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Overview of extracellular vesicles in pathogens with special focus on 
human extracellular protozoan parasites
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Extracellular vesicles (EVs) are lipid-bilayered membrane-delimited particles secreted by almost any cell type, involved in 
different functions according to the cell of origin and its state. From these, cell to cell communication, pathogen-host interactions 
and modulation of the immune response have been widely studied. Moreover, these vesicles could be employed for diagnostic 
and therapeutic purposes, including infections produced by pathogens of diverse types; regarding parasites, the secretion, 
characterisation, and roles of EVs have been studied in particular cases. Moreover, the heterogeneity of EVs presents challenges 
at every stage of studies, which motivates research in this area. In this review, we summarise some aspects related to the secretion 
and roles of EVs from several groups of pathogens, with special focus on the most recent research regarding EVs secreted by 
extracellular protozoan parasites.
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Research in cell biology has been developing for 
years to generate structural and functional descriptions 
of fundamental mechanisms for life, accompanied by 
molecular biology techniques. The application of this 
knowledge in the biomedical field has been renewed 
with the establishment of an investigation line around 
extracellular vesicles (EVs). In general, EVs in mammals 
are described as vesicular bodies that are released from 
the cell through, at least, two pathways: fusion of multi-
vesicular endosomes (MVE) with the plasma membrane 
(exosomes; diameter: 50 - ~ 200 nm) or direct budding 
from the plasma membrane (ectosomes; diameter up to 
1000 nm);(1,2) however, it is impossible to claim that frac-
tions contain only one type of vesicle.(3) The most studied 
machinery for EVs generation is the endosomal sorting 
complex required for transport (ESCRT) subcomplexes 
system, a highly conserved assembly in mammals; ho-
molog proteins and processes have been described also 
in protozoa.(4) The biogenesis process will influence the 
vesicle’s content (or cargo) which, in turn, also depends 
on the cell of origin and the cellular microenvironment 
and state. In general terms, proteins, lipids, DNA, and 
different types of RNAs are part of the EVs cargoes.(5)

The composition of EVs and, fundamentally, their 
proteome, is defined for the first instance by those pro-
teins involved in their formation machinery, such as 
Tsg101 and Alix; in addition, proteins of the tetraspanin 
family (CD63, CD9, CD81) are frequently found in these 
vesicles and in apoptotic bodies, also considered EVs 
(but not addressed in this work). Other structural com-
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ponents are cytoskeletal proteins and glycoproteins.(6,7) 
However, it is important to highlight that this general 
composition could vary depending on the cell of origin, 
so that characterisation analyses to evaluate the compo-
sition of EVs secreted by a specific type of cell or organ-
ism should be performed since there is a lack of univer-
sal identification methods for EVs.(8)

The biological role of EVs has been understood 
mainly as the effects they exert on acceptor cells: (i) as 
part of intercellular communication, through the trans-
port of active molecules, (ii) and results on immune re-
sponse and tissue repair/regeneration processes.(9) Like-
wise, one of the major areas of global interest for the 
study of EVs is tumour biology, where cancer cell de-
rived EVs have been found to fulfil a range of functions, 
from supporting tumour progression, angiogenesis and 
development of the tumour microenvironment to, con-
versely, anti-tumour effects from EVs of cancerous and 
non-cancerous origin mediated by the immune response, 
reflecting their heterogeneity and the need for further 
research.(10,11) However, in view of the description and 
characterisation of EVs in these pathologic conditions 
and various biological fluids, the idea of developing a 
“liquid biopsy”’ has been supported thanks to exosomal 
markers, and it would allow not only detection but also 
prognosis.(12) Thus, EVs have become interesting candi-
dates: (i) for the identification of biomarkers associated 
with different pathological processes, (ii) as delivery 
platforms with EVs subjected to bioengineering proce-
dures and iii) cell-free candidate vaccines.(13)

Although the clinical utility of EVs in understand-
ing and approaching malignancies such as cancer has 
been of great interest, their role in infectious processes 
is another line to be exploited as they are involved as 
messengers of the immune response and inflammatory 
processes, with cytokine stimulation, antigen presenta-
tion through major histocompatibility complex (MHC)-I 
and MHC-II, and activation of T and B cells,(14) as well as 
their ability to act as key molecule carriers and potential 
cellular intercommunicators.(15) The isolation of EVs has 
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been carried out from multiple pathogenic microorgan-
isms (PEVs) and their composition and activity is varied 
from case to case, even within the same taxonomic ge-
nus, although the animal model, the experimental design 
and the cell type assayed should be associated with this 
variation.(14) In this sense, a variety of reviews address-
ing EVs from pathogens have been published.(16,17,18,19)

Microbial pathogenesis is also a studied process in 
which PEVs participate by harbouring genes and viru-
lence factors, toxins and molecules for coordination and 
communication between pathogens.(20) PEVs also have a 
role in the pathogen-host interplay, by manipulating or 
interfering with the immune response or cellular spe-
cific cascades due to RNA signalling molecules, pro-
tein ligands or pathogen-associated molecular patterns 
(PAMPS).(21,22,23) On the other hand, many of these organ-
isms (bacteria, fungi, parasites, viruses) have also com-
pletely intracellular stages, phases, or life cycles in which 
they can hijack the endosomal machinery of the invaded 
cells to modify or alter EVs trafficking, induced, in this 
case, by the pathogen.(24)

The group of medically important parasites comprises 
agents, mainly protozoans, with complex life cycles, in-
volving invasive and non-invasive evolutionary stages. 
The role of extracellular vesicles in influencing parasitosis 
could have several edges: from functions of adaptation to 
the host environment and effects on the pathogen’s infec-
tivity, to involvement in invasion signalling and immune 
modulation.(25) In this review, a brief overview of the main 
findings in the EVs field, in relation to parasites (with spe-
cial attention to extracellular protozoa) is presented.

