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Role of the Cyclosporin-sensitive Transcription Factor
NFAT1 in the Allergic Response
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Proteins belonging to the NFAT (nuclear factor of activated T cells) family of transcription factors
are expressed in most immune cell types, and play a central role in the transcription of cytokine genes,
such as IL-2, IL-4, IL-5, IL-13, IFN-γ, TNF-α, and GM-CSF. The activity of NFAT proteins is regulated
by the calcium/calmodulin-dependent phosphatase calcineurin, a target for inhibition by CsA and FK506.
Recently, two different groups have described that mice lacking the NFAT1 transcription factor show an
enhanced immune response, with tendency towards the development of a late Th2-like response. This
review evaluates the possible role of NFAT proteins in the Th2 immune response and in the eosinophil-
mediated allergic response.
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The cytokine profiles of T cells differentiating
down the Th1 and Th2 pathways have been de-
scribed, Th1 cells preferentially produce IL-2 and
IFN-γ, whereas Th2 cells produce IL-4, IL-5, IL-
10 and IL-13 (Paul & Seder 1994, Carter & Dutton
1996). In many pathological situations, the balance
between Th1 and Th2 immune response determines
the outcome of different immunologically-medi-
ated clinical syndromes including infectious, au-
toimmune, and allergic diseases (Carter & Dutton
1996).

Allergic disease is a broad range of disorders
including rhinitis, conjunctivitis, systemic anaphy-
laxis, and asthma (Casolaro et al. 1996, Drazen et
al. 1996). Atopic allergy is characterized by in-
creased synthesis of IgE antibodies through the
actions of IL-4 and IL-13 in B cell Ig isotype class
switching, directed at groups of antigens that acti-
vate the CD4-dependent Th2-like immune re-
sponse (Romagnani 1995). The IgE produced binds
to Fcε  receptors present on the surface of mast
cells and basophils, priming them for activation
by antigen, and triggers the release of vasoactive
mediators, chemotactic factors and cytokines
(Romagnani 1995, Drazen et al. 1996). In addi-
tion, eosinophils are also involved in the patho-
genesis of allergic reactions, as these cells accu-
mulate at the sites of allergic inflammation and sig-
nificantly contribute to the tissue damage
(Desreumaux & Capron 1996).
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In asthma, some data suggest that the severity
of the disease is related to the degree of inflamma-
tion (Peters 1990, Broide et al. 1991, Pare & Bai
1995), and that the magnitude of the asthmatic re-
sponse is related to the number of eosinophils
present in the lung (Bradley et al. 1991). More-
over, suppression of eosinophil accumulation at the
site of inflammation impairs the development of
asthma disease (Wagner et al. 1990, Foster et al.
1995). These data suggest that eosinophils could
be a central mediator of the pathogenesis of aller-
gic disease. We can hypothesize three sequential
and interacting events for how eosinophils medi-
ate inflammation at the site of allergic response,
described as follows: first, eosinophil differentia-
tion and maturation in the bone marrow; second,
rolling, adhesion, and migration in the inflamed
vascular endothelium; and third, activation and
degranulation in the target organ (Fig. 1).

Eosinophil tissue infiltration is coordinated by
an interacting network of cytokines, chemokines,
adhesion molecules, and inflammatory mediators.
In fact, GM-CSF, IL-3 and IL-5 have been de-
scribed as factors that induce differentiation, matu-
ration and proliferation of bone marrow eosino-
phils (Sanderson et al. 1985, Lopez et al. 1986,
Clutterbuck & Sanderson 1988, Takatsu et al. 1988,
Warren & Morre 1988, Yamaguchi et al. 1988).
However, blood eosinophilia is not related to eosi-
nophil tissue accumulation (Dent et al. 1990,
Desreumaux et al. 1996), suggesting that overpro-
duction of eosinophils is not enough for tissue in-
filtration by these cells, and chemoattractant pro-
duction at the site of inflammation is essential for
eosinophil recruitment.
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Rolling and adhesion of eosinophils on vascu-
lar endothelium is the first step for eosinophil in-
filtration in the target organ, and may depend on
several adhesion molecules (Desreumaux &
Capron 1996). However, eosinophils are the only
granulocytes that express VLA-4, and may selec-
tively bind to endothelial cells via VCAM-1
(Weller et al. 1991, Pretolani et al. 1994, Nakajima
et al. 1994, Wardlaw et al. 1994). Moreover, it has
been described that IL-4 and IL-13 upregulate
VCAM-1 on human endothelial cells (Bochner et
al. 1995), suggesting that interaction between
VLA-4/VCAM-1 play a central role in eosinophil
migration during the allergic response.

