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Abstract 
In this paper, a methodology is proposed to evaluate the optimal design of truss structures considering 
progressive collapse. This methodology combines Total-Lagrangian formulation for material and geometrical 
nonlinear analysis, using nodal positions and log-strain measure; the Systematic Reliability-based Approach 
to Progressive Collapse method; and risk-optimization formulation. Two benchmark examples are analyzed 
and discussed. The results demonstrate the accuracy, robustness, and efficiency of the proposed 
methodology in evaluation the optimal design of truss structures subjected to progressive collapse. It is shown 
that material behavior (elastic, elastoplastic, and hyperelastic) and rate of loading (step and linear load) can 
lead to different optimal design configurations. In the redundant hyperstatic truss example, the coefficient of 
vulnerability identifies the most critical bar for each truss configuration. The most vulnerable bars in the 
reference design become less vulnerable in the optimal design, leading to load redistribution, or alternate 
load paths, which reduce the probability of occurrence of progressive collapse. 
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1 INTRODUCTION 

Truss structures, composed of interconnected elements forming triangular units, are ubiquitous in engineering and 
construction. From bridges to transmission towers and offshore platforms, truss elements are favored due to their low 
cost and high mechanical efficiency. However, despite their widespread use, uncertainties inherent in the structural 
response pose significant challenges in assessing their mechanical behavior, especially concerning progressive collapse 
events. 

A mechanical model of truss structures, grounded in solid mechanics principles, assumes known material properties, 
actions, and boundary conditions. These assumptions, while facilitating analysis, ignore uncertainties that must be 
accounted for to ensure a robust assessment of structural behavior (Felipe and Beck 2021). Progressive collapse events, 
triggered by abnormal loads characterized by low occurrence probabilities, high intensities, randomness, and extreme 
consequences, further emphasize the need to consider uncertainties. 

In engineering problems, uncertainties can be classified as intrinsic and epistemic (Melchers and Beck 2018). 
Intrinsic uncertainties, quantifiable in terms of probabilities, are adequately addressed through structural reliability 
analysis, which calculates the probability of failure. Epistemic uncertainties, on the other hand, include non-structural 
factors like unpredictable loads, manufacturing quality, workmanship, and human errors (Beck 2020, Beck et al. 2023), 
which can be addressed through comprehensive risk analysis (Ayyub and Klir 2006). 

While research on optimal structural design considering uncertainties has been extensive, there remains a gap 
concerning the optimization of truss structures against progressive collapse. Existing studies employ methods like 
Reliability-Based Design Optimization and Risk Optimization, yet few consider the specific challenges posed by truss 
structures and the implications of progressive collapse (Gomes and Beck 2014; Liu et al. 2016; Saad et al. 2018; 
Tessari et al. 2019; Zaman and Mahadevan 2017), (Rodrigues da Silva et al. 2024). 

Addressing this gap, this paper focuses on optimizing truss structures parametrically while considering uncertainties 
and the potential for progressive collapse. It emphasizes the necessity of accurate modeling of component failure and 
system collapse, incorporating comprehensive material failure models and dynamic finite element analysis accounting 
for material and geometrical nonlinearities. 

The study compares the effects of geometrical and material nonlinearities on the optimal design of truss structures, 
exploring fragile and ductile material models and the discrepancies between static and dynamic analyses. Results 
demonstrate the significant influence of analysis type and truss material on the optimal cross-section areas of bar 
elements, providing insights for engineers and designers seeking to enhance the structural performance and resilience 
of truss systems against progressive collapse. 

2 MECHANICAL MODELLING 

In this paper, a Total-Lagrangian formulation for material and geometrical nonlinear analysis is employed in the 
mechanical analysis of truss structures. The model employs a log-strain measure (𝜀𝜀), which is decomposed in elastic and 
plastic terms. The model assumes: decoupling between elasticity-damage and plastic hardening; von Mises yield criterion 
and isotropic hardening behavior. The total mechanical energy is written in terms of nodal positions (instead of 
displacements) according to Eq. 1 (Clough and Penzien 1975; Felipe and Beck 2021; Paultre 2011): 

Π(𝒛𝒛) = 𝑈𝑈 + 𝐾𝐾 + 𝑄𝑄 + 𝑃𝑃 = ∫ Ψ[𝜀𝜀(𝒛𝒛),𝐷𝐷,𝜛𝜛]𝑑𝑑𝑉𝑉0𝑉𝑉0
+ 1

2 ∫ ρ�̇�𝐳 ⋅ �̇�𝐳𝑑𝑑𝑉𝑉0𝑉𝑉0
+ ∮𝑭𝑭𝑑𝑑(𝒛𝒛)𝑑𝑑𝒛𝒛 − 𝑭𝑭𝑒𝑒 ⋅ 𝒛𝒛 (1) 

where 𝑈𝑈 is the strain energy; 𝐾𝐾 is the kinetic energy; 𝑄𝑄 is the dissipated energy; 𝑃𝑃 is the potential energy of the applied 
forces; 𝒛𝒛 is the vector of nodal positions in the current configuration; Ψ is the Helmholtz free energy potential; 𝑉𝑉0 is the 
initial volume, related to the initial configuration; 𝐷𝐷 is the damage variable; 𝜛𝜛 is the internal hardening variable; �̇�𝒛 is the 
velocity vector, in the current configuration, of a general point inside the domain; ρ is the mass density related to the 
initial configuration; 𝑭𝑭𝑑𝑑 is the damping force vector; and 𝑭𝑭𝑒𝑒 is the applied external force vector. Theoretical and 
implementation details are given in (Felipe et al. 2019) and (Felipe and Beck 2021). This formulation does not take into 
account the effects of eccentric connections, initial imperfections, and instability. 

