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Abstract: We investigate expressiveness and definability issues with respect to
minimal models, particularly in the scope of Circumscription. First, we give a
proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then
we show that, if the class of P ;Z-minimal models of a first-order sentence is ∆-
elementary, then it is elementary. That is, whenever the circumscription of a first-
order sentence is equivalent to a first-order theory, then it is equivalent to a finitely
axiomatizable one. This means that classes of models of circumscribed theories are
either elementary or not ∆-elementary. Finally, using the previous result, we prove
that, whenever a relation Pi is defined in the class of P ;Z-minimal models of a first-
order sentence φ and whenever such class of P ;Z-minimal models is ∆-elementary,
then there is an explicit definition ψ for Pi such that the class of P ;Z-minimal
models of φ is the class of models of φ ∧ ψ. In order words, the circumscription of
P in φ with Z varied can be replaced by φ plus this explicit definition ψ for Pi.
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1. INTRODUCTION

In practical situations, people reason and act without having com-
plete or sufficient knowledge about the situation that they are dealing
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with. Sometimes, there is no way or it is too much expensive to obtain
all the necessary information in order to be secure about our conclu-
sions. However, in such cases, we may find ourselves in a position in
which it is mandatory to take some action or make some inferences.
For instance, a pilot which need to abort landing the airplane for some
technical problem just discovered will immediately go-around instead
of waiting for the confirmation that this action will not lead to a crash
with another aircraft. Reasoning under such circumstances is, thus,
required. Any system intended to describe or simulate practical rea-
soning must be able to deal with the lack of information. Actually, even
in daily activities we assume beliefs which we take as certain, but for
which there is no logical, deductive justification (Hume (1748)). How-
ever, although we cannot deduce from earlier facts that to put ours
hands on the fire will burn them, no mentally healthy person will do
this and think that nothing will go wrong.

The lack of information and the need of drawing conclusions force us
to go beyond of which can be deduced from our partial, current knowl-
edge. In real life, we make use of general or uncertain knowledge, such
as that “birds generally flies” and that penguins do not, to guide us in
the task of making such assumptions. However, due to the character
of uncertainty of such sort of assumption, it may be confronted with
new, reliable information and be refuted. Hence, besides the ability of
handling the lack of information and the use of general and uncertain
knowledge, another feature of a system that models practical reasoning
is to be able to backtrack and drop some previous conclusions inferred
from uncertain assumptions in order to stay consistent with the new
information obtained.

In order to formalize practical reasoning under partial knowledge,
classical logic is not appropriate. In fact, classical logic is deductive
and, as a deductive approach to reasoning, classical logic cannot go
beyond and infer more than what is already known. As we argued
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above, in practical situations one must conclude more than what can
be deduced, that is, a logical system for practical reasoning must allow
non-deductive inferences. Another feature of classical reasoning is the
monotonicity property: the addition of new premises does not invali-
date previous inferences. On the contrary, logical systems for practical
reasoning must be non-monotonic, since conclusions taken under par-
tial knowledge may be defeated. Hence, classical logic is not suited to
properly deal with practical reasoning.

In the 1980s, with the increasing interest in Artificial Intelligence,
some non-monotonic logical systems where proposed to formalize prac-
tical reasoning, such as Reiter’s Default logic Reiter (1980), Doyle and
McDermott’s Non-Monotonic logic McDermott, Doyle (1980) and Mc-
Carthy’s Circumscription McCarthy (1980, 1986). Our focus, here, is
in the latter approach since we are interested in minimal models, as we
explain below.

McCarthy’s Predicate Circumscription is one of the most studied
logical approaches to non-monotonic reasoning (see Lifschitz (1994) for
a good introduction and extensive bibliography). In McCarthy (1980),
McCarthy introduces Circumscription to deal with the Qualification
Problem. The Qualification Problem is the problem of describing or
qualifying the necessary conditions to take an action or safely infer
some information in a given situation. As argued in McCarthy (1980),
it is practically impossible to deal with the huge amount of constraints
or conditions necessary for the success of an action. In practice, peo-
ple disregard many possible obstacles or assumptions contrary to some
conclusion just because they are unknown, there is no evidence for it,
or they usually do not happen. Usually, we concentrate on the rele-
vant evidences drawing conclusions even in the absence of information
about conditions of success. We also suppose, under the lack of knowl-
edge about the consequences of some action, that things not directly
involved in the action will stand as they were before the action was
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taken. McCarthy argued also that if, on the one hand, we must go be-
yond what can be deduced from the known information, on the other
hand we should avoid unreasonable assumptions. That is the case, for
instance, of the winged horse solution for McCarthy’s Missionaries and
Cannibals puzzle McCarthy (1980). General or default knowledge is
used as an heuristics, a guide to reasoning.

The intuitive idea of Predicate Circumscription is to consider that
the objects which have some property are only those necessary to sat-
isfy the problem description. In McCarthy (1980), Predicate Circum-
scription was introduced as a first-order formula schema and, in Mc-
Carthy (1986), as a second-order formula, with an additional extension
called Formula Circumscription. Here, we will call them first-order
Circumscription and second-order Circumscription, respectively. Pred-
icate Circumscription works minimizing the extent of some relation
in the problem description. A variant called Parallel Circumscription
works minimizing a tuple of relations at the same time. In a model of a
circumscribed theory, the circumscribed relations are intended to have
extents as minimal as possible and satisfying the theory. Such models
are called minimal models.

Minimal models were used in the 1980s to provide semantics for
McCarthy’s Circumscription McCarthy (1980, 1986). In the 1980s and
mid 1990s, the mathematics of minimal models was widely studied in
the scope of Circumscription and its extensions (see Lifschitz (1994)).
In 1995, Lifschitz extended McCarthy’s Circumscription to Nested Ab-
normality Theories (NATs) Lifschitz (1995). In NATs, circumscriptions
can be grouped into blocks and circumscribed again. Recent work has
been done on the computational complexity of satisfiability and valid-
ity of propositional versions of NATs Cadoli et al (2005). In Ferreira,
Martins (2007), the logical expressiveness of NATs, as presented in Lif-
schitz (1995), was studied and it was proved that the expressive power
of
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of NATs is equivalent to the expressive power of second-order logic,
modulo extra relations.

Minimal models are also related with fixed-points. In van Benthem
(2005), van Benthem introduced the MIN(FO) logic that allows one
to define the minimal relation which satisfies certain syntactically de-
fined sort of formulas: the PIA-Conditions. These minimal relations
are the extent of P in the P -minimal models (see Section 2 for the def-
inition of P -minimal model) of the corresponding PIA-Condition, for a
syntactically determined relation symbol P in the PIA-Condition. van
Benthem (2005) showed that MIN(FO) is equivalent to the Least Fixed
Point Logic—LFP (see Dawar, Gurevich (2002) for results on LFP).