Eosinophil migration into inflamed tissue in-
volves several chemoattractant mediators, includ-
ing cytokines, chemokines and lipid mediators, and
occurs after adhesion to the vascular endothelium
(Desreumaux & Capron 1996). GM-CSF, IL-3 and
IL-5, are the key cytokines influencing eosinophil
migration and activation (Broide et al. 1992, Weller
1993, Sullivan & Broide 1996). In fact, several re-
ports demonstrated that IL-5 plays the central role
in eosinophil-mediated allergic responses, since
this cytokine is a selective chemoatractant for eosi-
nophils (Sehmi et al. 1992), and has the ability to

prime and activate these cells (Coeffier et al. 1991,
Sehmi et al. 1992, Warringa et al. 1992). In addi-
tion, IL-5 deficient mice do not show eosinophilia
(Kopf et al. 1996), and fail to develop airway
hyperresponsiveness and eosinophil infiltration in
an experimental model of asthma (Foster et al.
1995). Other important chemoattractants and acti-
vators of eosinophils are the C-C subfamily of
chemokines (Desreumaux & Capron 1996). The
eosinophil active chemokines include RANTES,
MCP-2, MCP-3, MCP-4, MCP-5, MIP-1α, and
eotaxin (Jia et al. 1996, Kita & Gleich 1996, Sarafi
et al. 1997). Eotaxin, first described in guinea pigs
and subsequently in mice and humans, is a potent
and specific eosinophil chemoattractant (Jose et al.
1994, Gonzalo et al. 1996, Ponath et al. 1996), and
disruption of the eotaxin gene partially reduces tis-
sue eosinophil infiltration in a model of allergic
response (Rothenberg et al. 1997).

Once eosinophils infiltrate the inflamed tissue,
they degranulate and secrete several proinflamatory
mediators and cytokines (Weller 1993). Activated
eosinophils release their granule proteins, includ-
ing the major basic proteins, eosinophil peroxidase
(EPO), eosinophil cationic protein (ECP), and eosi-
nophil-derived neurotoxin (Desreumaux &  Capron

Fig. 1: a simplified view of eosinophil differentiation and maturation, in the bone marrow; rolling, adhesion and migration, in the
blood vessel; and activation and degranulation, in the target organ. Cytokines, growth factors, adhesion molecules, chemokines,
and lipid mediators that play a role in each step are indicated.
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1996). They also secrete lipid mediators,
chemokines, and cytokines, which amplify the re-
sponse and generate a feedback loop that perpetu-
ates the allergic inflammatory response (Drazen et
al. 1996). Together, these inflammatory mediators
and cytokines generate tissue damage that could
be related with the clinical symptoms of the differ-
ent allergic diseases.

NFAT TRANSCRIPTION FACTORS IN IMMUNE RE-
SPONSE

Many of the cytokines that regulate eosinophil
function are under the control of proteins belong-
ing to the NFAT (nuclear factor of activated T cells)
family of transcription factors. These proteins play
a key role in the regulation of cytokine gene tran-
scription during the immune response (Crabtree &
Clipstone 1994, Rao 1994, Jain et al. 1995b). The
NFAT family encodes four distinct classes of pro-
teins: NFAT1 (formerly NFATp), NFAT2 (NFATc),
NFAT3 and NFAT4 (NFATx) (Rao et al. 1997).
NFAT1, the first identified member of the family,
was cloned from murine (Ar-5) and human (Jurkat)
T cell cDNA libraries (McCaffrey et al. 1993, Luo
et al. 1996). A distinct protein, NFATc (NFAT2),
later was also cloned from a Jurkat T cell cDNA
library (Northrop et al. 1994). cDNA clones en-
coding three other NFAT proteins: NFAT3, NFAT4
and NFATx (isoform of NFAT4), were isolated
from Jurkat T cell, human peripheral blood (PBL)
and human thymus cDNA libraries (Ho et al. 1995,
Masuda et al. 1995).

