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Challenges of phylogenetic analyses of aDNA sequences
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One of the crucial steps of authentication of aDNA sequences is phylogenetic consistency.  Amplified sequences
should fit into the phylogenetic framework of their supposed origin.  An inherent property of aDNA sequences
however, is their short sequence length.  Additionally, genes for aDNA studies are often chosen by their preservation
potential rather than by phylogenetically informative content.  This poses potential challenges regarding their
analyses, and might result in an inaccurate reflection of the supposed phylogenetic history of the sequence or
organism under study.  In this paper some fundamental problems of phylogenetic analysis and interpretation of
aDNA datasets are discussed.  Suggestions for character sampling and treatment of missing data are made.  The
publication is the result of a talk from the 1st PAMINSA Meeting in Rio de Janeiro, July 2005.
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Phylogenies are central to addressing interesting evo-
lutionary questions in aDNA research (Austin et al.
1997a,b , Hofreiter et al. 2001).  Just as in a regular analysis
with extant data however, conclusions depend on the han-
dling and analysis of the data.  Therefore, an increased
effort should be spent on conducting thorough analyses.
While numerous protocols regarding stringent aDNA labo-
ratory techniques, such as extraction, amplification and
sequencing exist (Handt et al. 1994, Austin et al. 1997b,
Cooper & Poinar 2000, Hofreiter et al. 2001) limited atten-
tion has been paid to the analytical challenges arising
from an aDNA dataset.

Ancient DNA is in general physically and chemically
damaged (Handt et al. 1996, Poinar et al. 1996, Poinar &
Stankiewicz 1999), which results in the fragmented nature
of its sequences.  Typically, no large sequences can be
obtained, and many characters cannot be sampled.  Addi-
tionally, only multicopy genes tend to survive in ancient
material (Hofreiter et al. 2001).  Out of this knowledge, the
majority of aDNA sequences have been retrieved from
the mitochondrial genome, or from other multicopy genes
such as nuclear ribosomal genes (Greenwood et al. 1999,
Cooper et al. 2001, Dittmar et al. 2003).  Therefore, preser-
vation issues severely limit the available phylogenetically
informative character space of aDNA.

Because there is little recourse to avoid incomplete
taxa in aDNA research, a higher emphasis should be placed
on the initial character sampling.  This should be guided
by a priori knowledge obtained from a thorough analysis
of extant taxa.  In the following text we will introduce some
ideas how to use extant sequences in aDNA sequence
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sampling.  We also briefly test and discuss recent devel-
opments in missing data research.
Choosing the right genes/gene region

The essential problem for the aDNA researcher is that
the potential character sampling space is limited from the
beginning.  DNA damage starts to occur immediately af-
ter cell death, and is only to increase in the course of time.
In the majority of all cases no DNA is preserved, and only
under special circumstances (e.g. permafrost), detectable
amounts of DNA, albeit highly fragmented, survive.  Very
often, this DNA is from multicopy ribosomal and mito-
chondrial genes, which supposedly have a higher chance
of survival because of their larger number of copies per
cell.  Due to the workings of hydrolytic and oxidative dam-
age, the expected sequence length for aDNA does cer-
tainly not exceed 500 bps, and most sequences rather range
between 150 to 300 bps (Hofreiter et al. 2001).  From these
multiple, randomly broken pieces only a minuscule amount
is sampled. The generation of larger contiguous DNA se-
quences has been successfully attempted, but samples
came from subfossil material [1000-1500 years old] (Coo-
per et al. 2001). Usually, aDNA researchers are satisfied
with the completion of one single short sequence, which
is then used in a phylogenetic analysis to confirm �phy-
logenetic consistency� (Austin et al. 1997b) and to infer
phylogenetic history.  Chances are, however, that the se-
quenced piece contains only a limited number of phylo-
genetically informative characters, if any at all.  It is well
known that certain genes, depending on their level of se-
quence divergence, may reflect relationships on different
ordinal levels.  However, each gene may also contain re-
gions of rapid or unconstrained evolution, leading to satu-
ration, and consequently to what phylogeneticists refer
to as random signal or �noise�.  If the sequenced aDNA
pieces were to be composed entirely of random signal, an
inaccurate or conflicting (relative to other datasets) re-
flection of the �true� phylogenetic history of that se-
quence will result.