3 MATERIAL FAILURE MODELLING 

Figure 1a shows typical stress-strain curves for elastic, elastoplastic and hyperelastic structural materials.   Typically, 
elastic materials have higher strength and higher Young´s modulus in comparison to elastoplastic materials; whereas 
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hyperelastic materials show much larger strains before failure, and much smaller Young´s modulus. We do not consider 
the unloading part of the elastoplastic curve as this part is not usually considered in structural design.   

 
Figure 1 – (a) Typical material failure models; and (b) Linearized “equivalent” material failure models used in this paper. 

Figure 1b shows simplified material models used in this paper. In order to establish some equivalence between the 
material failure models, we consider the same ultimate stress 𝜎𝜎𝑢𝑢 for the elastic and elastoplastic materials, with same 
elastic strain limit 𝜀𝜀𝑒𝑒. Also, we consider the same ultimate strain limit 𝜀𝜀𝑢𝑢 for the elastoplastic and hyperelastic materials. 
Importantly, these models are representative of real structural materials, but the “equivalences” above do not 
necessarily reflect actual material triplets.   

We also consider that 𝜎𝜎𝑢𝑢 = 3 𝜎𝜎𝑒𝑒/2, and that 𝜀𝜀𝑢𝑢 = 3 𝜀𝜀𝑒𝑒. Hence, the relationship between the Young´s modulus 
shown in Figure 1b are given by Equation 2. 

𝐸𝐸𝐸𝐸 = 𝜎𝜎𝑒𝑒
𝜀𝜀𝑒𝑒

;     𝐸𝐸𝐸𝐸𝐸𝐸 = 𝜎𝜎𝑢𝑢
𝜀𝜀𝑒𝑒

= 3
2
𝐸𝐸𝐸𝐸;     𝐸𝐸𝑃𝑃 = (𝜎𝜎𝑢𝑢−𝜎𝜎𝑒𝑒)

(𝜀𝜀𝑢𝑢−𝜀𝜀𝑒𝑒)
= 1

4
𝐸𝐸𝐸𝐸;     𝐸𝐸𝐻𝐻𝐸𝐸 = 𝜎𝜎𝑒𝑒

𝜀𝜀𝑢𝑢
= 1

3
𝐸𝐸𝐸𝐸 . (2) 

4 STRUCTURAL FAILURE MODELLING 

Structures and structural elements are designed to accomplish some functionality. In order to accomplish this 
functionality, structures are required to remain in equilibrium under the action of environmental and imposed loads.  
This leads to the concept of service and ultimate (equilibrium) failure modes, and corresponding service and ultimate 
limit states. More recently, the concept of performance-based engineering has also highlighted the importance of 
considering intermediate failure modes like fully operational, operational, life safety and collapse prevention. The 
simplified material models in Figure 1b, and the simple truss structures addressed herein, are not appropriate for a 
characterization of performance-based design. Yet, in comparing optimal designs considering different material behavior 
and progressive collapse of hyperstatic structures, we try to advance towards performance-based design. 

In this manuscript, we do not consider the functionality of the trusses; hence we do not address typical service 
failure modes. Yet, we address progressive collapse of hyperstatic elastic, elastoplastic and hyperelastic structures. A 
local element failure which does not lead to global collapse can be categorized as a service failure, as its consequences 
include loss of revenue due to downtime and cost of repair action.  

For structural systems, or structures composed of multiple elements, it is important to distinguish between local 
failure of individual elements, progressive failure of individual elements (damage propagation), leading (or not) to partial 
or full collapse, and global failure modes (Tessari et al. 2019). This requires a distinction between isostatic and hyperstatic 
structures, between quasi-static and dynamic loading, and a connection to the type of structural failure, which in the 
limit can be brittle or ductile. Hyperstatic structures are characterized by the degree of static indeterminacy (DSI), which 
represents the difference between the number of static unknowns (reactions and internal forces) and the number of 
static equilibrium equations. For an isostatic structure DSI = 0, and a single element (rupture type of) failure leads to 
global loss of equilibrium. For an hyperstatic structure with DSI = 2, three element failures are required to produce loss 
of equilibrium. These rules apply to the whole structure, but also to parts of it. Progressive failure involves load 
redistribution within the structure. The type of loading and type of failure are strongly connected, due to the dynamic 
load amplification (DLA) which occurs especially under elastic fracture.  
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Table 1 is a tentative to summarize the relations between type of structure, type of material failure, and type of 
failure mode. 

Table 1 – Grid of type of structural versus material failures. 

Failure mode Brittle Ductile 

Service failure Service failure normally occurs below or at the elastic limit; hence there are not many differences w.r.t. material failure 

Ultimate failure 

Element rupture in isostatic structure (global 
collapse) 

Instantaneous, no warning, 
high DLA, 𝛼𝛼𝐺𝐺𝐺𝐺 

Warning due to plastic strain, small or 
no DLA, 𝛼𝛼𝐺𝐺𝐺𝐺 

Rupture of redundant member of hyperstatic 
structure (damage propagation) 

Only relevant for large DSI 
and small DLA 

Only “service” type of failure if 
progressive collapse can be avoided, 𝛼𝛼𝐼𝐼 

Local or global collapse due to damage 
propagation (progressive collapse) 

Ample warning due to redundant 
element failures allowing preventive 

measures and evacuation, 𝛼𝛼𝑃𝑃𝑃𝑃 . 

DSI = Degree of Static Indeterminacy; DLA = Dynamic Load Amplification; 𝛼𝛼 = failure mode cost factor used in risk analysis.  

