95 0.91

No ps 2.42 7.05 7.21 0.96 0.93

No f ’cc 3.89 10.00 7.80 0.96 0.91

No f ’cs -0.38 11.42 7.71 0.96 0.92

No ρc, ρs 1.66 8.27 6.36 0.97 0.94

No λ, ρc 3.18 11.29 8.38 0.95 0.90

No λ, ρc, ρs 5.20 12.86 8.62 0.95 0.89

No λ, ρc, ps 4.22 11.23 7.59 0.96 0.92

Only f ’cc, f ’cs, h, c 3.87 12.14 8.42 0.95 0.90

Only f ’cc, f ’cs 3.76 14.94 9.12 0.94 0.88
Note: MPE, mean percent error; MAD, mean absolute deviation; RMSE, root mean square error;

CC, correlation coefficient; R2, coefficient of determination.

The results in Table 3 show that for Model-A1, slab thickness, h, slab confinement factor,

λ, column concrete strength, f ′cc, slab concrete strength, f ′cc, and column steel, ρc, are the five

most significant parameters for the prediction of effective strength of the joint. The variables

in the order of decreasing level of sensitivity for Model-A1 are: h, λ, f ′cc, f
′
cs, ρc, c, ps and

ρs. It is thus seen that the last three parameters have least significant effect when taken

independently. The influence of the removal of two and more independent parameters at a
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time has also been studied for some of the pairs. Some of the pairs considered for removal

represent the existing models. The sensitivity analysis by eliminating all except f ′cc and f ′cs
represents models given by Eqs. (1) to (3) and (6). It is observed to have significant effect as

it reduces the value of R2 from 0.94 to 0.88. Thus the models of Bianchini et al. [2], Gamble

and Klinar [8], Canadian Standards [5] and Shah and Ribakov [22] have ignored some useful

parameters. The elimination of all except f ′cc, f
′
cs , h and c representing the model given by

Eq. (4), is also observed to have significant effect as it reduces the value of R2 from 0.94 to

0.90. The model given by Eq. (5) is simulated by eliminating λ, ρc and ps in Table 3, which

reduces the value of R2 from 0.94 to 0.92.

Similarly, Table 4 gives the results of sensitivity analysis for Model-A2. It is apparent that,

f ′cc/f ′cs and l have the most significant effect on normalized effective strength and all other

dimensionless variables, namely ρc, h/c, ρs, and ps/f ′cs have the least significant effect. A

comparison with the sensitivity analysis of Model-A1, shows that though the h/c ratio has little
influence on the effective strength of the joint but the slab thickness taken independently has

significant effect. The results presented in Tables 3 and 4 indicate that the models incorporating

only limited number of the available parameters like f ′cc/f ′cs, and h/c are not good enough for

achieving the desired accuracy and reliability in predicting the joint effective strength. Eq.

(8) was devised using many of the non-dimensional variables and thus resulted in relatively

better values of the coefficient of determination and correlation coefficients (R2 and CC). These

findings are consistent with existing understanding of the relative importance of the various

parameters on joint effective strength.

Table 4 Sensitivity analysis of Model A-2 with feed-forward back propagation.

Input variables MPE MAD RMSE CC R2

All (Eq. (9)) 5.29 9.42 0.10 0.84 0.65

No h/c 3.30 9.77 0.10 0.83 0.67

No ρc 3.94 10.13 0.10 0.82 0.66

No ρs 3.55 8.67 0.09 0.87 0.74

No λ 2.69 11.14 0.12 0.76 0.55

No ps/f ′cs 2.18 8.58 0.10 0.84 0.69

No f ′cc/f ′cs 1.01 14.64 0.14 0.60 0.33

No ρc, ρs 2.05 9.31 0.10 0.83 0.68

Only f ′cc/f ′cs, h/c, ρs 5.09 12.85 0.13 0.70 0.45

Only f ′cc/f ′cs, h/c 4.95 13.72 0.12 0.73 0.52

The Model-A1 using the raw variables is found to be better than the Model-A2 involving

non-dimensional parameters. The study of sensitivity of Model-A1 gives the impression that

elimination of some of the variables has only marginal influence on the resulting joint effective

strength. However considering the limitations and uncertainties in the data, a full-fledged

network involving all input variables would be desirable.
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7 ANALYSIS AND INTERPRETATION OF TEST RESULTS

The preprocessing of the network training set was performed by normalizing the inputs and

targets so that they have means of zero and standard deviations of 1. Similarly, all weights and

bias values were initialized to random numbers. While the numbers of input and output nodes

are fixed, the hidden nodes in the case of FFBP were subjected to trials and the one producing

the most accurate results (in terms of the CC) was selected. The optimization of the training

procedure automatically fixes the hidden nodes in the case of the CFBP. The training of these

networks was stopped after reaching the minimum mean square error between the network

yield and true output over all the training patterns.