EVs in microbiology

During infections, EVs have not fully deciphered or 
described roles, and the extent to which they contrib-
ute to pathogen establishment is a topic to be exploited 
in different areas of microbiology and cell physiology. 
In microbiology, the secretion of EVs from some types 
of viruses, bacteria, fungi, and parasites has been de-
scribed and extensively studied in some cases. As it has 
been reported elsewhere and it’s not the main objective 
of the review, only a brief description of highlights re-
garding EVs of non-parasitic origin will be presented.

EVs can be aroused from virus-infected cells. In 
these cases, EVs can also carry viral elements, such as 
proteins or receptors that make the acceptor cell more 
susceptible to infection, as described for human immu-
nodeficiency virus (HIV),(26,27) and similar to the trans-
ference of CD9 and ACE2 receptors that has been re-
cently proposed for severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), the causative agent of 
coronavirus disease 2019 (COVID-19).(28) In addition, 
viruses such as hepatitis C can use EVs as machinery to 
infect cells via viral RNA and achieve replication with-
out relying on the virion or viral receptors.(29,30) In this 
sense, it could be suggested a dual functionality, as they 
also represent a means to trigger antiviral responses by 
the activation of adaptive immunity via viral antigens 
and molecular effectors. However, a major methodologi-
cal limitation is the complexity involved in separating 
viral particles from the EVs to be assayed.(18)

EVs of prokaryotic origin have been found not only 
in in vitro cultures, but also in in vivo cultures and even 
from environmental samples.(31,32) These are essentially 
the same bilayered particle as in eukaryotic cells, as they 
correspond to membranous “capsules” released by a cell 
into the extracellular space, but there are fundamental 
structural differences given by the conformation of the 
cell envelope. For instance, in gram-negative bacteria, 
EVs are rich in lipopolysaccharides, although there are 
generally cargoes common to all bacteria such as pro-
teins involved in metabolic pathways and genetic ma-
terial.(17,33) In bacteria, the formation and secretion of 
the so-called outer membrane vesicles (OMVs) is given 
globally by gene regulation(34,35) and different approaches 
such as: (i) a particular distribution of phospholipids in a 
membrane region, or (ii) the accumulation of molecules 
in the periplasmic space and the consequent turgor pres-
sure and interaction between negative charges, which 
promote plasma membrane’s curvature.(36,37) Likewise, 
the release could be related to compromises in mem-
brane stability, where there are lytic effectors leading to 
disruption of the peptidoglycan wall.(38,39)

Regarding their physiology and clinical relevance, 
OMVs have been involved not only in bacterial commu-
nication processes, horizontal gene transfer and influ-
ence on the microenvironment,(17) but also their cargo has 
been employed as an arsenal to interact with the host; in 
fact, TLRs have  been involved in interactions of EVs 
with mammalian target cells(40,41) and their content may 
include virulence factors with cytotoxic and  antibiotic 
resistance effect.(42,43,44) On the other hand, regulation of 
signalling pathways leading to immunomodulation has 
been determined in bacteria of the oral and intestinal 
microbiota.(45) A recent study with cervicovaginal patho-
bionts and commensal bacteria EVs indicate differential 
cargo and viability/cytoadherence effects when evaluat-
ing them onto a culture model with ectocervical cells 
and Trichomonas vaginalis, showing a possible role in 
host-pathogen interaction.(46)

The study of EVs in this type of pathogens has been 
virtuous: Escherichia coli, Moraxella catarrhalis or 
Pseudomonas spp. have been subjects of research, as 
well as the gram-positive Bacillus subtilis and Staphy-
lococcus aureus.(47) Actually, licensed OMVs based vac-
cines against meningococcal infections have been devel-
oped and, in this sense, advanced discovery is currently 
exploring on enteric pathogens.(48) Besides, and thanks 
to electron microscopy, EVs have also been described in 
mycobacteria and fungi of medical importance.(47) Par-
ticularly, in the latter, it should be noted that their secre-
tion has been described in yeasts such as Cryptococcus 
neoformans,(49) as well as in filamentous fungi such as 
Sporothrix brasiliensis.(50)

EVs in fungi, as eukaryotic organisms, share release 
mechanisms with those described in mammals, as they 
appear to be linked to the endocytic secretory pathways 
associated with the ESCRT and Golgi reassembly and 
stacking proteins (GRASP) machinery, and the ER-GA-
exocyst-PM axis.(51) Likewise, their size ranges from  
20 - 50 nm to 1000 nm, according to different reports 
and under different methodologies such as dynamic light 
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scattering (DLS), electron microscopy (EM) and nanopar-
ticle tracking analysis (NTA).(16) Other vesicles studied in 
this group have been the periplasmic vesicles, which are 
those inside the fungal cell wall, between the cell mem-
brane and the inner face of the chitin barrier,(51) but also 
EVs from protoplasmic models have helped to understand 
fungal vesicles roles.(52) Finally, in addition to pathogenic 
related functions, cell wall-remodelling enzymes for easi-
er vesicle passage and immunogenic protein content have 
been found in EVs of Histoplasma caspsulatum;(53) also, 
fungal EVs are suspected to be involved in modulation of 
immune effectors and in cryptococcosis and sporotricho-
sis outcome due to virulence enhancement.(54)