Failure consequences are significantly different for the different boxes in Table 1, even if the same use and 
environment are considered. Brittle failures occur instantaneously, with little to no warning, not allowing for preventive 
measures nor evacuation, for instance. Due to lack of redundancy, brittle failure of an element of an isostatic structure, 
or global failure, have the largest consequences. For redundant hyperstatic structures, brittle failures will only occur in a 
progressive manner if DSI is large and DLA is small; otherwise, progressive failure also occurs instantaneously, due to 
dynamic amplification in load redistribution. This last case is not studied herein. Consequences of global brittle failures 
are quantified with factor 𝛼𝛼𝐺𝐺𝐺𝐺 herein, where G is for Global and B is for Brittle, as detailed later.  

Ductile failure of elements of isostatic structures, or global ductile failures, have smaller consequences, since plastic 
strain produces reserve capacity, and serves as warning before reaching the ultimate capacity. Consequences of global 
ductile failures are quantified with factor 𝛼𝛼𝐺𝐺𝐺𝐺 < 𝛼𝛼𝐺𝐺𝐺𝐺, where D is for Ductile.  

Typically, the failure of ductile hyperstatic structures occurs in a progressive manner, following local damage to one 
or more elements. Such damage can lead to complete loss of strength of the affected elements, such as in brittle failure, 
or partial loss, as in ductile failure. Importantly, the type of material failure is relevant to the way that loads are 
redistributed to adjacent remaining elements, during damage propagation. As mentioned before, brittle structures with 
small DSI and/or large DLA may have little capacity to sustain local damage and redistribute loads, reducing the effect of 
redundancy. Yet, for ductile hyperstatic structures, the failure pattern will be significantly different. As damage 
propagation gives more warning before total collapse, we consider a consequence factor 𝛼𝛼𝑃𝑃𝑃𝑃 < 𝛼𝛼𝐺𝐺𝐺𝐺 < 𝛼𝛼𝐺𝐺𝐺𝐺, where 
subscript (∙)𝑃𝑃𝑃𝑃  is for progressive collapse. If local damage is contained, the consequences are limited to loss of revenue 
due to downtime, and to repair of failed elements. To account for the consequences of individual element failures, we 
use 𝛼𝛼𝐼𝐼 ≪ 𝛼𝛼𝑃𝑃𝑃𝑃 < 𝛼𝛼𝐺𝐺𝐺𝐺 < 𝛼𝛼𝐺𝐺𝐺𝐺. 

The actual values of consequence multiplication factors considered in this section will vary significantly with 
structural use and surrounding environment. For real structures, these values should be determined based on risk 
analysis. In this manuscript, we focus on the relative order of magnitude of these consequence factors. In this manuscript, 
we consider 𝛼𝛼𝐼𝐼 = 5 ≪ 𝛼𝛼𝑃𝑃𝑃𝑃 = 25 < 𝛼𝛼𝐺𝐺𝐺𝐺 = 50 < 𝛼𝛼𝐺𝐺𝐺𝐺 = 100, unless otherwise stated. These are considered as multiples 
of the construction costs, as detailed in the sequence. 

5 COST FUNCTIONS 

The construction cost (𝐶𝐶𝐶𝐶) is written in terms of the cost of materials, given by: 

𝐶𝐶𝐶𝐶(𝒅𝒅) = ∑ (𝐴𝐴𝑖𝑖𝐿𝐿𝑖𝑖)𝑛𝑛
𝑖𝑖=1 𝜌𝜌𝜌𝜌 (3) 

where 𝒅𝒅 is the design vector, 𝐴𝐴𝑖𝑖 is the cross-section area of bar i, 𝐿𝐿𝑖𝑖 is the length of the bar i, 𝜌𝜌 is the mass density and 𝜌𝜌 
is the unit cost of material (per weight). The reference cost for calculating the consequences of failure is the construction 
cost for the initial design, 𝐶𝐶𝑟𝑟𝑒𝑒𝑟𝑟 = 𝐶𝐶𝐶𝐶(𝒅𝒅0). 

The costs of failure are evaluated as 𝛼𝛼 𝐶𝐶𝑟𝑟𝑒𝑒𝑟𝑟, with 𝛼𝛼´s given in Section 4. The expected costs of failure, for the 𝑘𝑘𝑡𝑡ℎ 
failure mode, are given as the product of the failure probability by the cost of failure: 
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𝐸𝐸𝐶𝐶𝐸𝐸𝑘𝑘 = 𝛼𝛼𝑘𝑘 𝐶𝐶𝑟𝑟𝑒𝑒𝑟𝑟 𝑃𝑃[𝑔𝑔𝑘𝑘(𝒅𝒅,𝒙𝒙) ≤ 0] (4) 

where 𝑃𝑃[𝑔𝑔𝑘𝑘(𝒅𝒅,𝒙𝒙) ≤ 0] is the probability of failure, and 𝒙𝒙 is the vector of random parameters. 
The total expected cost (𝑇𝑇𝐸𝐸𝐶𝐶) becomes: 

𝑇𝑇𝐸𝐸𝐶𝐶 = 𝐶𝐶𝐶𝐶(𝒅𝒅) + 𝐶𝐶𝑟𝑟𝑒𝑒𝑟𝑟

⎣
⎢
⎢
⎢
⎢
⎡ ∑ 𝛼𝛼𝐼𝐼𝐼𝐼  𝑃𝑃�𝑔𝑔𝐼𝐼𝐼𝐼𝑖𝑖 (𝒅𝒅,𝒙𝒙) ≤ 0�𝑛𝑛

𝑖𝑖=1

+∑ 𝛼𝛼𝑃𝑃𝐼𝐼 𝑃𝑃�𝑔𝑔𝑃𝑃𝐼𝐼
𝑗𝑗 (𝒅𝒅,𝒙𝒙) ≤ 0�𝑓𝑓𝑖𝑖�𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