In this paper, we will examine expressiveness and definability pro-
perties of logics with respect to minimal models, in particular, Cir-
cumscription. In Section 2, we will introduce the basic concepts of
Minimal Model Theory and Circumscription. In Section 3, we will in-
vestigate the expressive power of Circumscription. First, we will give
a proof that the Löwenheim-Skolem Theorem does not hold for Cir-
cumscription. After that, we will prove a theorem relating classes of
minimal models and ∆-elementary classes (see Definition 3.6). We will
show that, if the class of P ;Z-minimal models of a first-order sentence
is ∆-elementary, then it is elementary. That is, whenever a circum-
scribed theory is equivalent to a first-order theory, then it is equiva-
lent to a finitely axiomatizable one. It follows that classes of minimal
models of first-order sentences either are elementary or are not even
∆-elementary. In Section 4, we investigate definability on Circumscrip-
tion. We will introduce the main concepts of the Theory of Definitions
and address a statement made in Doyle (1985) regarding definitions
and Circumscription. We will also state and prove a theorem which
can be taken as an alternative approach to some problems faced in
Doyle (1985). We will show that, whenever the circumscription of a
tuple of relations P in a finite first-order theory φ, implicitly defines
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some circumscribed relation Pi and such circumscription is equivalent
to a (possibly countable) first-order theory Γ, then there is a specific
explicit definition ψ for Pi in Γ which, together with the initial theory
φ, is equivalent to the theory Γ. We will use the result of Section 3 to
show that the theory Γ is finitely axiomatizable. In Section 5, we will
draw some conclusions about all we have done in the previous sections.

The basic logic notation used throughout this text follows that in
Ebbinghaus et al (1994). For instance, a symbol set S is a set of
relation, function and constant symbols. An S-structure is a pair
A = (A, σ), where A is a set and σ is a map which associates an
n-ary relation σ(P ) = PA ⊂ An to each n-ary relation symbol P ∈ S,
an n-ary function σ(f) = fA : An → A to each n-ary function symbol
f ∈ S and an element σ(c) = cA ∈ A to each constant symbol c ∈ S.
(We use “relation” instead of “relation symbol” when the meaning is
clear from the context.) The satisfiability relation |= is defined as usu-
ally, for instance as in Ebbinghaus et al (1994), for both first-order
and second-order sentences. We use Fraktur capital letters, such as
A,B,C, . . ., to denote structures and the corresponding Roman capital
letters A,B,C, . . . for their domains. We call ModS(Γ) the class of
S-structures which satisfy (are models of) the S-sentences in the set Γ
of S-sentences. Given a class of S-structures C, we call ThFOS (C) the
set of first-order S-sentences satisfied by every S-structure in C.

In the next section, we will introduce the main concepts of Minimal
Model Theory and Circumscription that will be used in Sections 3 and
4.
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2. MINIMAL MODELS AND CIRCUMSCRIPTION

By minimal models we mean those defined over the following rela-
tion.
Definition 2.1 [A ≤P ;Z B] Let S ∪ {P ,Z} be a symbol set such that
P = P1, . . . , Pm and Z = Z1, . . . , Zv are tuples of relation symbols.
Let A and B be two structures on the symbol set S ∪ {P ,Z} (in other
words, two S ∪ {P ,Z}-structures) with the same domain A. We say
that A and B agree on the interpretation of all symbols in S iff, for
each s ∈ S, we have

sA = sB.

We define the relation ≤P ;Z between structures on the same symbol set
S ∪ {P ,Z} which agree on S and with varied Z as:

A ≤P ;Z B iff, for each 1 ≤ i ≤ m, PA
i ⊆ PB

i .

When the tuple Z has length 0 (Z = ∅), we write ≤P for ≤P ;∅.

It is easy to see that ≤P ;Z is a preorder, that is, it is reflexive and
transitive. Hereafter, we consider P = P1, . . . , Pm and xi a tuple of
variable whose length is equal to the arity of Pi, 1 ≤ i ≤ m, Z =
Z1, . . . , Zv and yj is a tuple of variables whose length is equal to the
arity of Zj , 1 ≤ j ≤ v. We also consider S, {P} and {Z} as pairwise
disjoint and S′ = S∪{P}∪{Z}, if not otherwise stated. Also note that
we use a semi-colon between the tuple of relations P and the tuple of
varied relations Z instead of a comma, which is used between symbols
in a tuple or list. If Z is empty, then the relation ≤P is a partial order,
that is, an antisymmetric preorder. An example of this case occurs
when S′ = {P}, which means that all relation symbols in the symbol
set are minimized.

Definition 2.2 [P ;Z-Minimal Models of C] Let C be a class of
S ∪ {P ,Z}-structures. A structure A ∈ C is a P ;Z-minimal model of
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C iff A is minimal with respect to the restriction of ≤P ;Z to C, that is,
there is no B ∈ C such that

B ≤P ;Z A and not A ≤P ;Z B.

When Z has length 0, we say that A ∈ C is a P -minimal model instead
of P ; ∅-minimal model. Given an S′-sentence φ, we say that a model is
a P ;Z-minimal model of φ if it is a P ;Z-minimal model of ModS′(φ).

Definition 2.3 [Minimal Consequence |=P ;Z ] Given two sentences
φ and ψ, we say that φ P ;Z-minimally entails ψ, in symbols φ |=P ;Z ψ,
iff each P ;Z-minimal model of φ is a model of ψ.

McCarthy’s Circumscription captures the Closed World Assump-
tion Reiter (1978) by means of minimal models. In McCarthy (1980),
McCarthy introduced Circumscription as a first-order formula schema.
Let T (P ,Z) be a first-order sentence on the symbol set S ∪ {P ,Z},
where P = P1, . . . , Pm and Z := Z1, . . . , Zv are tuples of relation sym-
bols. The circumscription schema for P in T (P ,Z) with varied Z is
the following expression:

CS(T (P ,Z); Φ; ζ)

:= (1)(
T (Φ, ζ)∧

∧
1≤i≤m

∀xi(Φi(xi)→ Pi(xi))
)
→

∧
1≤i≤m

∀xi(Pi(xi)→ Φi(xi)),

where Φ = Φ1, . . . ,Φm is a tuple of metavariables standing for any
S ∪ {P ,Z}-formulas φ = φ1(x1), . . . , φm(xm) with free variables in xi,
respectively, and such that the length of xi is equal to the arity of Pi,
and ζ is a tuple of metavariables standing for any tuple of S ∪ {P ,Z}-
formulas δ := δ1(y1), . . . , δv(yv) such that the length of yi is equal to the
arity of Zi. An instance of (1) is obtained by replacing every occurrence
of Pi(t) with φi(t), for any tuple t = t1, ..., tn of terms in the language,
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and every occurrence of Zi(t) with δi(t), for any tuple t of terms in
the language, with the appropriate substitutions of bound variables in
the formulas φ1(x1), . . . , φm(xm), δ1(y1), . . . , δv(yv) to avoid undesired
biding of the variables in t. Such an instance says that, if the relations
defined by φ1(x1), . . . , φm(xm), δ1(y1), . . . , δv(yv) satisfy the sentence
T (φ, δ) and the relation Pi contains the relation defined by φi(xi), for
each 1 ≤ i ≤ m, then the relation defined by φi(xi) also contains the
relation Pi for 1 ≤ i ≤ m. Hence, the schema (1) says that, every
definable relation that satisfies T and is contained in Pi, also contains
Pi, with Z varying among definable relations. We define first-order
circumscription as follows.