Important findings in EVs for clinical parasitology

The release of EVs in the context of a parasitic infec-
tion becomes complex as one has those produced by the 
host and by the parasite.(14) In fact, it has been proposed 
that the fusion between the EVs of protozoan parasites 
and those of the host cell could have effects on any of the 
involved; that’s why the understanding the participation 
of EVs in host-parasite interaction and cell communica-
tion would probably redefine the concepts of parasitism.
(55) Furthermore, the dissemination of genetic elements 
of the parasite through EVs supports their possible in-
volvement in co-adaptative and co-evolutionary pro-
cesses of gene regulation and synchronisation with the 
host metabolism.(56) The role as strong parasite-parasite 
communication messengers and further effects on this 
regard, as motility/migration signals in African trypano-
somes has been demonstrated,(57) cargo manipulation 
and functional small RNA roles in PEVs are advancing 
areas in this research field.(58)

The proteome and transcriptome of parasitic EVs re-
veals the presence of molecules associated not only to 
immunomodulation, but also to reproduction and sur-
vival, so that any subsequent discovery in relation to 
their functions would give rise to new ways of under-
standing pathogenesis, how parasite-host communica-
tion occurs, and the study of new drug targets.(59) Even 
diagnostic applications are already on the horizon, as 
proposed by Wang et al.,(60) who worked in the develop-
ment of a biosensor to discriminate between EVs from 
Ascaris suum and those from mice macrophages, where 
the differential binding of these EVs through a specific 
marker (CD63), absent in the parasite EVs, causes a shift 
in the wavelength resonance;(60) even though, each po-
tential diagnostic tool should be carefully validated due 
to, for example, the possibility of finding other tetraspa-
nins in parasite-derived EVs.(61,62) For this reason, the 
proper characterisation of the content of EVs is relevant.

During the different forms of parasitism, PEVs de-
rived from extracellular parasites could be found, but 
also those secreted from intracellular infected cells and 
parasitic antigen stimulated cells.(63)

Macro-extracellular parasites: arthropods  
and helminths

Before delving into protozoan parasites, it is worth-
while to review what has been identified in other groups 
of classical parasitology, such as arthropods that act as 

biological vectors and helminths of medical importance, 
with specific cases of their EVs pivot findings.

EVs of some arthropods have been implicated in 
the dissemination/infection process of the microorgan-
isms they transmit,(64) but also as part of the vector-host-
pathogen triad.(65) In this sense, these vesicles have been 
described as possible mediators in the transmission of 
flavivirus proteins and RNA, as demonstrated by Zhou 
et al.(66) in their in vitro model with an Ixodes scapu-
laris cell line infected with langat virus (LGTV) and 
human keratinocytes/endothelial cells. The same was 
demonstrated in cell lines derived from Aedes aegypti 
and Ae. albopictus mosquitoes with dengue virus type 2 
(DENV2) viral particles.(67) Besides, viral-like particles 
have been observed in extracellular vesicles derived 
from DENV infected C6/36 cells.(68)

In addition, Oliva Chávez et al.(69) demonstrated an 
impaired feeding ability of I. scapularis by silencing 
genes of soluble NSF (N-ethylmaleimide-sensitive fu-
sion protein) receptor (SNARE) molecules (vamp33 and 
synaptobrevin 2) related to the release of EVs, in parallel 
to an increase of γδ-T cells at the site of the bite. In turn, 
these EVs present in tick saliva might play roles not only 
in tick-borne pathogens transmission dynamics, as it has 
been seen for protozoan parasites and bacteria, but also 
in feeding-facilitating immunomodulatory responses 
at the ectoparasite-host skin interplay.(70) Moreover, the 
vector as an arthropod host could be affected by micro-
bial EVs, as the case of the regulation of the innate im-
mune response of Ae. aegypti by EVs of microfilariae.(71) 
Of course, some non-vector free living arthropods like 
dust mites have been implicated in other types of hu-
man damage such as allergic processes and, for instance, 
Dermatophagoides farinae EVs were shown to be im-
munoreactive against specific serum IgE and to induce 
airway inflammation in mice.(72)

In the helminths group, EVs, as part of the excreto-
ry-secretory products, have been studied from different 
perspectives, such as in Trichuris muris, for pathogen-
esis understanding purposes using organoids,(73) or in 
Fasciola hepatica and Brugia malayi, where proteomics 
and inmunological-based visualisation techniques have 
been instrumentalised to elucidate the biogenic path-
ways and cellular origin of vesicles.(74,75) The participa-
tion of carbohydrates in lectin-EVs binding patterns and 
macrophage internalisation has also been evidenced,(75) 
as well as the description of virulence factors in EVs 
from Paragonimus kellicotti lung cyst fluid(76) and Echi-
nococcus multilocularis protoescoleces.(77) Moreover, 
varied functional-immune assays have revealed the im-
munomodulatory capacity of Trichinella spiralis EVs,(78) 
the phenotypic modification of dendritic cells and the re-
duction of macrophages migratory capacity induced by 
EVs from the trematode F. hepatica(79,80) and the expres-
sion of miRNAs associated with the mTOR signalling 
pathway as part of the cargo in EVs from filarial nema-
todes,(81) which all supports a potential for downregula-
tion. This type of active biomolecules (miRNAs) derived 
from EVs are part of the developing diagnostic arsenal, 
as they could be identified from biological samples and 
have been achieved from serum of Schistosoma spp. in-
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fected patients.(82) Computational prediction of miARN 
found in EVs from different nematodes support their 
immunological relevance as immune networks genes 
are targeted by these molecules.(83,84,85) For helminthia-
sis, as in other microorganisms, the production of vac-
cines based on EVs and their antigens is still an interest-
ing proposal that gives new routes for resolving doubts 
about antigen expression control and its variability, the 
response that can be induced or the adjuvants to be used.
(86) In mice immunised with F. gigantica exosome-like 
particles, burden reduction after metacercariae infection 
and immunoglobulin production has been pointed out.
(87) On the other hand, immunogenic antigens as part of 
the cargo of EVs of helminths might be an interesting 
subject for immunodiagnostic advances research.(88,89)