Despite their name, NFAT proteins are ex-
pressed not only in T cells, but also in other classes
of immune and non-immune cells. At the protein
level, NFAT1 and NFAT2 are expressed in periph-
eral T cells and T cell lines, and NFAT1 is also
expressed in B cells, mast cells, NK cells, mono-
cytes and macrophages (Ho et al. 1994, Aramburu
et al. 1995, Ruff & Leach 1995, Wang et al. 1995,
Weiss et al. 1996). Moreover, NFAT1 is expressed
in a neuronal cell line and in the nervous system
(Ho et al. 1994), and an endothelial cell line
(Cockerill et al. 1995a, Wang et al. 1995). NFAT1
and NFAT2 mRNAs are expressed in peripheral
lymphoid tissue (spleen and PBL), and NFAT2
mRNA is upregulated in activated T cells and NK
cells (Northrop et al. 1994, Aramburu et al. 1995,
Hoey et al. 1995, Masuda et al. 1995, Park et al.
1996). NFAT4 mRNA is expressed at high levels
in the thymus (Hoey et al. 1995, Ho et al. 1995,
Masuda et al. 1995), and NFAT3 is expressed at
low levels in lymphoid tissues (Hoey et al. 1995).

Several isoforms have been described for
NFAT1, NFAT2 and NFAT4. Sequence homology
represented in all the isoforms suggests two dif-
ferent domains, comprising the DNA-binding do-

main (DBD) and the NFAT homology region
(NHR) (Jain et al. 1995a, Luo et al. 1996). The
DBD, which is located between amino acid resi-
dues 400 and 700, is highly conserved within the
NFAT family, and shows moderate sequence simi-
larity to the DNA-binding domains of Rel-family
proteins (Nolan 1994, Jain et al. 1995a, Chytil &
Verdine 1996). This domain contains the highly
conserved RAHYETEG sequence in which resi-
dues contact DNA (Jain et al. 1995a, Chytil &
Verdine 1996). The NHR is located in the N-ter-
minal region, comprising 300 amino acids, and
shows a strong conservation of several sequence
motifs characteristic of the NFAT family (Ho et al.
1995, Hoey et al. 1995, Masuda et al. 1995, Luo et
al. 1996) (Fig. 2).

Fig. 2: schematic diagram of the primary structure of the NFAT1
protein, as deduced from analysis of cDNA clones. The region
of highest homology within NFAT proteins is the DNA-bind-
ing domain (DBD), which shows similarity to the Rel homol-
ogy region of Rel-family transcription factors, and encodes the
amino acids that contact DNA. Other regions such as
transactivation domain (TAD), NFAT homology region (NHR),
and splicing variants isoforms are indicated.

NFAT transcription factors are cytosolic pro-
teins constitutively expressed in resting cells (Rao
et al. 1997). NFAT proteins are activated by stimu-
lation of receptors coupled to calcium mobiliza-
tion, such as the antigen receptors on T and B cells
(Yaseen et al. 1993, Choi et al. 1994, Crabtree &
Clipstone 1994, Rao, 1994, Venkataraman et al.
1994, Jain et al. 1995b, Serfling et al. 1995, Loh et
al. 1996b), Fcε receptors on mast cells and baso-
phils (Hutchinson & McCloskey 1995, Prieschl et
al. 1995a, Weiss et al. 1996), the Fcγ receptors on
macrophages and NK cells (Aramburu et al. 1995),
and receptors coupled to heterotrimeric G proteins
(Desai et al. 1990, Wu et al. 1995, Boss et al. 1996).
Three different steps of activation have been de-
fined for NFAT proteins: dephosphorylation,
nuclear translocation, and DNA binding. In rest-
ing cells, NFAT proteins are phosphorylated and
cytoplasmic, and show a low affinity for DNA
(Shaw et al. 1995). Stimuli that trigger calcium
mobilization result in rapid dephosphorylation of
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NFAT proteins and their translocation to the
nucleus, and dephosphorylated proteins show in-
creased affinity for DNA (Shaw et al. 1995, Loh et
al. 1996a,b). Receptor stimulation and calcium mo-
bilization result in activation of the calmodulin-
dependent phosphatase calcineurin (Weiss &
Littman 1994). Each step of NFAT activation is
blocked by the calcineurin inhibitors CsA or
FK506, suggesting that calcineurin is a major up-
stream regulator of NFAT proteins, and that de-
phosphorylation is the initial step of NFAT activa-
tion (Fig. 3).