Definition 2.3 [First-Order Circumscription] Given a sentence
T (P ,Z), we define the first-order circumscription of P in T (P ,Z) with
varied Z as the set of sentences

CircFO[T (P ,Z);P ;Z] := {T (P ,Z)} ∪ {θ|θ is an instance of (1)}.

We write CircFO[T (P ,Z);P ] for CircFO[T (P ,Z);P ; ∅].

Any P ;Z-minimal model of T (P ,Z) is a model of CircFO[T (P ,
Z);P ;Z]. However, it can be proved that, for some S∪{P ,Z}-sentence
T (P ;Z), not every model of CircFO[T (P ;Z);P ;Z] is a P ;Z-minimal
model in the sense of Definition 2.2. For instance, consider the sentence

T (P ) := ∀x∀y(E(x, y)→ P (x, y))∧∀x∀y∀z(P (x, y)∧E(y, z)→ P (x, z)).

The first conjunct says that the relation P contains the relation E

and second conjunct says that P is closed with respect to E. In other
words, P contains the transitive closure of E. It is easy to see that in
any P -minimal model A of T (P ), PA is exactly the transitive closure
of EA. However, there is no first-order theory which axiomatizes the
class
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class of structures A = (A,EA, PA) where PA is the transitive closure
of EA.

In McCarthy (1986), McCarthy reformulated his Circumscription
and captured precisely the minimal models semantics with respect to
the relation ≤P ;Z of Definition 2.1. McCarthy presented Circumscrip-
tion as a second-order formula.

Definition 2.5 [Second-Order Circumscription] Given a first-
order sentence T (P ,Z), the second-order circumscription of the rela-
tions P = P1, . . . , Pm in T (P ,Z) with varied Z, represented by CircSO
[T (P ,Z);P ;Z], is defined as the following second-order formula:

CircSO[T (P ,Z);P ;Z]

:= (2)

T (P ,Z) ∧ ∀X∀Z ′(T (X,Z ′)→ ¬(X ( P )),

where
X ( P := X ⊆ P ∧ ¬(X = P )

and X ⊆ P :=
∧

1≤i≤m ∀xi(Xi(xi)→ Pi(xi)) and X = P := X ⊆
P ∧ P ⊆ X. If there is no varied relation (Z = ∅), we write CircSO[T
(P ,Z);P ] instead of CircSO[T (P ,Z);P ; ∅].

A proof of the following statement can be found in Lifschitz (1994):

Theorem 2.6 The P ;Z-minimal models of T (P ;Z) are exactly the
models of

CircSO[T (P ;Z);P ;Z].

It is easy to see from Theorem 2.6 above that CircSO[T (P ;Z);P ;
Z] |= φ iff T (P ,Z) |=P ;Z φ. In the next section, we will give a charac-
terization of the classes of P ;Z-minimal models of first-order sentences.
This result will be used in the Section 4.
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3. TWO EXPRESSIVENESS THEOREMS

The expressive power of a logic is its capability to express classes
of structures or to distinguish between classes of structures. Our aim
in this section is to give a characterization of the expressive power of
second-order Circumscription. This is achieved by Theorems 3.5 and
3.7 and Corollary 3.8 below. As we will see, the definability results in
the next section will appear as applications of the results obtained in
this section.

In Schlipf(1987), Schlipf studied decidability questions regarding
Circumscription such as to decide whether a first-order formula has a
countable minimal model or not. Among other things, Schlipf showed
that some formulas which have minimal models do not have count-
able minimal models Example 2.6 in Schlipf(1987). It means that an
analogue to the Downward Löwenheim-Skolem Theorem does not hold
for second-order Circumscription.

Theorem 3.1 [Schlipf] There is a first-order formula φ which has
only uncountable minimal models.

This fact is particularly important in our characterization of the ex-
pressive power of first- and second-order Circumscription. In order to
keep this paper self-contained, we will give a proof, different from that
of Schlipf, of the failure of the Downward Löwenheim-Skolem Theorem
for Circumscription. Schlipf’s proof is based on the existence of ω1-like
models of Peano Arithmetic. These ω1-like models are models of car-
dinality ℵ1, but each element in these models has only countable many
predecessor (see Schlipf(1987), p.177). Then, Schlipf uses second-order
Circumscription in order to avoid countable models.

Our proof is based on another set-theoretical fact, namely that con-
tinuous dense linear orderings are uncountable. A dense, linear ordering
< of a set A is continuous iff any subset A′ ⊂ A which has a upper
bound in A with respect to <, also has a least upper bound with respect
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to <. We use just two relation symbols. Let < be a binary relation
symbol and P a unary relation symbol. Let LO(<) be a first-order
sentence saying that < is a strict, dense, linear order without the least
element:

LO(<) := ∀x(¬x < x) ∧ ∀x∀z(x < z → ∃y(x < y ∧ y < z)) ∧

∀x∀y∀z(x < y ∧ y < z → x < z) ∧

∀x∀y(x < y ∨ x = y ∨ y < x) ∧

¬∃x∀y(x < y ∨ x = y),

and consider the following formulas:

UB(P, x) := ∀y
(
P (y)→ (y < x ∨ y = x)

)
,

LUB(P ) := ∃x
(
UB(P, x) ∧ ∀y

(
UB(P, y)→ (x < y ∨ x = y)

))
,

D(P ) := ∃x(UB(P, x))→ LUB(P ),

DC(P ) := ∀x
(
P (x)→ ∀y(y < x→ P (y))

)
,

NE(P ) := ∃x(P (x)).

D(P ) says that, if there is an upper bound for the elements in P , then
there is a least one. We call D(P ) the Dedekind property for P . DC(P )
says that P is downward closed, that is, if an element x belongs to P ,
then any other element less than x with respect to < also belongs to
P . The intuitive meaning of the other formulas is obvious.