To avoid this problem, aDNA researchers should adopt
a more problem oriented character sampling approach on
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the outset of their analyses.  Rather than randomly se-
quencing pieces of aDNA, and �hoping for the best�,
researchers can actually make use of extant data to ex-
plore character congruence or informational content.

In order to reconstruct the phylogenetic history of an
organism on a molecular level, multiple sources of charac-
ter information are available in the form of different genes.
Today it is widely accepted that phylogenies should be
reconstructed with all available information in a combined
analysis, because it provides the greatest possible ex-
planatory power (Nixon & Carpenter 1996, Wiens 1998,
Pickett et al. 2005).  Additionally, combined datasets have
been shown to reveal hidden support even for relation-
ships in conflict among analyses of individual markers
(Gatesy et al. 1999).  Therefore, in an aDNA study, the
sampling of different genes (e.g. mitochondrial and
nuclear) should at least be attempted.  For instance,
chances are, that if mitochondrial cytB sequences can be
obtained, then fragments of all other mitochondrial genes
also survived.

Phylogenetically informative characters are distributed
throughout the entire gene sequence.  This distribution
is not random, since functional and structural constraints
on different parts of the gene selectively govern the evo-
lution of different regions within a gene.  Thus, this
mechanism also accounts for the fact that most genes
contain both more conservative and more variable regions,
which might either be informative on different ordinal lev-
els, or not informative at all.  Therefore, an exploration of
extant homologous sequences could identify potentially
problematic regions, which then could be excluded a priori
from the aDNA study.  Or, in other words, potentially in-
formative regions could be identified, and selectively in-
cluded into the analysis.  Several methods to analyze the
quality of a dataset concerning information content or
character incongruence have been proposed in the past.

One approach was introduced by Lyons-Weiler et al.
(1996) in form of the program RASA (relative apparent
Syna-pomorphy analysis).  This method tests (under the
assumption of an hierarchical structured dataset) if the
proportion between potential synapomorphies and po-
tential informative similarity for any two taxa increases
above the expected by chance alone.  While this method
has been used by several researchers, Simmons et al.
(2002) tested a number of hypothetical and empirical
datasets with strong phylogenetic signal under these cri-
teria, and reported a failure to detect phylogenetic sig-
nal for both matrices.  Another approach is a compari-
son of the homogeneity of signal in different genes
through a series of partition homogeneity tests (PHT)
(Farris et al. 1994, Swof-ford 2002).  The PHT, also
known as incongruence length difference test (ILD, Farris
et al. 1994) examines the relationship between incon-
gruence and phylogenetic accuracy.  This test distin-
guished between cases in which combining the data gen-
erally improved phylogenetic accuracy (P > 0.01) and
cases in which accuracy of the combined data suffered
relative to the individual partitions (P < 0.001).  Applied
to an extant gene, divided into defined sub-regions, po-
tentially incongruent and congruent sub-regions could
be defined a priori, and aDNA sequencing could be ad-
justed accordingly.  As a caveat however, it has been
shown, that noise itself can generate highly significant
results in the ILD test (Dolphin et al. 2000).  Addition-
ally, Dowton and Austin (2002) showed that the ILD test
is unlikely to be an effective measure of congruence
when two datasets differ markedly in size.

In order to test the phylogenetic utility of potentially
available aDNA characters, we propose an approach that
uses extant sequences, and is rooted in the comparison
of partitioned Bremer support (PBS) values (Bremer 1995,
Lambkin et al. 2002).  Usually, PBS has been used to com-

Fig. 1: diagram illustrating the analytical steps of the proposed Partitioned Bremer Support (PBS) procedure for aDNA.
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pare the phylogenetic utility of different genes in a com-
bined analysis, and to assess localized character incon-
gruence (DeSalle & Brower 1997, Gatesy et al. 1999).
We however want to extend the application of PBS to an
a priori assessment tool, identifying particular regions
of good character support within a gene.  In a similar
way, PBS has been applied to mitochondrial genome data
(Cameron et al. 2004).  The idea is to calculate PBS values
for particular predefined regions within a gene, based on
an alignment of extant sequences (Fig. 1).  The most obvi-
ous ways to partition single genes in a replicable manner
is by codon positions, and secondary or domain struc-
ture.  Since we aim to choose topologically sequential
characters for sequencing (one cannot sequence every
second nucleotide for 150 consecutive base pairs) only
the latter two options apply to aDNA.  Another way of
replicable partitioning is to apply a sliding window (Fig.
1), thus portioning the data into n subsets of a particular
length (e.g. 150 bps), which then could be subjected to a
PBS analysis (TreeRot v2b, Sorenson 1999).  One of the
criticisms of PBS is that values are not comparable across
analyses, because they are dependent on the specific
dataset they were computed for.  For instance a Bremer
Support value of 5 might be high for a particular dataset,
but low for another.  However, since we use it as a com-
parative metric within a dataset, PBS is perfectly suitable
for the selection of approximate gene regions that con-
tribute more support than others.
The problem with missing data