ries indicated that the promoter/enhancer regions of
different activation genes possessed binding sites
for NFAT family proteins, including the cytokines
IL-2 (Shaw et al. 1988, Mattila et al. 1990, Randak
et al. 1990, Brabletz et al. 1991, Ullman et al. 1991,
Jain et al. 1993a, Rooney et al. 1995a), IL-4
(Casalaro et al. 1995, Rooney et al. 1995b), IL-5
(Prieschl et al. 1995a,b), IL-13 (Dolganov et al.
1996), IFN-γ (Brown et al. 1991, Campbell et al.
1996), TNF-α (McCaffrey et al. 1994, Tsai et al.
1996), and GM-CSF(Cockerill et al. 1995a,b), as
well as the cell surface receptors CD40L (Schubert
et al. 1995, Tsytsykova et al. 1996), and CTLA-4
(Perkins et al. 1996). Based on comparison of these
sequences, the NFAT binding site is presented as a
9 bp element, possessing the consensus sequence
(A/T)GGAAA(A/N)(A/T/C)N (Rao et al. 1997). In
addition, NFAT proteins show a characteristic abil-
ity to cooperate with AP-1 proteins in DNA-bind-
ing and transactivation (Rao 1994). The interaction
between NFAT proteins and AP-1 involves binding
of these transcription factors to adjacent sites on
DNA, and results in stabilisation of the NFAT-DNA
interaction (Jain et al. 1993a,b, Chen et al. 1995).
Note that cytokines that are inhibited by CsA or
FK506 have present in their promoter regions bind-
ing sites for NFAT proteins, suggesting that NFAT
transcription factors are major targets of these im-
munosuppressive drugs (Rao et al. 1997).

Cytokine expression by different cells of the
immune system plays a central role in the immune
response, and each cell type produces a character-
istic pattern of cytokines (Paul & Seder 1994). The
immune response is coordinated by an interacting
network of transcription factors that dictate expres-
sion of different cytokines (Crabtree 1989, Paul &
Seder 1994). To study the unique functions of the
NFAT1 transcription factor in the in vivo immune
response, two different groups generated mutant
mice carrying a disrupted NFAT1 gene (Hodge et
al. 1996, Xanthoudakis et al. 1996). Although all
reports indicate that the NFAT1 transcription fac-
tor is a positive regulator of cytokine expression,
surprisingly, certain primary and secondary im-
mune responses in mice lacking NFAT1 gene were
enhanced, such as increased intrapleural accumu-
lation of eosinophils and increased serum IgE lev-
els in an in vivo model of allergic inflammation
(Xanthoudakis et al. 1996), increased serum IgE
levels in response to immunization with TNP-oval-
bumin (Hodge et al. 1996), and more efficient dif-
ferentiation towards a Th2 phenotype in spleen
cells stimulated in vitro with IL-4 and anti-CD3
(Hodge et al. 1996). In the next section we discuss
the possible role of the NFAT1 transcription factor
in the Th2 immune response and eosinophil-medi-
ated allergic inflammation.

Fig. 3: signal transduction mechanisms leading to transcription
of cytokine genes in activated T cells (and other cells of the
immune system) upon stimulation through surface receptors
capable of mobilizing calcium. Abbreviations: TCR, T-cell re-
ceptor; BCR, B-cell receptor; FcR, Fcγ and Fcε receptors; CsA,
cyclosporin A; PKC, protein kinase C; CaM kinase, calmodulin-
dependent kinase; P, phosphorylation.

Stimulated cells inducibly transcribe a large
number of genes, such as genes encoding transcrip-
tion factors, signalling proteins, cytokines, cell sur-
face receptors, and other effector proteins (Leonard
et al. 1987, Crabtree 1989, Cockerill et al. 1995b,
Kelly & Siebenlist 1995). NFAT was first identified
in T cells as a rapidly-inducible nuclear factor bind-
ing to the distal antigen receptor response element
of the human IL-2 promoter (Shaw et al. 1988). Over
the next few years, studies from several laborato-
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ROLE OF NFAT1 TRANSCRIPTION FACTOR IN THE
ALLERGIC RESPONSE

The response of the immune system to antigen
is coordinated by an interacting network of tran-
scription factors that dictate expression of differ-
ent effector proteins that regulate the immune re-
sponse (Crabtree 1989, Paul & Seder 1994). How-
ever, it is not known how the same stimuli can be
responsible for encoding the specificity of cellular
response. Recently, it has been described that dif-
ferent calcium signalling patterns can activate dif-
ferent transcription factors, demonstrating that the
same second messenger can drive specificity in
signalling to the nucleus (Dolmetsch et al. 1997).
Nevertheless, the molecular basis for the tissue-
specific expression of Th1/Th2-like cytokines has
remained elusive. Over the next few years, several
groups have been described important advances
in signaling and gene transcription in the immune
system using in vivo gene disruption.