Let
T (P ) := LO(<) ∧DC(P ) ∧NE(P ) ∧ ¬D(P ). (3)
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It is easy to see, using Definition 2.5, that

CircSO[T (P );P ]

≡ (4)

T (P ) ∧ ∀P ′
((
DC(P ′) ∧NE(P ′) ∧ P ′ ( P

)
→ D(P ′)

)
.

Intuitively, CircSO[T (P );P ] says that any downward closed, pro-
per subset P ′ of P has the Dedekind property, that is, any downward
closed proper subset of P which has an upper bound also has a least
upper bound. However, by T (P ), P itself does not have the Dedekind
property.

Lemma 3.2 CircSO[T (P );P ] is satisfiable.
Proof. Let R = (R,<R) be the structure of the real numbers with
order and Q = (Q,<Q) be an isomorphic copy of the structure of the
rational numbers with order disjoint from R (that is, R ∩Q = ∅). Let
B′ = (B′, <B′) be the disjoint union of R and Q, that is

B′ = R ∪Q and <B′
=
(
<R ∪ <Q

)
.

Now, let B = (B,<B) be obtained from B′ by defining

B = B′ and <B=
(
<B′

∪ (R×Q)
)
.

That is, any element in R is less than each element in Q with
respect to <B. If we imagine a graphical representation of the ordering
<B where the increasing order is from left to right, the real numbers
appears as a continuous ordering on the left and the rationals as a dense
ordering on the right. Now, let

Manuscrito — Rev. Int. Fil., Campinas, v. 34, n. 1, p. 233-266, jan.-jun. 2011.



246 FRANCICLEBER M. FERREIRA AND ANA T. MARTINS

A = (B, PA)

with PA = R. It is not too much difficult to check that A is a model
for CircSO[T (P );P ]. �

We will need the following well known result of Set Theory and the
Theory of Order Hrbacek, Jech (1999) in order to prove Theorem 3.5.
Recall that a linear order without end-points is an order without the
least or the greatest elements.

Theorem 3.3 Any two countable, dense, linearly ordered sets without
end-points are order-isomorphic.

The following lemma will lead to the failure of the Löwenheim-
Skolem Theorem for Circumscription.

Lemma 3.4 Any model of CircSO[T (P );P ] is uncountable.
Proof. In any model A = (A,<A, PA) of CircSO[T (P );P ], <A is a
dense linear ordering of the domain A, and PA is a nonempty, down-
ward closed subset of A. As A does not have a least element with
respect to <A (see LO(<)), PA has infinitely many elements. Since
A |= ¬D(P ), it follows that PA does not have a greatest element. Let
P ′′A be any proper subset of PA with an upper bound in PA and

P ′A = {a ∈ A| exists b ∈ P ′′A such that a <A b or a = b}.

P ′A is a downward closed, proper subset of PA. Moreover, any upper
bound for P ′′A is an upper bound for P ′A and vice-versa. Thus P ′A and
P ′′A have the same least upper bound, if any. As A |= CircSO[T (P );P ]
and P ′A ( PA, it follows that P ′A has a least upper bound in A. But,
by definition, P ′′A, and therefore P ′A, has an upper bound in PA. As
PA is downward closed, the least upper bound of P ′A belongs to PA.
Therefore, P ′′A has a least upper bound in PA.
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We get that any proper subset of PA with an upper bound in
PA has a least upper bound in PA. It follows that the substructure
C = (C,<C) obtained by defining C = PA and <C as the restriction of
<A to PA, that is,

<C=<A ∩ (PA × PA),

is a continuous, dense linearly ordered set without endpoints. Suppose,
by reduction to the absurd, that PA is countable. It follows, by The-
orem 3.3, that C is order-isomorphic to the structure of the rationals
with order Q = (Q,<Q). But C is continuous and Q is not, which
contradicts the fact that C and Q are order-isomorphic. It follows that
C = PA is uncountable and so is A. �

We immediately get:

Theorem 3.5 The Downward Löwenheim-Skolem Theorem for second-
order Circumscription does not hold.

We follow our investigation about the expressive power of Circum-
scription and we will show our second result of this section. We remem-
ber the definition of elementary and ∆-elementary classes of models
below (see, for instance, Ebbinghaus et al (1994)).

Definition 3.6 [Elementary and ∆-Elementary Classes] Let S be
a symbol set and C a class of S-structures. C is said to be ∆-elementary
iff there is a set T of S-sentences such that ModS(T ) = C. C is said to
be elementary if there is a single S-sentence φ such that ModS(φ) = C.

From Theorem 3.5 it follows that there are some classes of minimal
models of finite first-order theories which are not ∆-elementary. An
example is the sentence T (P ) in (3). For suppose that there is a set
of first-order sentences Γ whose models are exactly the same models of
CircSO[T (P );P ]. Since the models of CircSO[T (P );P ] are structures
in the symbol set {<,P}, Γ is a set of {<,P}-sentences. As first-
order sentences are finite, Γ is countable. And since the Downward
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Löwenheim-Skolem Theorem does hold for first-order logic, Γ has a
countable or finite model, which contradicts Theorem 3.5.

Below, we will prove the main theorem of this section. We will show
that there is no strictly ∆-elementary class of P ;Z-minimal models of
first-order sentences, that is, ∆-elementary but not elementary. This
will follow directly from the next theorem.

Theorem 3.7 Let φ(P ;Z) be an S′ = S ∪ {P ,Z}-sentence such that
the class C of P ;Z-minimal models of φ is ∆-elementary. Then C is
elementary.
Proof. In this proof, we will first define a first-order sentence Cφ

P ;Z
and, after that, we will show that the models of Cφ

P ;Z
∧ φ(P ,Z) are

exactly the P ;Z-minimal models of φ(P ,Z). Let

Ψ := ThFOS′ (C)

be the first-order S′-theory of C, that is, the set of all first-order sen-
tences satisfied by all models in C. As C is ∆-elementary, then

ModS′(Ψ) = C.