Protozoan parasites

Many protozoan parasites successfully exert intra-
cellular parasitism and have adapted to their human 
hosts in such a way that they are even able to modulate, 
at a certain stage, part of the interaction with the vascu-
lar endothelium and its microenvironment through EVs, 
facilitating the establishment of infections such as it oc-
curs in malaria.(90,91) Likewise, infected host cells can 
induce pro- and anti-invasion responses through their 
EVs.(92) However, the first contact between the parasite 
(sometimes coming from a vector) and the host tissues 
necessarily occurs in invasive forms that, to continue the 
life cycle, eventually reappear at certain times or under 
specific circumstances.(93,94) In the framework of experi-
mentation with protozoa and their EVs, these vesicles 
can sometimes be studied in axenic culture.(94)

Intracellular protozoan parasites

In apicomplexan-related infections like malaria, pro-
voked by species of the obligate intracellular parasite 
Plasmodium, the study of EVs obtained from its invasive 
stage is scarce, since the growth of the parasite requires 
the use of cell culture. In this sense, several works have 
focused on the study of infected-red cell derived EVs;(95,96) 
however, it would be worth exploring the role of EVs 
from their sporozoites and merozoites in the mechanisms 
of invasion of hepatocytes and red blood cells.

EVs secreted by tachyzoites of Toxoplasma gondii, 
another parasite, have also been characterised using 
transmission electron microscopy (TEM) and NTA, and 
purified by gel exclusion chromatography.(97,98) Further-
more, they have been related to: (i) the in vitro stimu-
lation of a proinflammatory profile in macrophages,(97) 
(ii) the expression of different miRNAs as possible car-
goes,(98,99) (iii) the promotion of host immune evasion,(100) 
and (iv) enhanced virulence (in terms of parasitaemia) 
in mice, five days post infection (p.i.) (through co-in-
oculation of EVs and tachyzoites).(98) Immunisation with 
tachyzoite-released EVs showed to trigger humoral im-
mune responses, increasing the survival rate of mice 
challenged with a lethal dose of parasites. Finally, im-
munohistochemistry showed high expression of tumour 
necrosis factor (TNF-α) in spleen cells, along with IL-10 
and interferon (IFN-γ) in spleen and brain cells.(101)

On the other hand, the trypanosomatid protozoan 
parasites Trypanosoma cruzi and Leishmania sp., 
which cause American trypanosomiasis (Chagas dis-
ease) and leishmaniasis, share the characteristic of be-
ing transmitted to humans mainly by arthropod vec-
tors: triatomine bugs and sandflies, respectively. The 
effect of EVs in the interaction of these parasites with 
their vectors during the extrinsic cycle (stage in which 
they also manifest themselves extracellularly) has been 
catalogued as negative for early migration of T. cruzi 
in the digestive tract of Rhodnius prolixus pre-fed with 
epimastigote-derived EVs; although with no effect on 
the amount of metacyclic trypomastigotes (the infec-
tive form for humans) at 28 days p.i., nor in Triatoma 
infestans in general.(102) The secretion of parasite EVs 
occurs not only in the arthropod midgut, but also at the 
vector-host interface, as it has been demonstrated with 
Leishmania-derived EVs present in the inoculum at the 
site of the bite.(103)

The first encounter of Leishmania sp. with host cells 
occurs at the dermal level.(104) Mice footpad co-injection 
of EVs and metacyclic promastigotes of L. major causes 
exacerbated swelling and increased parasite load, with 
a rise in the expression of proinflammatory cytokines 
such as IL-17a.(103,105) In counterbalance, the production of 
IL-6 and IL-10, along with the de-stimulation of TNF-α, 
has also been observed in monocytes and macrophages 
in the presence of Leishmania-derived EVs,(105,106) associ-
ated with an immunosuppressive effect and benefiting 
parasite’s survival.(107) Indeed, the presence of GP63 in 
Leishmania EVs represents an anti-inflammatory regu-
lation mechanism.(108) Besides, an important enrichment 
of RNA cargo has been found in 120 nm EVs of axenic 
cultures of Leishmania.(109)

Back to the case of T. cruzi, the causative agent of 
Chagas disease, in the context of the acute phase of the 
infection, there are several interesting findings: EVs 
produced during early parasite-host contact promote 
parasite infectivity in Vero cells(110,111) and their injec-
tion in mice prior to trypomastigote inoculation leads to 
more inflammation, higher parasitism and formation of 
amastigotes nests, with CD4+ lymphocytes infiltration 
in the heart.(112) It has  also been proven that T. cruzi EVs 
can inhibit complement lytic activity,(113) which is a form 
of initial immune evasion.