+∑ 𝛼𝛼𝑃𝑃𝐼𝐼  𝑃𝑃�𝑔𝑔𝑃𝑃𝐼𝐼𝑘𝑘 (𝒅𝒅,𝒙𝒙) ≤ 0�𝑓𝑓𝑖𝑖𝑗𝑗�𝑛𝑛
𝑘𝑘=1,𝑘𝑘≠𝑖𝑖,𝑘𝑘≠𝑗𝑗

+⋯
+𝛼𝛼𝐺𝐺  𝑃𝑃[𝑔𝑔𝐺𝐺(𝒅𝒅,𝒙𝒙) ≤ 0] ⎦

⎥
⎥
⎥
⎥
⎤

 (5) 

In Eq. (5), (∙)𝐼𝐼𝐼𝐼 is for single initial failure of the 𝑖𝑖𝑡𝑡ℎ bar, (∙)𝑃𝑃𝐼𝐼 is for conditional failure of the 𝑗𝑗𝑡𝑡ℎ bar, given failure of the 
𝑖𝑖𝑡𝑡ℎ bar; or the conditional failure of the 𝑘𝑘𝑡𝑡ℎ bar, given failure of the bars 𝑖𝑖 and 𝑗𝑗; and so on, according to the DSI of the 
structure. Also, (∙)𝐺𝐺  is for global failure modes, such as snap-through.  

The consequence factors in Eq. (5) change according to failure mode and type of material. For instance, 𝛼𝛼𝐺𝐺  is equal 
to 𝛼𝛼𝐺𝐺𝐺𝐺 for elastic materials, and 𝛼𝛼𝐺𝐺𝐺𝐺 for plastic materials. For isostatic structures, the second and third terms inside 
brackets vanish, and 𝛼𝛼𝐼𝐼𝐼𝐼 = 𝛼𝛼𝐺𝐺𝐺𝐺 or 𝛼𝛼𝐼𝐼𝐼𝐼 = 𝛼𝛼𝐺𝐺𝐺𝐺, as a single element failure leads to collapse. For ductile hyperstatic 
structures and individual failures, 𝛼𝛼𝐼𝐼𝐼𝐼 = 𝛼𝛼𝐼𝐼. For the conditional failures, 𝛼𝛼𝑃𝑃𝐼𝐼 = 𝛼𝛼𝐼𝐼, if the structure remains in equilibrium. 
When the last bars fail, making the structure unstable, 𝛼𝛼𝑃𝑃𝐼𝐼 = 𝛼𝛼𝑃𝑃𝑃𝑃. The conditional limit states in Eq. (5) are formulated 
considering the load redistribution following individual element failures.  

The proper point of compromise between safety and cost is found by solving the following risk-optimization problem 
(Rodrigues da Silva, Torii, and Beck 2023): 

𝒅𝒅∗ = arg𝑚𝑚𝑖𝑖𝑚𝑚[𝑇𝑇𝐸𝐸𝐶𝐶(𝒅𝒅):𝒅𝒅 ∈ 𝑆𝑆] (6) 

where 𝑆𝑆 = {𝒅𝒅𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑚𝑚𝑚𝑚𝑚𝑚} are side constraints. 

6 PROGRESSIVE COLLAPSE EVALUATION 

Let 𝑃𝑃[𝑓𝑓𝑖𝑖] be the individual failure probability of the 𝑖𝑖𝑡𝑡ℎ element, and 𝑃𝑃[𝑓𝑓𝑗𝑗|𝑓𝑓𝑖𝑖] the conditional failure probability of 
the 𝑗𝑗𝑡𝑡ℎ element, given failure of the 𝑖𝑖𝑡𝑡ℎ element. The conditional failure probability of the 𝑘𝑘𝑡𝑡ℎ (third) element, given 
failure of elements i and j, is given by 𝑃𝑃[𝑓𝑓𝑘𝑘|𝑓𝑓𝑖𝑖,𝑗𝑗]. Progressive collapse of a multi-member structure can potentially start 
by failure of any member; the failure path initiated by failure of member i is denoted 𝑐𝑐𝑖𝑖. Each failure path must contain 
failure of DSI+1 elements. The alternative failure paths are assumed as mutually exclusive events, such that the 
probability of collapse of a sub-system formed by n parallel members, for a structure with DSI =2, is: 

𝑃𝑃[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] = ∑ 𝑃𝑃[𝑐𝑐𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = ∑ ∑ 𝑃𝑃[𝑓𝑓𝑖𝑖] ⋅ 𝑃𝑃[𝑓𝑓𝑗𝑗|𝑓𝑓𝑖𝑖] ⋅ 𝑃𝑃�⋃ (𝑓𝑓𝑘𝑘|𝑓𝑓𝑖𝑖,𝑗𝑗)𝑛𝑛

𝑘𝑘=1,𝑘𝑘≠𝑖𝑖,𝑘𝑘≠𝑗𝑗 �𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

𝑛𝑛
𝑖𝑖=1  (7) 

The number of failure paths to be analyzed can be reduced by identifying the most vulnerable elements, as argued in 
(Felipe and Beck 2021) and detailed later in this paper.  