Let P ′, Z ′ be new relation symbols, not occurring in φ(P ,Z), with the
same arity of the predicate symbols P ,Z, respectively. Let φ(P ′, Z ′)
be the result of replacing P ,Z with P ′, Z ′ in φ(P ,Z). Consider the set

Ψ ∪ {φ(P ′, Z ′)}

of sentences. As neither some of P ′, Z ′ occurs in φ(P ,Z), nor some of
P ,Z occurs in φ(P ′, Z ′), for each S ∪ {P ,Z} ∪ {P ′, Z ′}-structure

C := (A,P,Z,P′,Z′)
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we have that

C |= Ψ ∪ {φ(P ′, Z′)} iff (A,P,Z) |= Ψ and (A,P′,Z′) |= φ(P ′, Z′).(5)

Consider the set

Ψ ∪ {φ(P ′, Z ′)} ∪ {
∨

1≤i≤m
P ′i ( Pi} (6)

of sentences. Since the models of Ψ are P ;Z-minimal, by (5) the set of
sentences (6) is inconsistent. Let Θ′ be a finite subset of Ψ∪{φ(P ′, Z ′)}
such that, Θ′ ∪ {

∨
1≤i≤m P

′
i ( Pi} is inconsistent, and let Θ := Θ′ −

φ(P ′, Z ′). As first-order logic is compact, such sets always exist. Let

Cφ
P ;Z

:=
∧

Θ

be a first-order sentence obtained by the conjunction of all (finitely
many) sentences in Θ. By definition, any P ;Z-minimal model of φ(P ,Z)
is a model of φ(P ,Z) ∧ Cφ

P ;Z
. Let (B,P,Z) be a model of φ(P ,Z) ∧

Cφ
P ;Z

. Suppose (B,P,Z) is not a P ;Z-minimal model of φ(P ,Z). In
this case, there is a model (B,P′,Z′) of φ(P ,Z), such that (B,P′,Z′)
≤P ;Z (B,P,Z) and P′i ( Pi for some i, 1 ≤ i ≤ m. It follows that

(B,P,Z,P′,Z′) |= Θ′ ∪ {
∨

1≤i≤m
P ′i ( Pi},

which contradicts the fact that Θ′ ∪ {
∨

1≤i≤m P
′
i ( Pi} is inconsistent.

Therefore, an S ∪{P ,Z}-structure is a P ;Z-minimal model of φ(P ,Z)
iff it is a model of φ(P ,Z) ∧ Cφ

P ;Z
. That is, ModS′(φ(P ,Z) ∧ Cφ

P ;Z
) is

exactly the class of models C. Hence, the class of P ;Z-minimal models
of φ(P ,Z) is elementary. �
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Corollary 3.8 Let φ(P ;Z) be an S′ = S ∪ {P ,Z}-sentence such that

ModS′(CircSO[φ(P ;Z);P ;Z])

is ∆-elementary. Then ModS′(CircSO[φ(P ;Z);P ;Z]) is elementary.

Theorem 3.5 shows that there are classes of minimal models of first-
order sentences which are not ∆-elementary. Moreover, Theorem 3.7
shows that, if the class of minimal models of a first-order sentence is
∆-elementary, then it is in fact elementary. The proof of the following
corollary is immediate.

Corollary 3.9 The class of P ;Z-minimal models of a first-order for-
mula is either elementary or it is not ∆-elementary.

A particularly important consequence of Theorem 3.7 is:

Corollary 3.10 If a second-order circumscription is equivalent to a
first-order theory, then the set of its conclusions is recursively enumer-
able.

In the following section, we will examine definability questions re-
garding first- and second-order Circumscription. We will begin with an
explanation of the basic concepts of the Theory of Definitions. After
that, we will give a detailed analysis of definability questions motivated
by Doyle’s work in Doyle (1985). We will apply the expressiveness re-
sults of this section to obtain the main results of Section 4.

4. DEFINABILITY AND CIRCUMSCRIPTION

In Padoa (1900), Padoa argue that, in order to show that an ex-
pression like

∀x(P (x)↔ ψ(x)), (7)

where the relation symbol P does not occur in ψ(x), cannot be proved
from a theory, say, Γ, it is sufficient to show that there are two models
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of Γ which differ on the interpretation of P , but agree on the interpre-
tation of the other symbols. An expression like (7) is called an explicit
definition. When an S∪{P}-theory Γ is such that for each two S∪{P}-
models (A,P) and (A,P′) of Γ we always have P = P′, we say that Γ
implicitly defines P .

The so called Padoa’s Method consists of showing that an explicit
definition for P such as ∀x(P (x) ↔ ψ(x)) cannot be a logical conse-
quence of a set of first-order sentences, say Γ, by showing that Γ does
not implicitly defines P . This is equivalent to state that, if there is
an explicit definition for P in Γ, then Γ implicitly defines P . In Beth
(1953), Beth shows the converse. The Beth’s Definability Theorem
states that, if a set of first-order sentences Γ implicitly defines P in first-
order logic, then there is an explicit definition, say ∀x(P (x) ↔ ψ(x))
in first-order logic for P such that

Γ |= ∀x(P (x)↔ ψ(x)).

In Doyle (1985), Doyle investigated some relations between Circum-
scription and implicit definability in the context of first-order Cir-
cumscription. Doyle addressed the question on what are the circum-
stances in which first-order Circumscription implicitly defines the cir-
cumscribed relation. It is intuitive that such circumstances must in-
volve the existence of exactly one minimal interpretation for the circum-
scribed relation in the domain of a structure, that is, given a symbol
set S′ = S ∪ {P,Z} and a sentence φ(P,Z), for each S-structure A,
there is at most one PA ⊂ A such that B = (A, PA, Z

A) is a P ;Z-
minimal model of φ(P,Z) for some (possibly many) ZA. This semantic
condition, stated in another, equivalent form, was called the unique
minimal model property by Moinard and Rolland in Moinard, Rolland
(1991), who also introduced a variant of the standard Circumscription
called Strong Circumscription Moinard, Rolland (1991) and gave some
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sufficient conditions for the equivalence between standard and Strong
Circumscription. Here, we consider another, different point addressed
by Doyle in Doyle (1985) relating Circumscription with Definability
Theory, which we explain below.

Suppose CircFO[φ;P ;Z] implicitly defines P . By Beth’s Definabil-
ity Theorem, there is an explicit definition ∀x(P (x) ↔ ψ(x)) for P .
In Doyle (1985), Doyle states that it is not always the case that the
circumscription CircFO[φ;P ;Z] of P in φ can be replaced with φ plus
its explicit definition ∀x(P (x)↔ ψ(x)). In other words, it may be the
case that, for some φ,

CircFO[φ;P ;Z] 6≡ φ ∧ ∀x(P (x)↔ ψ(x)). (8)

That is, an explicit definition for the implicitly defined relation
P cannot replace the (infinitely many) sentences in CircFO[φ;P ;Z].
However, Doyle’s example fails to show this. Doyle considered the
sentence φ(Block) of block’s world:

φ(Block) := Block(t1) ∧ . . . ∧Block(tl).

It is clear that for any model A of φ(Block), tAi must be included
in BlockA, where BlockA is the interpretation of the relation symbol
Block by A. It follows that the Block-minimal models of φ(Block) are
those in which

BlockA = {tA1 , . . . , tAl }.