More recent studies on T. cruzi trypomastigote-de-
rived EVs reveal an increase in Ca2+ mobilisation and 
permeabilisation in Vero cells treated with these vesi-
cles,(111) as well as the induction of a proinflammatory 
profile of cytokines (TNF-α and IL-6) in macrophages 
and muscle cells.(114) EVs in T. cruzi may diverge in struc-
ture and composition, depending on the stage of the par-
asite (trypomastigote vs. epimastigote):(115) average sizes 
of 183 nm and 259 nm were determined in epimastigote-
derived EVs, resulting larger than trypomastigote-de-
rived EVs (60 nm and 143 nm). Moreover, significant 
differences were found in the exoproteome, particularly 
in one of the most important virulence factors: proteins 
of the trans-sialidase family, with greater presence and 
diversity in trypomastigote-derived EVs.(115)
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Even though the specific generation pathways of 
EVs in trypanosomatids are unknown,(94) there is some 
evidence that there could be ESCRT independent mech-
anisms, as nanotube derived EVs in T. brucei, ESCRT 
dependent multivesicular bodies (MVBs) in Leishma-
nia, or new biogenesis pathways like reservosomes 
EVs in T. cruzi.(4) Cargoes of trypanosomatid-derived 
EVs are the reflection of well-known glycoproteins and 
soluble proteins from the parasite, which eventually in-
teract with TLRs.(116) Besides, an interesting approach 
for implication in virulence might be related to the ca-
pacity of EVs of inducing/transferring resistant pheno-
types or improving parasite fitness.(117,118)

Other trypanosomatid, already mentioned, but 
eminently extracellular along its life cycle is T. bru-
cei, the causative agent of African sleeping sickness, 
whose EVs covered with variant surface glycoproteins 
(VSGs) have been involved in pathogenesis due to their 
fusogenic capacity with erythrocytes.(119) Furthermore, 
upregulation triggering effects on CD4+ and CD8+ T 
cells and stimulation of MHC expression in macro-
phages have also been observed.(120)

Extracellular protozoan parasites

There is another group of unicellular eukaryotes 
that exert parasitism extracellularly through vegetative 
forms, the trophozoites, and lack intracellular evolution-
ary forms; the mechanisms of pathogenesis in these cases 
involve some effectors other than the intracellular arse-
nal. However, EVs have come to light in recent research 
as molecular mediators of these pathogens. In Figure, a 
depiction of the principal role of their EVs over several 
scenarios is shown. A size comparison of EVs obtained 
from extracellular protozoa, by several techniques such 
as NTA, TEM, and DLS, is presented in Table. This table 
also summarises isolation methodologies employed by 
different groups that investigate EVs from these para-
sites; most of these methods are recommended and im-
plemented by other protozoan EVs researchers.(121)

Giardia duodenalis - G. duodenalis (syn. G. intes-
tinalis) is an intestinal parasite that adheres, as its tro-
phozoite form, to the epithelium of the small intestine, 
with effects on enterocytes that induce malabsorptive 
diarrhoea.(122) Its cystic form protects it from environmen-

Explored general roles of extracellular vesicles (EVs) derived from extracellular protozoa in pathogenesis, parasite-parasite communication, and 
its relationship with immune effectors. (A) Entamoeba histolytica EVs are possible involved in en/excystment processes and have effects over neu-
trophils; (B) Giardia duodenalis EVs provoke alteration of Caco-2 cells tight junctions and enterobacteria, promote adhesion of the parasite and 
induce a proinflammatory outcome; (C) free living amoeba (i.e., Acanthamoeba sp., Naegleria fowleri) derived-EVs are uptaken by glial cells and 
other mammalian cells and are also associated with a proinflammatory chemokine/cytokine production; (D) Trichomonas vaginalis induce the 
production of nitric oxide (NO) in macrophages and stimulate adhesion of the parasites to ectocervical cells. Figure created with BioRender.com.
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tal adversities and differentiation involves the transport 
of components of the extracellular cystic wall by dense 
granule-like vesicles, called encystation specific vesicles, 
whose origin is associated with the ER.(123) It has been pro-
posed that, during the release of their content, remnants 
of the plasma membrane catalogued as “empty vesicles 
or membrane ghosts” are formed and remain attached to 
flagella or suspended in the extracellular milieu.(124)

TABLE
Isolation and characterisation methods commonly employed for the collection of extracellular vesicles (EVs)  

from extracellular protozoan pathogens, including sizes ranges reported in literature

Parasite form Isolation method EV diameter (nm) Technique Reference

Trichomonas vaginalis 
trophozoites

DC + sucrose gradient ~ 50 - 100 TEM (140)

DC 50 - 100 TEM (148)

DC 30 - 150 TEM (142)

DC
100 - 1000 TEM

(141)

380 / 63 DLS
DC + density gradient 108 - 146 DLS (144)

DC ~ 105 NTA (46)

Giardia duodenalis 
trophozoites

DC
20 - 25 / 50 - 100 TEM

(135)

22,8 / 85,2 DLS

DC
60 - 150 TEM

(126)

150 - 350 NTA

DC
100 - ~ 200 TEM

(130)

143,5 NTA

DC
50 - 90 / 117 - 282 TEM

(128)

82,6 / 238,5 NTA
DC 187,6 / 67,7 NTA (131)

ExoEasy maxi kit (QIAGEN) CaCl2 treatment: 210
Bile treatment: 270 NTA (137)

Entamoeba histolytica 
trophozoites and/or cysts

Total exosome isolation 
(Invitrogen)

< 200 TEM
(157)< 50 - 600

Peak: 483 NTA

Total exosome isolation 
(Invitrogen) 125 NTA (156)