The information on number of nodes required to achieve minimum error taken in the case

of each training scheme used (i.e. FFBP, CFBP and EBP) is shown in Table 5 for Model-A1

and A2. As a matter of general information, which is not of real significance in this study, it

can be seen that the cascade correlation algorithm, designed for efficient training, trained the

network with fewer epochs than the FFBP network.

The network architecture of the two models, given by Eqs. (8) and (9), is given in Figs.

2 and 3 respectively for BP training scheme. The error estimation parameters, on the basis

of which the performance of a model is assessed, are given in Tables 3 and 4. Training and

validation results for the two models are shown in Figs. 4 and 5. The trained values of

connecting weights and bias for the two models are given in Tables 6 and 7 obtained from

FFBP training scheme.

Table 5 Network architecture.

Model Algorithm
Network configuration Learning

rate

Momentum

functionI H O

Model A-1

FFBP 8 20 1 0.5 0.7

CFBP 8 25 1 0.5 0.7

RBF 8 80 1 0.5 0.7

EBP 8 20 1 0.5 0.7

Model-A2

FFBP 6 14 1 0.5 0.7

CFBP 6 16 1 0.5 0.7

RBF 6 60 1 0.5 0.7

EBP 6 20 1 0.5 0.7

Note: I, H, O indicate number of input, hidden, and output nodes, respectively;
FFBP, feed-forward back propagation; CFBP, cascade-forward back propagation;

RBF, radial basis function; EBP, Elman back propagation network.

The histograms of error in the prediction of the joint effective strength for Model-A1,

which is found to be better than Model-A2, are plotted in Fig. 6. The percentage error in

the prediction of the joint effective strength for different data sets is plotted in Fig. 7 for

Model-A1. The predicted value of the effective strength of joint has been plotted against its

observed value in Fig. 8 for the Model-A1.
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Figure 2 Model-A1: use of raw variables.

Figure 3 Model-A2: use of non-dimensional variables.

Figure 4 Epochs versus squared error of raw variables (Model – A1) by back propagation.
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Figure 5 Epochs versus squared error of grouped variables (Model – A2) by back propagation.

Figure 6 Histogram of percentage error for Model-A1.

It also shows that the use of raw variables as input (i.e. Model-A1) may be more beneficial

than that of the non-dimensional grouped variables (i.e. Model-A2), provided an appropriate

training scheme is chosen. The most suitable network, FFBP Model-A1, has the highest

CC=0.97 and R2=0.94; and lowest MPE=1.30, MAD=7.90, and RMSE=6.69. All the ANN

models featured small RMSE during training; however, the value was slightly higher during

validation. The models showed consistently good correlation throughout the training and

testing. In conclusion the network configuration (FFBP Model-A1) along with corresponding

weight and bias matrix given in Table 6 is recommended for general use in order to predict

the effective strength of the joint.

The mean error in the prediction of the joint effective strength by various regression models
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Table 6 Connection weights and biases for Model-A1 (refer to Fig. 2) (output bias = 0.6582).

No. of

neurons

Input weights
Output

weights

(r)

Input

biases
h c ρc λ ps f ′cc f ′cs

1 0.707 0.512 0.992 -0.833 0.322 -0.724 -1.508 0.971 2.053

2 -0.511 0.269 0.629 1.086 0.205 -0.493 -2.484 1.303 1.962

3 -1.050 -0.199 -0.685 0.693 1.299 -1.322 -0.503 -1.017 2.290

4 -0.003 1.462 0.906 1.946 -0.618 -0.419 0.789 0.339 -1.496

5 0.260 0.328 1.568 -0.953 -1.109 0.767 0.529 -0.181 -1.576

6 0.033 -0.828 -1.114 -1.016 0.865 -2.501 -0.966 -0.237 1.426

7 -0.009 -5E-04 0.468 -0.472 1.072 -1.301 1.202 -1.052 1.019

8 0.006 -0.889 -0.556 -0.488 1.151 0.123 0.501 0.159 -0.976

9 1.032 -0.303 -0.452 -1.037 0.150 -1.025 0.473 -0.053 1.495

10 -0.466 -1.140 -1.530 -0.622 -0.423 0.768 2.033 0.311 -0.425

11 -0.652 -0.353 0.816 -0.531 1.931 0.047 0.990 0.575 1.188

12 -0.187 0.593 1.491 -0.028 -0.480 0.689 -1.413 -2.172 1.190

Table 7 Connection weights and biases for Model-A2 (refer to Fig. 3) (output bias = 0.3827).