For each Block-minimal model B of φ(Block), we have that

B |= ∀x(Block(x)↔ (x = t1 ∨ . . . ∨ x = tl)),

and for ψ(x) := (x = t1 ∨ . . . ∨ x = tl), the instance

φ(ψ(x)) ∧ ∀x(ψ(x)→ Block(x))→ ∀x(Block(x)→ ψ(x))
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of the circumscription schema for Block in φ(Block)—see the schema
(1)—belongs to CircFO[φ(Block);Block]. This means that the Block-
minimal models of φ(Block) are exactly the models of CircFO[φ(Blo
ck);Block]. It can be easily seen that

CircFO[φ(Block);Block] ≡ φ(Block) ∧ ∀x(Block(x)↔ ψ(x)),

contrary to what was expected by Doyle in Doyle (1985, p. 397), where
he supposed to be necessary additional axioms to guarantee minimality.

In the following, we will carefully investigate this question for both
first- and second-order Circumscription.

There is a wide class of sentences for which (8) fails. First, let
us precisely state the concept of well-foundedness for sentences in the
context of minimal models.

Definition 4.1 [Well-Founded Sentences] We say that a sentence
φ(P ,Z) is P ;Z-well-founded iff for each model A of φ(P ,Z) there is
a P ;Z-minimal model B of φ(P ,Z) such that B ≤P ;Z A. If Z = ∅ we
write P -well-founded for P ; ∅-well-founded.

For P -well-founded sentences in circumscriptions without varied
relations, (8) does not hold.

Theorem 4.2 Let the S′-sentence φ(P ) be a P -well-founded sentence
and C the class of P -minimal models of φ(P ). Suppose that C is P -
defined and that ∀x(P (x)↔ ψ(x)) is a first-order explicit definition for
P in C, which means that φ(P ,Z) |=P ;Z ∀x(P (x)↔ ψ(x)). Then

C = ModS′
(
φ(P ) ∧ ∀x(P (x)↔ ψ(x))

)
.

Proof. By the hypothesis of the theorem,

C ⊆ModS′
(
φ(P ) ∧ ∀x(P (x)↔ ψ(x))

)
. (9)
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Suppose by contradiction that there is a model

A ∈ModS′
(
φ(P ) ∧ ∀x(P (x)↔ ψ(x))

)
which is not a P -minimal model of φ(P ). As φ(P ) is P -well-founded,
there is a P -minimal model B of φ(P ) such that B ≤P A. By (9),

B |= ∀x(P (x)↔ ψ(x)).

But since B ≤P A, A and B agree on the interpretation of the symbols
in S′−{P}. Since A and B are models of ∀x(P (x)↔ ψ(x)), it follows
that A and B agree on P and, hence, A = B. Thus

ModS′
(
φ(P ) ∧ ∀x(P (x)↔ ψ(x))

)
⊆ C.

�

Corollary 4.3 Let φ(P ) be a P -well-founded sentence.
1. If CircFO[φ(P );P ] implicitly defines P and ∀x(P (x)↔ ψ(x)) is

a first-order explicit definition for P in CircFO[φ(P );P ], then

CircFO[φ(P );P ] ≡ φ(P ) ∧ ∀x(P (x)↔ ψ(x)).

2. If CircSO[φ(P );P ] implicitly defines P , ∀x(P (x) ↔ ψ(x)) is a
first-order explicit definition for P in CircSO[φ(P );P ], then

CircSO[φ(P );P ] ≡ φ(P ) ∧ ∀x(P (x)↔ ψ(x)).

Proof. The proof of 2 follows directly from Theorem 4.2. The proof
of 1 is analogous, since any P -minimal model of φ(P ) is a model of
CircFO[φ(P );P ]. �

Although Doyle’s example does not satisfy the statement (8), there
are sentences φ for which that statement is true. Indeed, there are well-
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founded sentences which satisfy the statement (8) for circumscription
with varied predicates. We show this in the following example, where
we use second-order Circumscription since, in this case, it is equivalent
to first-order Circumscription.

Example 4.4 Let P and Z be unary relations. Consider the sentence

φ(P,Z) := ∀x(¬P (x)→ Z(x)).

For each model B of φ(P,Z), there is a P ;Z-minimal model B′ such
that B′ ≤P ;Z B, namely with PB′ = ∅, ZB′ = B and sB

′ = sB

for the other symbols s in the symbol set. Hence, φ(P,Z) is P ;Z-well-
founded. Moreover, any P ;Z-minimal model of φ(P,Z) interprets P as
the empty relation. Consider the explicit definition ∀x(P (x)↔ ¬Z(x))
for P . It is clear that

CircSO[φ(P,Z);P ;Z] |= ∀x(P (x)↔ ¬Z(x)),

but
CircSO[φ(P,Z);P ;Z] 6≡ φ(P,Z) ∧ ∀x(P (x)↔ ¬Z(x)).

Based on the proof of Theorem 4.2, we can give a restricted version
of this theorem for well-founded sentences in parallel circumscriptions
with varied relations.

Theorem 4.5 Let the S′-sentence φ(P ,Z) be a P ;Z-well-founded sen-
tence and C the class of P ;Z-minimal models of φ(P ,Z). Suppose
that C is Pi-defined and that ∀xi(Pi(xi) ↔ ψi(xi)) is a first-order ex-
plicit definition for Pi in C, for each Pi ∈ P , that is, φ(P ,Z) |=P ;Z
∀xi(Pi(xi)↔ ψi(xi)), and such that no symbol in {P ,Z} occurs in ψi,
for each Pi ∈ P . Then

C = ModS′
(
φ(P ,Z) ∧

∧
Pi∈P

∀xi(Pi(xi)↔ ψi(xi))
)
.
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Proof. Analogous to the proof of Theorem 4.2. �

Corollary 4.6 Let φ(P ,Z) be a P ;Z-well-founded sentence.

1. If CircFO[φ(P ,Z);P ;Z] implicitly defines Pi and ∀xi(Pi(xi) ↔
ψi(xi)) is a first-order explicit definition for Pi in CircFO[φ(P ,Z);
P ;Z] such that no symbol in P ,Z occurs in ψi(x), for each
Pi ∈ P , then

CircFO[φ(P ,Z);P ;Z] ≡ φ(P ,Z) ∧
∧
Pi∈P

∀xi(Pi(xi)↔ ψi(xi)).

2. If CircSO[φ(P ,Z);P ;Z] implicitly defines Pi, ∀xi(Pi(xi)↔ ψ(xi))
is a first-order explicit definition for Pi in CircSO[φ(P ,Z);
P ;Z] such that no symbol in P ,Z occurs in ψi(xi), for each
Pi ∈ P , then

CircSO[φ(P ,Z);P ;Z] ≡ φ(P ,Z) ∧
∧
Pi∈P

∀xi(Pi(xi)↔ ψi(xi)).