7 NUMERICAL RESULTS 

This section presents the optimal design of the von Mises truss and a two-bay cantilever truss. Results are presented 
in increasing order of complexity: linear elastic analysis is shown first, then the nonlinear elastic and hyperelastic 
solutions are accounted for and, finally, the nonlinear plastic solution is considered. Also, the optimal design of the two-
bay cantilever truss is calculated through nonlinear dynamic analysis. These solutions are compared and discussed in the 
following. In the mechanical analysis, a convergence tolerance of 10-6 is considered, based on the norm of position 
changes in accordance with (Felipe and Beck 2021). Probabilities of failure (𝑃𝑃𝑟𝑟) are assessed through Weighted Average 
Simulation Method (WASM) proposed by (Rashki et al. 2012). The number of WASM samples is ns = 2·106. By way of 
WASM, limit state functions need to be evaluated only once, for each sample point, and before entering the optimization 
routine. During the optimization, only the weights of each sample need to be updated (Rashki et al. 2014). This 
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significantly speeds the computations. Firefly Algorithm (FA) is employed to solve the risk optimization problem (Yang 
2010). The values of the parameters for FA are: γ = 0.70; β0 = 1.0; α0 = 0.95; and nfirefly = 10. Table 2 describes the random 
variables and the assigned statistical properties. In all solutions presented herein, buckling of compressed members is 
disregarded. 

Table 2 - Statistics for von Mises truss and two-bay cantilever truss. 

Variable Mean cov distribution ref. 

EE 1.00EE 0.03 Lognormal (JCSS 2001) 
σe 1.05σe 0.11 Lognormal (Ellingwood and Galambos 1983) 
Fv 1.00Fv 0.25 Gumbel Max (Ellingwood and Galambos 1983) 
Fh 1.00Fh 0.25 Gumbel Max (Ellingwood and Galambos 1983) 

7.1 von Mises truss 

Figure 2 presents the geometric input data of the von Mises truss. Nominal values for the parameters are as 
follows: b = 100 cm; h = 10 cm; A1 = 2.6 cm2; A2 = 2.6 cm2; ρ = 7850 kg/m3; EE = 20000 kN/cm2; σe = 25 kN/cm2; Fh = 
5 kN; Fv = 20 kN and ϕ = 0.10 rad. Strength material parameters (for elastic, “hyperelastic” and plastic analysis) 
were calculated by Equation 2. 

 
Figure 2 – Geometric input data for von Mises truss. 

Vector 𝒅𝒅 contains the random design variables: 𝒅𝒅 = {𝐴𝐴1,𝐴𝐴2}. The design variables are the means of normal 
distributed random variables with coefficient of variation (cov) equal to 0.10. 

For the solution with elastic material, the limit state function for each bar is given by: 

𝑔𝑔𝐼𝐼𝑖𝑖(𝒙𝒙,𝒅𝒅) = 𝜎𝜎𝑢𝑢 − |𝜎𝜎𝑖𝑖(𝒙𝒙,𝒅𝒅)| (8) 

where (∙)𝐼𝐼𝑖𝑖   indicates individual failure of the 𝑖𝑖𝑡𝑡ℎ bar; 𝜎𝜎𝑢𝑢 is the ultimate stress; 𝜎𝜎𝑖𝑖  is the stress of bar i; and |∙| is the absolute 
value operator.  

For the solution with hyperelastic and plastic materials, the limit state function is given by: 

𝑔𝑔𝐼𝐼𝑖𝑖(𝒙𝒙,𝒅𝒅) = 𝜀𝜀𝑢𝑢 − |𝜀𝜀𝑖𝑖(𝒙𝒙,𝒅𝒅)| (9) 

where 𝜀𝜀𝑢𝑢 is the ultimate strain; and 𝜀𝜀𝑖𝑖 is the strain of the bar i. 
In the nonlinear solution when design variable ℎ is small in comparison to 𝑏𝑏, the von Mises truss can fail due to 

snap-through. The limit state function for this global failure mode is 

𝑔𝑔𝐺𝐺(𝒙𝒙,𝒅𝒅) = 𝐸𝐸𝑙𝑙𝑖𝑖𝑚𝑚 − |𝐸𝐸𝑣𝑣(𝒙𝒙,𝒅𝒅)| (10) 
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where 𝐸𝐸𝑙𝑙𝑖𝑖𝑚𝑚 is the limit force, 𝐸𝐸𝑣𝑣 is the vertical force in node 1. The 𝐸𝐸𝑙𝑙𝑖𝑖𝑚𝑚 is the maximum force that the von Mises truss 
resists in a stable regime of static equilibrium before the snap-through occurrence. This force is obtained from the 
verification of negative eigenvalues in the Hessian matrix in a given load step of the mechanical solution. 

The total expected cost (TEC) of the von Mises truss becomes: 

𝑇𝑇𝐸𝐸𝐶𝐶 = 𝜑𝜑𝑚𝑚𝐶𝐶𝐶𝐶(𝒅𝒅) + ∑ 𝛼𝛼𝐼𝐼 𝐶𝐶𝑟𝑟𝑒𝑒𝑟𝑟 𝑃𝑃[𝑔𝑔𝐼𝐼𝑖𝑖(𝒅𝒅,𝒙𝒙) ≤ 0]𝑛𝑛
𝑖𝑖=1 + 𝛼𝛼𝐺𝐺  𝐶𝐶𝑟𝑟𝑒𝑒𝑟𝑟 𝑃𝑃[𝑔𝑔𝐺𝐺(𝒅𝒅,𝒙𝒙) ≤ 0] (11) 

Side constraints in Eq. (6) are 𝑆𝑆 = {𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝒅𝒅 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚} = {2 ≤ 𝒅𝒅 ≤ 20} [𝑐𝑐𝑚𝑚2]. Also, 𝛼𝛼𝐼𝐼 = 𝛼𝛼𝐺𝐺 = 𝛼𝛼𝐺𝐺𝐺𝐺 = 100 because the 
rupture of a bar leads to direct collapse (elastic failure mode) of the von Mises truss, in accordance with Table 1. The 𝜑𝜑𝑚𝑚 
coefficient is the relationship between the Youngs modulus of the materials, according to Table 3. 