Acanthamoeba sp. 
trophozoites

DC

PYG medium: 31,9 - 467
Glucosed medium: 33,7 - 303,2 TEM

(165)

PYG medium: 56,1 - 68,4 / 150,4 - 223,0 / 402,9 - 659,4
Glucosed medium: 173,2 - 234,8 / 585,1 - 746,5 DLS

DC 28°C incubation: 184,6 ± 50,80 / 50,29 ± 8,49
37°C incubation: 111,3 ± 19,8 DLS (160)

Ultrafiltration: Amicon 
ultracentrifugation filters  
(Merck Millipore) + Total 

exosome isolation (Invitrogen)

Peak: 118 NTA (164)

DC 101 - 150 / 151 - 200 NTA (163)

Naegleria fowleri 
trophozoites

DC
43,88 / 207,95 TEM

(169)216 ± 83 NTA
227,13 ± 37,98 / 206,29 ± 37,08 / 24,24 ± 9,18 DLS

Size exclusion chromatography 22,4 - 955 DLS (172)

DC 156,8 ± 13,4 / 141 ± 8,3 NTA (168)

DC + Size exclusion 
chromatography Overall average of five strains: 152,6 NTA (170)

When data is not presented as a range, it corresponds to a mean or a NTA peak; DC: differential centrifugation; /: indicates different EV 
subpopulations.

During the last decade, EVs have been described as 
part of the secretome of G. duodenalis in axenic cul-
tures,(125) with average size of 201,6 nm;(126) now, it is 
possible to focus on specific size subpopulations. For 
instance, there is a modified differential centrifugation 
protocol that enriches populations > 100 nm.(127) Actu-
ally, lipid profiles vary between small and large EVs(128) 
which can help to understand to role of some lipid spe-
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cies in EVs release, as it has been proposed,(126) adhesion, 
encystation and signalling.(128) Besides, their involvement 
in  pathogenic processes has begun to be elucidated: there 
is increased trophozoite adhesion to Caco-2 cells in the 
presence of G. duodenalis-derived EVs, they contribute 
to the maturation of dendritic cells,(126) alter tight junctions 
given by ZO-1 and Claudin-4,(129) and there are virulence 
factors such as antigenic variable surface proteins (VSPs) 
and giardin in cyst-derived EVs(126,130) and trophozoites.(131) 
In general, proinflammatory effects and raised immuno-
genicity are driven by EVs secreted by G. duodenalis.(132)

In addition, G. duodenalis has also an internal mem-
branous system: peripheral vesicles (PVs), which have 
been linked to part of the ESCRT machinery,(133) high-
lighting the possibility that it operates at this level as 
part of a secretory pathway. PVs can act as microvesicu-
lar bodies with intraluminal vesicles (ILVs), so could be 
linked to the origin of EVs.(134) It has been proposed that 
these occurs in both vegetative and resistance forms, 
adding a potential link to differentiation between these 
phases.(134) Indeed, another author highlights an EVs re-
lease that depends on ESCRT-associated molecules.(135)

Among other pathophysiological roles associated 
with EVs of G. duodenalis, a subpopulation of 187,6 nm 
was able to restore parasite adhesion capacity after the 
treatment with Cl-amidine, an inhibitor of peptidyl ar-
ginine deiminase in Caco-2 cells.(131) Also, pretreatment 
of murine macrophages with G. duodenalis-derived 
EVs generated increases in cytokines such as IL-6 and 
TNF-α, as with it happened with trophozoites.(136) In ad-
dition, G. duodenalis EVs induced phosphorylation and 
activation of p38, ERK and AKT signalling pathways, 
the NF-κB pathway(136) and NLRP3 of the inflamma-
some, which possibly mediates IL-1β production.(130)

Finally, by evaluating the effect of EVs of G. duode-
nalis on commensal bacteria such as E. coli and Entero-
bacter cloacae, it was revealed that these vesicles could 
modulate growth, biofilm formation, motility, and adhe-
sion to the epithelium,(137,138) which suggests new roles in 
the interaction with host microbiota.

Trichomonas vaginalis - Trichomoniasis is the most 
common non-viral sexually transmitted disease, which 
mainly affects women in reproductive age, but can also 
be symptomatic in men.(139) The parasite causing the dis-
ease is the flagellate T. vaginalis. In the first description 
of EVs produced by trophozoites of this agent, an over-
lapping of protein composition compared to mammalian 
exosomes was concluded;(140) this was similar to the find-
ings published by Nievas et al.,(141) who reported a 56% 
of proteins homologous to those found in a fraction of 
human EVs. In addition, most proteins with signalling 
functions and metabolic enzymes were identified from 
those with identifiable domains.(140) Using SEM, an in-
creased protrusion of EVs from parasites due to the pres-
ence of CaCl

2 was shown.(141)

Other cargoes described in T. vaginalis-derived EVs 
are: surface proteins of the BspA family,(140,141) which are 
molecules possibly involved in pathogenesis; ARF pro-
teins, relevant for their relationship with formation, release 
and cargo selection;(141) tetraspanin TSP1(140,142) and VPS32, 
a molecule involved in the ESCRT III complex, which in  

T. vaginalis is related to the biogenic regulation of EVs, 
cargo sorting and parasite adhesion;(143) tRNA fragments(46) 
and Trichomonasvirus particles, that might be transmitted 
to the host and is a possibly a critical element in disease de-
velopment.(142,144) Proteins involved in filopodia and in the 
formation of cytonemes (e.g., small actin-binding proteins, 
calreticulin and Rho/Ras family proteins) were found in 
EVs implicated in parasite-parasite communication.(145)