Proof. Analogous to the proof of Corollary 4.3. �

The restriction on the occurrence of varied relations in the explicit
definition used in Corollary 4.6 does not work for non-well-founded
sentences, since there are non-well-founded sentences for which (8) does
hold even under this restriction. Again, in the following example, first-
and second-order Circumscription coincide.

Example 4.7 Suppose < be a linear order relation. Let

LE(x) := ∀y(x < y ∨ x = y) and

GE(x) := ∀y(y < x ∨ y = x)
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be first-order formulas saying that x is the least (LE) and the greatest
(GE) element of <, respectively, and

S(x, y) := x < y ∧ ∀z(x < z → y < z ∨ z = y)

be a first-order formula saying that y is the successor of x with respect
to <. Let α(<) be a first-order sentence which says that < is a linear
order (a total, transitive and asymmetric binary relation) in which each
element, except the greatest, has a successor and each element, except
the least, has a predecessor, although α(<) does not determine whether
there are such least and greatest elements or not:

α(<) := ∀x∀y(x < y → ¬y < x) ∧ ∀x∀y∀z(x < y ∧ y < z → x < z) ∧

∀x∀y(x < y ∨ x = y ∨ y < x) ∧ ∀x(∃y(S(x, y))↔ ¬GE(x)) ∧

∀x(∃y(S(y, x))↔ ¬LE(x)).

Let c be a constant symbol in the underlying symbol set S′. Let β(c)
be a first-order formula expressing that, if < has a least element, then
c is such least element:

β(c) := ∃x(LE(x))→ LE(c).

Let P be a relation symbol in S′. Let γ(P ) be a first-order sentence
saying that P is not empty, P has a greatest element with respect to <
and P is downward closed, that is, if a belongs to P and b < a, then b
belongs to P :

γ(P ) := NE(P ) ∧ ∃x(P (x) ∧ (∀y(P (y)→ y < x ∨ y = x))) ∧DC(P ).

It is clear that < has a least element in any P -minimal model (A,P)
of

α(<) ∧ β(c) ∧ γ(P ),
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otherwise any downward closed proper subset P′ of P could be used to
construct a model (A,P′) ≤P (A,P). Conversely, if < has a least
element, then α(<) ∧ β(c) ∧ γ(P ) has a P -minimal model in which
PA = {c}. We can see that CircSO[α(<)∧β(c)∧γ(P );P ] is equivalent
to the set Γ of first-order formulas defined as

Γ := {α(<) ∧ β(c) ∧ γ(P ),∀x(P (x)→ LE(x))}.

It can easily be seen that the formula ∀x(P (x) ↔ (x = c ∨ x < c))
is an explicit definition for P in Γ, that is

Γ |= ∀x(P (x)↔ (x = c ∨ x < c)).

However, as α(<)∧β(c)∧γ(P ) has models (not minimal) in which
< does not have a least element, we have that

CircSO[α(<) ∧ β(c) ∧ γ(P );P ]

6≡

α(<) ∧ β(c) ∧ γ(P ) ∧ ∀x(P (x)↔ (x = c ∨ x < c)).

So, if, in (8), φ is the sentence α(<) ∧ β(c) ∧ γ(P ) and ψ is LE(x),
then (8) is verified.

It is important to stress the fact that, for a relation implicitly de-
fined in a theory, there are many distinct explicit definitions. If we
consider the explicit definition ∀x(P (x) ↔ (x = c)) for P and Γ as in
Example 4.7, we have
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Γ |= ∀x(P (x)↔ (x = c)),

and

CircSO[α(<) ∧ β(c) ∧ γ(P );P ] ≡ α(<) ∧ β(c) ∧ γ(P ) ∧ ∀x(P (x)↔ (x = c)).

That is, if ψ is (x = c) in (8), that statement is not verified.
Note that the problem in Example 4.7 occurs in the cases in which <

does not have a least element. In such cases, there is no interpretation
for P which gives a minimal model for α(<) ∧ β(c) ∧ γ(P ). It follows
that α(<)∧β(c)∧γ(P ) is not P -well-founded, falling outside the scope
of Corollary 4.3 or Corollary 4.6.

In the face of these facts, we can ask: in the cases in which
CircSO[φ;P ;Z] implicitly defines P andModS′(CircSO[φ;P ;Z]) is ∆-
elementary, is there an explicit definition ∀x(P (x)↔ ψ(x)) for which

CircSO[φ;P ;Z] ≡ φ ∧ ∀x(P (x)↔ ψ(x)) (10)

holds? We will give a positive answer to this question below.

Theorem 4.8 Let C be the class of P ;Z-minimal models of the S′-
sentence φ(P ,Z) and such that C is ∆-elementary and Pi-defined for
some i, 1 ≤ i ≤ m. Then there is an explicit definition ∀x(Pi(x) ↔
ψ(x)) such that

C = ModS′(φ(P ,Z) ∧ ∀x(Pi(x)↔ ψ(x))).

Proof. Let φ(P ,Z) be an S′ = S∪{P ,Z} sentence of first-order logic,
Pi be an n-ary relation symbol and P and Z tuples of relation symbols.
By Theorem 3.7, there is a sentence γ(P ,Z) = Cφ

P ;Z
∧ φ(P ,Z) such

that
C = ModS′(γ(P ,Z)).
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As C is Pi-defined, by Beth’s Theorem there is an explicit definition
∀x(Pi(x)↔ ψ(x)) for which

γ(P ,Z) |= ∀x(Pi(x)↔ ψ(x)). (11)

Let γ′ := γ(ψ,Z) be the S′ − {Pi}-sentence obtained from γ(P ,Z) by
replacing each atom Pi(t) with ψ(t) in γ(P ,Z), with the appropriated
renaming of the bound variable of ψ(t) in order to avoid undesirable
binding of the variables in t. Let the S′−{Pi}-structure A be a model
of γ′ and Pi ⊆ An defined as Pi := {a ∈ An|A |= ψ(x)[a]}. Then,
by (11), (A,Pi) |= γ(P ,Z). On the other hand, again by (11), if
(A,Pi) |= γ(P ,Z) then A |= γ′ and Pi := {a ∈ An|A |= ψ(x)[a]}. It
follows that

(A,Pi) |= γ(P ,Z) iff A |= γ′ and Pi = {a ∈ An|A |= ψ(x)[a]}.(12)

Let ψ′(x) := γ′ ∧ ψ(x). Let (A,Pi) be a model of γ(P ,Z), where A is
an S′ − {Pi}-structure. Since γ(P ,Z) = Cφ