Table 4 provides a comprehensive summary of the results obtained for different solutions. Notably, as the solutions 
are refined, there is a consistent increase in the cross-sectional areas of the truss bars. This trend underscores the 
significance of iterative refinement in accurately capturing the structural response. This study emphasizes the inadequacy 
of the Linear Elastic (LE) solution, which fails to consider geometrical and material nonlinearities, resulting in a 
considerable deviation from the actual structural behavior. Furthermore, the Nonlinear Elastic (NLE) solution, while 
accounting for snap-through occurrences, overlooks the reduction in stiffness due to plastic strain. On the other hand, 
the Nonlinear Hyperelastic (NLH) solution leads to larger cross-section areas compared to the Nonlinear Plastic (NLP) 
solution, attributed to lower stiffness. This reduction in stiffness enhances snap-through occurrences, necessitating an 
increase in cross-section areas to maintain structural integrity. 

Table 3 – Costs for the von Mises truss. 

Solution 𝝋𝝋𝒎𝒎 =
𝑬𝑬𝒎𝒎
𝑬𝑬𝑬𝑬

 
cost of materials total expected cost 

mean ($) cov (%) mean ($) cov (%) 

LE 1.500 13.55 0.36 14.82 0.020 
NLE 1.000 10.82 0.25 12.28 0.005 
NLP 0.625 9.03 0.13 9.73 0.002 
NLH 0.333 8.41 0.08 9.25 0.001 

Note: The mean and cov are obtained from ten fireflies in one run of the algorithm. 

Table 4 – Optimum solutions for the von Mises truss. 

Solution 

Design variables 

A1 A2 

mean (cm2) cov (%) mean (cm2) cov (%) 

LE 5.79 0.58 5.66 0.53 
NLE 6.88 0.31 6.83 0.35 
NLP 9.33 0.35 8.99 0.40 
NLH 16.04 0.25 15.93 0.22 

Note: The mean and coefficient of variation (cov) were obtained from ten fireflies in one run of the algorithm. 

Figure 3 depicts the equilibrium paths of the von Mises truss under different solutions. These curves, derived from 
the mean values of random variables and optimal design variables (Table 4), offer valuable insights into the structural 
behavior. Notably, the optimal solutions converge to a linear elastic pattern, accompanied by an increase in the cross-
sectional areas of the truss bars. This transition underscores the dynamic nature of the structural response and highlights 
the importance of adapting design parameters to achieve optimal performance. In conclusion, the comparative analysis 
of structural solutions for the Von Mises truss provides valuable insights into the complex interplay between material 
properties, geometric complexities, and structural behavior. By scrutinizing the discrepancies between linear and 
nonlinear solutions and delineating the implications for design, the study contributes to the advancement of structural 
engineering knowledge. Continued research efforts in this domain are crucial to address emerging challenges and drive 
innovation in structural mechanics. 
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Figure 3 – Comparison of load-displacement responses, for initial (reference) designs, and for optimal solutions. 

7.2 Two-bay cantilever truss 

Figure 4 presents the geometric input data of the two-bay cantilever truss. The mechanical analysis of this truss was 
studied by (Noor and Peters 1980; Zhu et al. 1994). Here the risk-based optimization of this structure is performed. 
Young`s modulus, yield stress, density, and damping rate are given as EE = 200 GPa; σe = 250 MPa; ρ = 7850 Kg/m3; and 
ξ = 0.05. Strength material parameters for plastic analysis were calculated by Equation 2. Initial cross-section area of the 
bars for the reference design are A1 = A2 = A3 = A4 = 200 mm2. For dynamic analysis, the Newmark parameters are βn = 
0.25; γn = 0.50; and Δt = 10-4 s. The amplitude of external force is 𝑓𝑓0 = 105 N. 

 
Figure 4 – Input data for two-bay cantilever truss: geometry. 

 
Figure 5 – Input data for two-bay cantilever truss: (a) step load; and (b) linearly increasing force. 
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A step load is a discontinuous force that suddenly changes from zero to a constant value 𝑓𝑓0, as illustrated in Figure 5(a). 
The step load is defined as: 

𝐸𝐸𝑣𝑣(𝑡𝑡) = �𝑓𝑓0   for 𝑡𝑡 ≥ 0
0   for 𝑡𝑡 < 0

 (12) 

A linearly increasing force is a continuous force which is increased up to a finite value 𝑓𝑓0, corresponding to time td, as 
illustrated in Figure 5(b). The linearly increasing force can be expressed as: 

𝐸𝐸𝑣𝑣(𝑡𝑡) = �𝑟𝑟0
𝑡𝑡𝑑𝑑
� 𝑡𝑡    for 0 ≤ 𝑡𝑡 ≤  𝑡𝑡𝑑𝑑              (13) 

Figure 6 show the displacement time histories, for the step load and linearly increasing force, respectively. These responses were 
obtained used the reference design. Remark that step load produces greater vertical displacement than linearly increasing force. 
This is due to the rate of loading, as step load is suddenly applied. The rate of loading also affects the appearance of plastic strains 
in the bars. For the step load, plastic strains appear in all bars, except bar 5, according to Figure 7(a). On the other hand, for linearly 
increasing force plastic strains appear only in bars 1, 6, 7 and 9, as illustrated in Figure 7(b).  