In other to address the specialized functions of
NFAT1 transcription factor in the in vivo immune
response, mutant mice carrying a disrupted NFAT1
gene have been described (Hodge et al. 1996,
Xanthoudakis et al. 1996). In both cases the tar-
geted exon was in the DNA-binding domain en-
coding the Rel-homology region (see above), and
the disruption resulted either in the expression of a
truncated protein without DNA-binding activity
(Hodge et al. 1996), or in no protein expression
(null phenotype) (Xanthoudakis et al. 1996). Ex-
cept for a moderate degree of splenomegaly,
NFAT1-deficient mice developed normally, did not
exhibit any obvious behavioral deficiencies, and
were immunocompetent.

In the primary immune response, NFAT1-defi-
cient mice showed no impairment in IL-2, IL-4,
IFN-γ and TNF-α production by in vitro stimula-
tion of spleen cells with anti-CD3 antibody or Con
A (Xanthoudakis et al. 1996). However, in an in
vivo model of primary response NFAT1-deficient
mice showed an early impairment of several
cytokines, such as IL-4, IL-13, TNF-α and GM-
CSF, and cell surface receptors, including CD40L
and FasL (Hodge et al. 1996). These results sug-
gest that the NFAT1 protein played an important
role in the primary in vivo immune response that
could not have been predicted from the in vitro
experiments.

Surprisingly, certain primary and secondary
immune responses were markedly enhanced. In
fact, CD4 T cells hyperproliferated in an in vitro
response to anti-CD3 antibody, and an in vitro
model of T helper (Th) differentiation, NFAT1-
deficient mice showed an increased level of IL-4
production at later timepoints (Hodge et al. 1996).

In addition, these mice presented high serum IgE
levels in response to immunization with ovalbu-
min (Hodge et al. 1996, Xanthoudakis et al. 1996).
Moreover, NFAT1-deficient mice consistently
showed a marked increase in the secondary im-
mune response using two different experimental
models. First, cells from draining lymph nodes of
mice that had been sensitized with ovalbumin
hyperproliferated after a secondary in vitro stimu-
lation with the same antigen (Xanthoudakis et al.
1996). Second, an allergic/inflammatory response
to antigen was assessed in vivo. Mice that had been
previously sensitized to ovalbumin were restimu-
lated by intrapleural injection of antigen, and the
accumulation of eosinophils in the pleural cavity
was assessed. NFAT-deficient mice showed a
marked increased in the number of eosinophils in
the pleural cavity and a corresponding increase in
the level of serum IgE (Xanthoudakis et al. 1996).

The immune phenotype of NFAT1-deficient
mice illustrates three important points.  First, these
mice are immunocompetent rather than immunode-
ficient and do not show any gross impairment in the
production of NFAT-dependent cytokines, indicat-
ing that the lack of NFAT1 is compensated for by
the presence of other NFAT proteins.  Second, the
increased secondary immune responses and in-
creased cell proliferation observed in NFAT1-defi-
cient mice suggests that NFAT1 may actually have
an overall negative effect on immune responsive-
ness in normal mice.  This behaviour is not unprec-
edented: for example, in signal transduction path-
ways, kinases that are activated early during a re-
sponse often activate feedback processes that con-
tribute to the late downregulation of the same re-
sponse.  Finally, the unusual hyper-eosinophila of
NFAT1-deficient mice in a model of allergy, and
their tendency towards the late production of Th2-
type cytokines, suggests that NFAT1 critically in-
fluences Th differentiation during the normal im-
mune response.  NFAT1 could act to promote the
transcription of genes encoding immunosuppressive
cytokines, cytokines that skew T cell differentiation
towards the Th1 pathway, or cytokines that suppress
differentiation towards the Th2 pathway.  Alterna-
tively, NFAT1 could inhibit the production of
cytokines having the opposite effect.  These possi-
bilities are not mutually exclusive.  Given the im-
portance of Th1-Th2 cytokine production in asthma,
allergy, and other clinical situations, it is of consid-
erable interest to understand the mechanisms by
which NFAT1 exerts its profound effects on T cell
differentiation and function.
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