In order to place aDNA sequences in a phylogenetic
context, an alignment with extant sequences is necessary.
By their very nature, extant sequences tend to be much
larger in size.  In a sequence alignment the unsampled
aDNA characters would be coded as missing, and the
sequence would be incomplete (Fig. 2A).  Numerous em-
pirical and theoretical studies have shown that the inclu-
sion of highly incomplete taxa (> 50% missing data) makes
it difficult to place these on the overall topology
(Huelsenbeck 1991, Nixon and Wheeler 1992, Anderson
2001).  As a result, tree topologies or parts of the tree will
most likely be unresolved.  Potentially, highly incomplete
taxa (e.g. aDNA) also influence phylogenetic inferences
on the more complete taxa (e.g. extant taxa).

Fig. 2: example depicting missing data in aDNA analysis.  Missing characters are coded in form of a questionmark.

The most common way to deal with a majority of
missing data values for one taxon would be its elimina-
tion from the analysis.  This is of course not feasible in
this particular case, because it would defy the very pur-
pose of aDNA work.  Another option would be the se-
lective inclusion of alignment sections with complete
data across all taxa (Fig. 2B, cutting approach).  This
however, would lead to extremely short alignments, since
the regular aDNA sequence amounts to roughly 150 to
500 bp length.  In the past decade however, several re-
searchers challenged the common notion of inherent
difficulty of incomplete taxa, and suggested that there is
not necessarily a direct relationship between the degree
of incompleteness and the resulting phylogenetic place-
ment of a taxon (Wiens 2003, 2005, Philippe et al. 2004).
In fact, recent computer simulations clearly showed that
an accurate placement of highly incomplete taxa is pos-
sible provided a sufficient number of overall characters
are present (Wiens 2003, 2005).  This would result in
the complete inclusion of the highly incomplete taxa
(Fig. 2C, missing data approach).

We used a sample dataset of complete 18S rDNA
(1866 bp) to test the two approaches under a simple ab-
solute congruence scenario.  Five ingroup (Hy-
menoptera) and two outgroup taxa (Ephemeroptera) were
included in the analysis.  First, the complete dataset was
analyzed under exhaustive searches under both maximum
parsimony and maximum likelihood (PAUP*, Swofford
2002).  Nonparametric bootstrap values (1000/100 boot-
strap replicates, 100/10 heuristic random addition rep-
licates, heuristic search) were calculated using PAUP*
4.0b10 (Swofford 2002).  Both analyses converged on
the same topologies (Fig. 3).

Then each one of the ingroup taxa was cut down to
150 bp in two arbitrarily chosen places in sequential or-
der.  Both datasets of this particular taxon were subjected
to the cutting, and the missing data alignment approach,
bringing the number of total analyses to 40 [5 taxa × 2
subsets × 2 alignments × 2 optimality criteria].  Result-
ing topologies were compared for topological congru-
ence with the tree derived from the complete dataset.  In
case of alternative relationships, trees were subjected
to the Shimodaira-Hasegawa test (SH test, 1999) by com-
paring them to the single �best� ML tree from the com-
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ducted with the maximum number of extant characters
possible, and the trimming of the dataset to exclude miss-
ing characters should be avoided.
Conclusions

Before setting out to obtain aDNA sequences that are
to be used to answer specific questions related to the
phylogenetic history of that particular taxon, research-
ers should keep the following in mind: (1) inherently,
aDNA sequences will always contain high amounts of
missing data; (2) combined analyses of different genes
have been shown to provide greater explanatory power.
Therefore, multiple genes should be targeted for an
aDNA analysis; (3) exploratory analysis of available ex-
tant taxa can provide a priori clues as to which gene
regions to sequence; (4) generally, alignments contain-
ing aDNA sequences should not be cut as to avoid miss-
ing data, but should be included into a substantial dataset
of extant sequences with un-obtainable characters coded
as missing.
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