 
Figure 6 – Displacement time histories of the two-bay cantilever truss: (a) step load; and (b) linearly increasing force. Responses 

were obtained using the reference design. 

 
Figure 7 – Plastic strains of the two-bay cantilever truss: (a) step load; and (b) linearly increasing force. Responses were obtained 

using the reference design. 
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For the reliability analysis, the limit state function for hyperelastic and plastic materials is given by Equation (9).  As 
the structure is hyperstatic, it is necessary to determine the most vulnerable bars to initiate the progressive collapse. For 
this purpose, the SRAPC (Systematic Reliability-based Approach to Progressive Collapse) methodology is used 
(Felipe et al. 2018). Figure 8 shows the values of the coefficient of vulnerability (CV) for each bar for different analyses. 
It becomes evident that the most vulnerable elements, for this hyperstatic truss, are bars number 1 and 9, followed by 
bars 7 and 6. The CV for bar 5 is virtually zero, showing that a primary failure of this bar would have few consequences, 
unlikely to lead to progressive collapse. As commented in (Felipe and Beck 2021) bars 1 and 9 fail due to the accumulation 
of damage because of the mechanical degradation process.  

 
Figure 8 – CV for each bar for different analyses. Responses were obtained using the reference design. 

If bars 1 and 9 fail, this leads to truss collapse due to hypostatic condition. Thus, by the SRAPC methodology, the 
probability of collapse (𝑃𝑃[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]) can be evaluated by Equation (14): 

𝑃𝑃[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] ≅ 𝑃𝑃[𝑏𝑏1] ∙ 𝑃𝑃[𝑏𝑏9|𝑏𝑏1] (14) 

where 𝑃𝑃[𝑏𝑏1] is the probability of failure of bar 1; and 𝑃𝑃[𝑏𝑏9|𝑏𝑏1] is the conditional probability of failure of bar 9, given 
failure of bar 1. 

The total expected cost (TEC) of the two-bay cantilever truss becomes:  

𝑇𝑇𝐸𝐸𝐶𝐶 = 𝜑𝜑𝑚𝑚𝐶𝐶𝐶𝐶(𝒅𝒅) + ∑ 𝛼𝛼𝐼𝐼 𝐶𝐶𝑟𝑟𝑒𝑒𝑟𝑟 𝑃𝑃[𝑔𝑔𝐼𝐼𝑖𝑖(𝒅𝒅,𝒙𝒙) ≤ 0]𝑛𝑛
𝑖𝑖=1 + 𝛼𝛼𝐺𝐺  𝐶𝐶𝑟𝑟𝑒𝑒𝑟𝑟𝑃𝑃[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]      (15) 

where 𝒅𝒅 = {𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4} contains the design variables, which are the means of the corresponding random variables; 
and 𝑆𝑆 = {𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝒅𝒅 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚} = {(1 ≤ 𝐴𝐴1,𝐴𝐴3 ≤ 20), (0.1 ≤ 𝐴𝐴2,𝐴𝐴4 ≤ 2)} [𝑐𝑐𝑚𝑚2]  being side constraints. Random design 
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variables are represented by a normal distribution with the coefficient of variation equal to 0.10. Here, 𝛼𝛼𝐼𝐼 = 5 because 
the rupture of a hyper-static member does not lead to progressive collapse. This is considered a service failure. For the 
cost of collapse (ultimate failure), 𝛼𝛼𝐺𝐺 = 25𝛿𝛿 is assumed. In the search for the optimal design of the truss, if failure of a 
second bar occurs, after failure of a redundant member, 𝛿𝛿 = 1; but if the truss collapses directly, due to the failure of an 
isostatic member, 𝛿𝛿 = 4.  

Tables 5 and 6 present a summary of the results. Note that the nonlinear hyperelastic solution (NLH) leads 
to a larger cross-section area for the bars, due to the lower stiffness compared to the nonlinear plastic solution 
(NLP). Also, the optimal cross-section areas of the bars depend on the type of load applied. This is due to the rate 
of loading, as step load is suddenly applied, whereas linearly increasing force is incrementally applied. In Tables 
5 to 8, the mean and coefficient of variation (cov) were obtained from ten fireflies at the endd of one run of the 
algorithm. 

Figures 9 and 10 show the displacement time histories and the plastic strains of the optimal designs, respectively. 
These figures can be compared with Figures 6 and 7 for the reference truss. As noted, the optimal trusses show reduced 
vertical displacemens and reduced plastic strains, especially for the step load case.  

Table 5 – Results for the two-bay cantilever truss: step load. 

Solution 

Design variables 

A1 A2 A3 A4 

mean (cm2) cov (%) mean (cm2) cov (%) mean (cm2) cov (%) mean (cm2) cov (%) 

NLP 10.00 0.95 1.89 1.55 4.58 1.37 1.00 0.86 
NLH 19.00 0.54 2.00 0.00 10.80 0.58 1.56 0.50 

Table 6 – Results for the two-bay cantilever truss: linearly increasing force. 

Solution 

Design variables 

A1 A2 A3 A4 

mean (cm2) cov (%) mean (cm2) cov (%) mean (cm2) cov (%) mean (cm2) cov (%) 

NLP 4.11 2.33 2.00 0.00 1.00 0.00 0.11 13.73 
NLH 7.00 0.84 2.00 0.54 4.18 0.77 1.66 0.79 

Table 7 – Costs for the von Mises truss: step load. 