No. of

neurons

Input weights
Output

weights

(r)

Input

biases
h/c ρc λ 100ps/f ′cs f ′cc/f ′cs

1 -0.358 0.873 0.054 -1.530 -0.677 -1.273 -0.656

2 -0.897 1.106 -1.173 0.457 2.095 -1.362 1.469

3 0.307 0.079 -0.130 -0.746 1.184 0.056 1.203

4 -1.123 0.873 -0.415 -0.250 1.280 -1.033 1.268

5 0.586 -1.484 1.539 1.056 -0.689 -0.672 -1.694

6 -0.440 1.529 -1.071 -1.262 0.387 1.127 1.104

7 -0.089 -1.457 0.405 1.167 0.261 -0.694 -1.907

8 -2.337 3.203 -0.080 -0.505 0.930 -0.764 -0.994

9 -0.582 0.355 -1.046 -2.088 0.518 1.152 -0.482

10 -0.503 -1.154 -0.370 1.367 -2.367 0.372 -0.455

11 -1.871 0.039 0.849 0.565 -2.235 1.081 -0.925

12 -0.596 -0.743 -0.664 1.480 -2.479 -0.774 2.246

Latin American Journal of Solids and Structures 8(2011) 393 – 411



A.A. Shah et al / Estimation of RC Slab-column joints effective strength using neural networks 409

(Eq. (1-6)) may be compared with the performance of neural network Model-A1 where the

mean error is only 7.4%. On the other hand the mean errors calculated using regression

models by Shah and Ribakov [22], Ospina and Alexander [17], ACI [1], and CSA [5] are 18.31,

15.69, 20, and 18.37%, respectively. The histogram of percentage error of a neural network

model in comparison with the corresponding histograms for the earlier regression based models

[1, 5, 17, 22] given by Eq. (1-6) is shown in Fig. 6. It is observed from this figure that for

72% of the data the percentage error is less than 10% for the neural network model, whereas

the percentage error in the regression based models [1, 5, 17, 22] in the same percentage of

data is about 25%. Similarly, for 93% of the test data the percentage error for the neural

network Model-A1 obtained is less than 25%, while for almost the same percentage of data the

regression based models [1, 5, 17, 22] are showing the percentage error as 36%. This clearly

indicates the supremacy of the neural network model over the regression models.

Figure 7 Percentage error in prediction of effective strength by Model-A1 for individual data points.

Figure 8 Observed versus predicted effective strength.
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8 CONCLUSIONS

A generalized model for predicting the slab-column joint effective strength using neural network

(NN) has been developed. The network predictions were generally more satisfactory than those

given by traditional regression equations because of low errors and high correlation coefficients.

Predictions based on raw data (h, c, ρc, ρs, λ, ps, f
′
cc and f ′cs) were better than those based

on the grouped dimensionless form of the data (h/c, ρc, ρs, λ, ps/f ′cs, and f ′cc/f ′cs).
The NN with one hidden layer was selected as the optimum network to predict the effective

strength of joint. The network configuration of Model-A1 with feed-forward back propagation

is recommended for general use in order to predict the effective strength of joint.

Sensitivity analysis was performed in order to determine the relative significance of each of

the independent parameters (input neurons) on the joint effective strength (output) in both

of the NN models that were used in the frame of this study. On the basis of this analysis it

was observed that the slab confinement factor, the slab thickness, and the column concrete

strength are the three most significant parameters for the prediction of effective strength of

the joint. From the study of sensitivity of the two models as well as keeping in view the

variability in the outcome resulting from application of different analytical schemes, it is felt

that the network which requires all input quantities may be followed for generality. Results

of this study demonstrate that the NN model is far better than the regression one because

it more precisely determines the effective strength of a column-slab joint and is, therefore,

recommended for general use in order to predict the effective strength of the joint.
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