Characterisation of the EVs uptake by host cells 
demonstrated the fusion with ectocervical cell mem-
branes to release their contents(140) and internalisation, 
with fluorescence and fluorimetry assays in BPH-1.(146) 
This uptake might be Ca2+-dependent, mediated by gly-
cosaminoglycans and heparan sulphate in proteoglycans 
from host cells and 4-α-glucanotransferase homologues 
that act as ligands in EVs.(146) Entry by action of caveo-
lin-1 and lipid raft dependent endocytosis has been es-
tablished,(46) which has been successfully inhibited by 
cholesterol depletion agents.(146)

Regarding the pathogenic process, it could be pointed 
out that EVs (from a high adherent strain) increased adhe-
sion by stimulating both host cells and parasites from less 
adherent strains;(140) the same group demonstrated a posi-
tive outcome in survival and parasite burden when co-
incubated with EVs, confirming a role in colonisation.(147) 
Nitric oxide (NO) production in macrophages has been 
detected, indicating EVs-mediated activation.(148) When 
animal and cellular models are pre-treated with EVs of 
T. vaginalis, an immune response has been determined, 
with a mitigating tendency that reduces mice oedema and 
inflammation and with significant increases in IL- 10;(148) 
conversely, IL-6 is elevated to a lesser extent and no real 
regulation by EVs has been observed.(140)

Parasitic and free-living amoebae (FLA) - In amoebae 
such as Dictyostelium discoideum, EVs were described 
since 1998, as vesicular organelles of 100 - 300 nm.(149) 
This organism has been tested as a eukaryotic model 
for the study of several diseases, cellular processes, and 
host-pathogen interactions, due to its easy manipulation 
and growth.(150) Therefore, it has also been postulated as a 
potential model for research on the heterogeneity of EVs 
and the elucidation of their biological functions.(150)

Subsequently, with the escalate of interest in EVs in 
different research groups, work lines have been devel-
oped around the pathogenic intestinal amoeba such as 
Entamoeba histolytica, but also on free-living organisms 
with pathogenic potential (amphizoic) such as Acantham-
oeba sp. and Naegleria fowleri, with highlights of the pos-
sible intervention of EVs in the mechanisms of damage 
and pathogenesis. Besides, an emerging issue is related to 
encapsulation of pathogenic bacteria (such as Legionella 
pneumophila) and respiratory viruses in EVs secreted by 
FLA, EVs serving as easy alveoli contact spreaders.(151,152)

Entamoeba histolytica - The large intestine is an ide-
al habitat for colonisation by amoebae and, particularly, 
E. histolytica has been studied as a potentially inva-
sive agent with complications such as ulcerative colitis 
and amoebic dysentery.(153) With the help of proteomic 
analyses, molecules involved in the pathogenesis of this 
amoeba have been identified, like adhesins and cysteine 
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proteases; interestingly, membrane recycling has been 
suggested since surface membrane proteins were also 
identified in the excretion-secretion products.(154)

Following a study of the endomembrane system, ves-
icles of 50 - 200 nm were known to be present inside the 
parasite with possible roles in a protein traffic system 
together with MVBs and endosomes, as well as the pres-
ence of mammalian Alix orthologues in the vesicles,(155) 
establishing a possible role of the ESCRT complex. Lat-
er, EVs of 125 nm were obtained from axenic culture 
of E. histolytica,(156) and a broader range of sizes (50 to 
less than 600 nm) has also been shown through TEM 
and NTA.(157) Amoebic EVs were enriched in cell sur-
face galactose/N- acetyl galactosamine-binding lectins 
and an important part of proteins unveiled by mass spec-
trometry did not present signal peptide; also, selective 
small RNA packaging was described and compared to 
cellular RNA, denoted some differences(156) Packaging 
of tRNA fragments also occurs.(158)

Functional assays with neutrophils have demonstrat-
ed incorporation of amoebic EVs and effects over oxida-
tive burst and NETosis,(157) and intercommunication be-
tween parasites in encystment processes.(156) The latter 
was seen in a model using Entamoeba invadens.

Acanthamoeba sp. - Amoebae of the genus Acan-
thamoeba are ubiquitous in nature and capable of gener-
ating a central nervous system condition such as amoe-
bic granulomatous encephalitis, but also other more 
frequent diseases such as amoebic keratitis. The cases 
are typically associated to genotype T4 and, to a lesser 
extent, T3 and T11,(159) among others. In environmental 
isolates, our research group has described organisms 
from these and other genotypes with pathogenic poten-
tial,(160,161,162) including the secretion of EVs with serine 
and cysteine protease activity in Acanthamoeba T5.(160) 
Coincidentally, another study found that serine prote-
ases are predominant in four strains of environmental 
(genotypes T1, T2 and T11) and clinical (genotype T4) 
origin.(163) Aminopeptidase activity has also been deter-
mined in EVs of Acanthamoeba.(164)