Solution 𝝋𝝋𝒎𝒎 =
𝑬𝑬𝒎𝒎
𝑬𝑬𝑬𝑬

 
cost of materials total expected cost 

mean ($) cov (%) mean ($) cov (%) 

NLP 0.625 26.27 0.88 32.13 0.11 
NLH 0.333 27.39 0.34 32.39 0.01 

Table 8 – Costs for the von Mises truss: linearly increasing force. 

Solution 𝝋𝝋𝒎𝒎 =
𝑬𝑬𝒎𝒎
𝑬𝑬𝑬𝑬

 
cost of materials total expected cost 

mean ($) cov (%) mean ($) cov (%) 

NLP 0.625 10.87 1.30 11.34 0.32 
NLH 0.333 14.41 0.17 11.49 0.51 
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Figure 9 – Displacement time histories of the two-bay cantilever truss: (a) step load; and (b) linearly increasing force. Responses 

were obtained using the optimal designs. 

 
Figure 10 – Plastic strains of the two-bay cantilever truss: (a) step load; and (b) linearly increasing force. Responses were obtained 

using the optimal designs. 

Figure 11 shows the coefficients of vulnerability for the different bars of the optimal trusses. The comparison 
between Figure 11, Figure 8, and the results presented in Tables 5 and 6 reveals insightful patterns regarding the impact 
of structural modifications on the vulnerability of truss elements. Specifically, the increase in the cross-sectional area 
(A1) of bars 1 and 9 appears to have effectively reduced the vulnerability of these bars to failure. This observation aligns 
with the expected outcome, as reinforcing critical elements can enhance the overall stability of the structure. 

However, the analysis also highlights a nuanced effect on the vulnerability of other bars, notably bar 7. Despite the 
increase in cross-sectional area (A3) for most optimum truss designs, the vulnerability of bar 7 seems to have heightened. 
This intriguing finding underscores the complexity inherent in structural modifications and their implications for 
vulnerability mitigation. It suggests that while reinforcing certain elements may bolster structural integrity, it can 
inadvertently redistribute stress and increase vulnerability in other areas. 

This intricate interplay between structural modifications and vulnerability mitigation strategies underscores the 
importance of comprehensive design considerations. Engineers must carefully assess not only the direct impact of 
modifications but also their potential ripple effects on the overall structural behavior. By leveraging insights from 
displacement responses and reliability assessments, engineers can effectively navigate these complexities and devise 
robust mitigation strategies. 

In essence, the analysis presented in the text underscores the paramount importance of holistic approaches to 
structural design and evaluation. By integrating insights from displacement responses and reliability assessments, 
engineers can iteratively refine designs to enhance resilience and safety against diverse loading scenarios. This proactive 
approach enables the creation of structures that not only withstand anticipated loads but also exhibit robustness in the 
face of unforeseen challenges. 
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Figure 11 – CV for each bar for different analyses. Responses were obtained using the optimal designs. 

The formulation proposed herein for the optimal design of nonlinear truss structures considering progressive collapse 
leads to simple mathematical formalism, easy numerical implementation, and low computational cost. This last claim is 
evaluated by an analysis of computer processing times, as reported in Table 9. Numerical solutions were computed on an 
Intel Core i7-8550U processor, with clock speed of 1.80 GHz.  Analyses were obtained with nS = 2·106 samples of Weighted 
Average Simulation Method, and n = 102 load steps. Consequently, for each load case (step load and linearly increasing 
force), the numerical model was evaluated 2·108 times. As observed in Table 9, the risk optimization considering nonlinear 
dynamic solutions reported in this paper were obtained within very small computation times.  

Table 9 – Processing time of the analyses. 

Type of Loading Analysis Processing time (s) 

Response to a step load Plastic 8.4710·103 
Hyperelastic 4.4227·103 

Response to linearly increasing force Plastic 6.5434·103 
Hyperelastic 6.3440·103 

8 CONCLUSION 

This paper introduces a comprehensive methodology aimed at evaluating the optimal design of truss structures 
subjected to progressive collapse. The proposed approach integrates various analytical techniques, including total-
Lagrangian formulation for material and geometrical nonlinear analysis, systematic reliability-based approach to 
progressive collapse, and risk-based optimization. Additionally, the study utilizes the ductile-damage FLHB model for 
nonlinear static and dynamic analysis. 

Through the examination of two academic benchmark examples, the effectiveness and stability of the proposed 
methodology are demonstrated. The results indicate that the methodology efficiently evaluates optimal truss designs under 
progressive collapse scenarios. Furthermore, it is revealed that material behavior (elastic, elastoplastic, and hyperelastic) 
and the rate of loading (step and linear load) significantly influence the configurations of optimal truss designs. 
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Specifically, the optimal solution for the von Mises truss is characterized by a linear elastic response with an increasing 
cross-section of bars. Moreover, the convergence of optimal design for the two-bay cantilever truss, a hyper-static structure, 
is shown to depend on the coefficient of vulnerability. Notably, the optimization process leads to a reduction in the 
vulnerability of the most critical bars in the reference design, resulting in load redistribution and the establishment of 
alternate load paths. This redistribution effectively mitigates the probability of progressive collapse occurrence. 

In conclusion, the study underscores the importance of adopting a holistic approach to truss structure optimization. 
By integrating considerations of uncertainties, progressive collapse, and advanced analysis techniques, engineers can 
develop resilient and efficient truss structures capable of withstanding extreme loading conditions while minimizing the 
risk of catastrophic failure. This holistic approach not only enhances structural safety but also contributes to the 
advancement of structural engineering practices in mitigating the effects of unexpected events. 
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