P ;Z
∧ φ, we have that

(A,Pi) |= φ(P ,Z). (13)

By (11), it follows that (A,Pi) |= ∀x(Pi(x)↔ ψ(x)). Let a ∈ An be a
tuple of elements in A. We have that

(A,Pi) |= Pi(x)[a] iff (A,Pi) |= ψ(x)[a], (14)

and, by (12),

(A,Pi) |= ψ(x)[a] iff (A,Pi) |= γ′ ∧ ψ(x)[a]. (15)

From (14) and (15), we get

(A,Pi) |= ∀x(Pi(x)↔ ψ′(x)). (16)
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By (13) and (16),we have

(A,Pi) |= φ(P ,Z) ∧ ∀x(Pi(x)↔ ψ′(x)). (17)

As (17) holds for any model (A,Pi) of γ(P ,Z), it follows that

γ(P ,Z) |= φ(P ,Z) ∧ ∀x(Pi(x)↔ ψ′(x)). (18)

Now, let (A,Pi) be a model of φ(P ,Z) ∧ ∀x(Pi(x) ↔ ψ′(x)). If
Pi = ∅, then (A,Pi) is a P ;Z-minimal model of φ(P ,Z). If Pi 6= ∅,
then there is a in An such that (A,Pi) |= Pi(x)[a]. But, as (A,Pi) |=
∀x(Pi(x) ↔ ψ′(x)), then (A,Pi) |= ψ′(x)[a] and hence (A,Pi) |= γ′ ∧
ψ(x)[a]. Therefore (A,Pi) |= γ′, and, as Pi does not occur in γ′,

A |= γ′. (19)

Since (A,Pi) |= ∀x(Pi(x) ↔ ψ′(x)), we have that Pi = {a ∈ An|A |=
ψ′(x)[a]}. But as A |= γ′, it follows that

Pi = {a ∈ An|A |= ψ′(x)[a]} = {a ∈ An|A |= ψ(x)[a]}. (20)

From (12), (19) and (20), we have

(A,Pi) |= γ(P ,Z),

and hence
φ(P ,Z) ∧ ∀x(Pi(x)↔ ψ′(x)) |= γ(P ,Z). (21)

By (18) and (21) we have C = ModS′(γ(P ,Z)) = ModS′(φ(P ,Z)∧
∀x(Pi(x)↔ ψ′(x))). �

From the proof of the Theorem 4.8 above, we have the following:
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Corollary 4.9 Let C be the class of P ;Z-minimal models of the
S′-sentence φ(P ,Z) and such that C is ∆-elementary and there is
J ⊆ {1, . . . ,m} such that C is Pi-defined for all i ∈ J . Then there
are explicit definitions ∀x(Pi(xi) ↔ ψi(xi)), i ∈ J , such that C =
ModS′

(
φ(P ,Z) ∧

∧
i∈J ∀xi(Pi(xi)↔ ψi(xi))

)
.

Corollary 4.10 If CircSO[φ(P ,Z);P ;Z] implicitly defines Pi, i ∈ J
for some J ∈ {1, . . . ,m} and ModS′(CircSO[φ(P ,Z);P ;Z]) is ∆-
elementary, then there are explicit definitions ∀xi(Pi(xi)↔ ψ(xi)) such
that

CircSO[φ(P ,Z);P ;Z] ≡ φ(P ,Z) ∧
∧
i∈J
∀xi(Pi(xi)↔ ψi(xi)).

5. CONCLUSIONS

We investigated expressiveness and definability results that con-
cerns Circumscription. We dealt with both first- and second-order
Circumscription. Within first-order Circumscription, the result of cir-
cumscribing a relation P with varied Z is a set of first-order sentences,
namely the set of all first-order instances of the circumscription schema
(1), see Section 3. Second-order Circumscription results in a second-
order sentence whose models are just the minimal models of the cir-
cumscribed sentence. In Section 3, Theorem 3.5, we gave a proof that
second-order Circumscription does not have the Löwenheim-Skolem
Theorem. We showed that second-order Circumscription can express a
class of structures which has a dense, continuous, linearly-ordered set
without end-points as a substructure. Thus, any model in such class
is uncountable. In Theorem 3.7 we showed that, whenever the class of
minimal models of a first-order sentence is ∆-elementary, such class is
actually elementary. That is, whenever a second-order circumscription
is equivalent to a first-order theory, this theory is finitely axiomatizable.
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As stressed by Corollary 3.8, Theorem 3.5 and Theorem 3.7 divide the
classes of minimal models of first-order sentences in elementary and
non-∆-elementary. In a picture, we have:

Figure 1: Classes of minimal models of first-order sentences.

A straightforward but important consequence is that, when the
class of minimal models of a first-order sentence is ∆-elementary, the
set of logical consequences of the circumscribed theory is recursively
enumerable, as pointed out in Corollary 3.10.

We also investigated definability questions regarding Circumscrip-
tion. In Moinard, Rolland (1991), Moinard and Rolland dealt with
a problem raised by Doyle in Doyle (1985) about the conditions on
which Circumscription defines the circumscribed relation. We dealt
with another, although related, problem here. We are concerned with
a statement made by Doyle also in Doyle (1985). Doyle stated that,
in the cases in which a first-order circumscription implicitly defines
the circumscribed relation, such circumscription cannot always be re-
placed by the initial sentence together with an explicit definition for
the circumscribed relation. He also argued that, in some cases, extra
axioms should be added in order to guarantee minimality Doyle (1985,
p. 397). Unfortunately, Doyle’s example fails in showing this (see Sec-
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tion 4 above). Indeed, although Doyle’s example does not work, he
was right about the fact that the circumscription of a relation cannot
always be replaced by the initial theory and an explicit definition for
the circumscribed relation. Examples 4.4 and 4.7 in Section 4 confirm
his statement. However, there is a wide class of first-order sentences
for which his statement does not hold, namely the P -well-founded sen-
tences, as showed by Theorem 4.2. We called attention to the fact that
an implicitly defined symbol can have many different explicit defini-
tions. We then asked about the existence of a suitable explicit defini-
tion ψ which yields the equivalence between the circumscription and
the initial theory plus ψ. In Corollary 4.10, we showed that, whenever
the first-order logic can express the minimality of a relation in a sen-
tence with varied relations, if the circumscription of a relation implicitly
defines the circumscribed relation, then there is an explicit definition
for the circumscribed relation which give us the desired equivalence.

Doyle also argues that, in general, minimality statements require
infinitely many axioms like the first-order circumscription schema Doyle
(1985). But, as proved by Theorem 3.7 and Corollary 3.8, whenever
first-order logic can express a second-order Circumscription, it can be
made by a single sentence. Indeed, this result is in the core of the
definability results showed in this paper.
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