A previous study with Acanthamoeba castellanii 
described evaginating vesicles from plasma membrane 
using SEM, and great diversity in mean diameter esti-
mations (Table): 117 nm by TEM and 287,7 and 365,1 
nm using DLS,(165) a range that embraces sizes report-
ed in posterior works (166,7 nm using NTA).(164) When 
analysing two culture conditions through a qualitative 
proteomic characterisation of the secretome (one in rich 
medium PYG and the other under nutritional stress), 
most of the proteins belonged to the miscellaneous or 
undefined categories.(165) However, the exoproteome 
under stress identified more proteins related to cellular 
stress and oxidative, protein and amino acid metabolism, 
with a rich enzymatic profile for carbohydrate metabo-
lism (amylases, glycosyl hydrolases, alpha-1,4-glucan 
phosphorylases),(165) which draws attention for its po-
tential use in biotechnological applications.(166) While, 
in abundance, more locomotion and signalling proteins 
were found,(165) other proteomic analyses of quantitative 
type support that the largest families of proteins found 

are hydrolases and oxidoreductases.(164) On the other 
hand, characterisation of lipid composition has shown 
the presence of sterols, phospholipids, free fatty acids, 
and sterol esters.(165)

EVs of A. castellanii have been shown to interact 
with different cell lines such as Chinese hamster ovary 
(CHO) cells, glioblastoma T98G and rat glial C6 cells, 
adhering to the membrane and terminating in all cases 
with their internalisation. Likewise, in vitro cytopathic 
effect assays have yielded positive results.(164,165) It has 
been further determined that A. castellanii EVs are 
also able to elicit an immune response in THP-1 cells, 
after detecting the expression and production of IL-6, 
IL-12(164) and TNF-α.(163) In murine macrophages, activa-
tion level after the stimulation with EVs of Acantham-
oeba has been measured through the production of NO, 
demonstrating that, of those tested, the main receptor is 
TLR4, followed by TLR2.(163) Protease inhibitors have 
exerted a negative effect on both, the concretion of the 
cytopathic effect,(165) as well as NO production,(163) point-
ing to a preponderant role of these as virulence factors 
associated with EVs.

Naegleria fowleri - The infectious disease given by 
N. fowleri, primary amoebic meningoencephalitis, is a 
severe fulminant pathology with high mortality rate, in 
which the amoeba employs contact-dependent (adhesion 
and phagocytosis) and contact-independent (matrix me-
talloproteinases and pore-forming proteins) mechanisms 
to produce brain tissue damage and destruction.(167)

Pathophysiological mechanisms are under constant 
review and two pioneer investigation groups have con-
firmed the production of EVs by trophozoites of this 
amoeba. In this sense, it has been reported cup-shaped 
vesicles observed via TEM, comprising two subpopula-
tions of 156,8 nm and 141 nm;(168) a more comprehensive 
characterisation of these EVs was performed by Retana 
Moreira et al.,(169) who measured size through TEM, 
NTA and DLS, obtaining means ranging from 24,24 nm 
to 227,13 nm (Table). Z-potential of -12,228 mV was also 
determined.(169) Then, clustered release of EVs was re-
ported by Russell et al.(170) and Retana Moreira et al.(171)

Proteome analysis has found almost half of proteins 
are still uncharacterised, but also identified actin, Rho 
GTPases, dehydrogenases, and two potential pathogen-
esis-related factors: leucin aminopeptidase and fowler-
pain (a cysteine protease).(169) Besides, protease activity 
of EVs of N. fowleri has been found, mainly by serine 
proteases, although to a lesser extent than the whole tro-
phozoite extract.(169) Afterwards, Russell et al.(170) identi-
fied 2270 proteins, 150 of which overlapped with Retana 
Moreira et al.(169) findings.

Regarding functional analysis, cellular effects of N. 
fowleri EVs have been featured by PKH26-monitored 
internalisation in the THP-1 monocytic cell line, with 
no subsequent apoptosis and stimulation of IL-8 gene 
expression, cytokine that was later identified 48 h and 
72 h post-activation of macrophages.(168) Uptake by other 
mammalian cells (e.g., Vero, HFF, A549, B103 rat neuro-
blastoma cells) and other amoebae has been proved via 
EVs-R18 staining.(170) A cytokine/chemokine proinflam-
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matory profile was described on BV-2 microglial cells 
stimulated by N. fowleri EVs, showing the possibility of a 
contact independent immunopathogenic mechanism.(172)

In this sense, our group has just confirmed the induc-
tion of diverse effectors (e.g., iNOS, IL-6, IL-23, TNF-α, 
IL-10) on primary microglia and BV-2 cells by EVs se-
creted by trophozoites of two clinic isolates of Naegleria 
fowleri. We also noted morphological changes in cells 
to an amoeboid-like morphology after the contact with 
these vesicles. Moreover, specific N. fowleri DNA was 
found in EVs fractions, according to our quantitative 
polymerase chain reaction (qPCR) results,(171) a promis-
ing finding for diagnostic purposes.

Limitations and future perspectives

There are still many biological questions regarding 
EVs and their purposes; whether they respond to a stim-
ulus, a selective process or an incidental release must 
be elucidated.(173,174) In parasites of medical importance, 
it remains to be clarified if the change in the profile of 
biomolecules depends on the parasite stage and what 
mechanisms of cargo manipulation exist in pathophysi-
ological contexts to lead to more or less virulence.(19,175)

The discovery and description of the interactions be-
tween EVs and host cells supposes the integration of new 
knowledge in the understanding of the phenomenon of 
parasitism. Furthermore, as cellular inducers, EVs im-
munomodulation has been widely proven. In fact, in bio-
medical application, the advantages offered using EVs 
as platforms for immunisation are being studied since 
they could represent stable carriers of various antigens, 
which would prevent the development of tolerance. 
However, aspects of logistics, formulation, safety, and 
effectiveness in suitable models cannot be ignored given 
still unpredictable responses.(175)
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