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BACKGROUND Kissing bugs are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Despite their 
epidemiological relevance, kissing bug species are under sampled in terms of their diversity and it is unclear what biases exist in 
available kissing bug data. Under climate change, range maps for kissing bugs may become less accurate as species shift their 
ranges to track climatic tolerance.

OBJECTIVES Quantify inventory completeness in available kissing bug data. Assess how well range maps are at conveying 
information about current distributions and potential future distributions subject to shift under climate change. Intersect 
forecasted changes in kissing bug distributions with contemporary sampling gaps to identify regions for future sampling of 
the group. Identify whether a phylogenetic signal is present in expert range knowledge as more closely related species may be 
similarly well or lesser understood.

METHODS We used species distribution models (SDM), specifically constructed from Bayesian additive regression trees, with 
Bioclim variables, to forecast kissing bug distributions into 2100 and intersect these with current sampling gaps to identify 
priority regions for sampling. Expert range maps were assessed by the agreement between the expert map and SDM generated 
occurrence probability. We used classical hypothesis testing methods as well as tests of phylogenetic signal to meet our objectives.

FINDINGS Expert range maps vary in their quality of depicting current kissing bug distributions. Most expert range maps decline 
in their ability to convey information about kissing bug occurrence over time, especially in under sampled areas. We found 
limited evidence for a phylogenetic signal in expert range map performance.

MAIN CONCLUSIONS Expert range maps are not a perfect account of species distributions and may degrade in their ability to 
accurately convey distribution knowledge under future climates. We identify regions where future sampling of kissing bugs will 
be crucial for completing biodiversity inventories.
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Kissing bugs (Hemiptera: Reduviidae: Triatominae) 
are a largely hematophagous group of insects that are all 
potential vectors for Trypanosoma cruzi (Trypanosoma-
tidae: Trypanosoma), a parasite that causes Chagas dis-
ease (CD), a potentially life-threatening condition that 
can cause long-term heart disease and damage to other 
organs. The parasite is typically passed into the human 
bloodstream after the insect completes a blood meal, and 
defecates on the hosts’ skin, passing the T. cruzi para-
site from the feces into the host’s circulatory system.(1) 
Importantly, with increasing habitat fragmentation and 
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climate change, it is projected that several kissing bug 
species may become epidemiologically more relevant, 
both in the endemic range of many species and in new 
areas that may become suitable to kissing bugs in the 
future under changing environmental conditions.(2,3,4,5,6)

Being important disease vectors, kissing bug spe-
cies have been previously examined through the lens 
of species distribution modeling (SDM) at both local 
and broader geographic scales.(7,8,9,10,11) Kissing bugs are 
largely Neotropical in their distribution with some spe-
cies extending their range into the southern Nearctic. 
Their presence seems to be largely driven by climatic 
tolerances(5,6,12-17) as well as by the presence of suitable 
hosts from which to take a blood meal.(18,19,20,21,22) For ex-
ample, several previous works have demonstrated that 
before the advent of SDMs, the ecological factors con-
sidered most important for influencing the distribution 
of kissing bugs were temperature and humidity.(23) Since 
then, it was recognized that some species endure more 
or less variation while others are harmed by the same 
fluctuations which was corroborated by SDMs analyses.
(6,17,24,25) Temperature in particular is important for ther-
mal preference(26,27,28) as well as host finding, feeding, 
reproduction, and development.(29,30,31,32)
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The early detection of the dispersal and/or range shifts 
of triatomine species to new areas (especially those popu-
lated by humans) is critical for assessing potential future 
public health threats.(3,33,34,35,36) Opportunistically sampled 
data such as those from museum collections can provide 
a historical basis for triatomine species ranges; addition-
ally, community science is playing an increasing role in 
triatomine species early detection,(37,38,39) as has been the 
case for invasive insect species elsewhere.(40) Thus, it is 
important to establish a baseline assessment of where the 
knowledge of triatomine occurrence is most complete, 
and to examine which regions are under-sampled in order 
to target those areas in future sampling.

Given the importance of kissing bugs to public health, 
we sought to assess the current state of our knowledge 
of kissing bug occurrence from publicly available data-
sets. These datasets include DataTri(41) a curated data-
base of triatomine occurrence records, and records from 
the Global Biodiversity Information Facility (GBIF),(42) 
which include “Research Grade” records from commu-
nity science platforms such as iNaturalist as well as Inte-
grated Digitized Biocollections (iDigBio) and Symbiota 
Collections of Arthropods Network (SCAN).(43) Previous 
work on inventory completeness and the assessment of 
bias in insect data has demonstrated that regions expe-
riencing drastic climate change are likely to be under 
sampled(44) as sampling efforts typically focus on regions 
of high human population density or at the interface of 
anthropogenic infrastructure (e.g., roads and recreation-
al trails).(44,45,46) Recent research has shown that these bi-
ases not only occur in triatomine sampling schemes,(47) 
but also increase in magnitude over time.(46)

We expect kissing bugs to exhibit similar trends, 
mainly because ― being vectors of a human disease ― 
most of the sampling efforts are made at or near domi-
ciliary rural sites(48) and because their wild habitats are 
difficult to sample.(49) Here we focus on how expertly 
drawn range maps compared to maps produced by spe-
cies distribution models. In particular, we highlight how 
range maps may degrade in their ability to convey ac-
curate information about species occurrence, especially 
in light of forecasted climate change. Finally, we per-
formed an analysis of several kissing bug species, their 
probability of occurrence over time and gaps in species 
inventories to identify priority regions for the future 
sampling of this group.

MATERIALS AND METHODS

Species range maps and occurrence data - Spe-
cies range maps were obtained from the triatomine 
geographical Atlas by Carcavallo et al.(50) These maps 
cover the breadth of potential kissing bug distribu-
tions throughout the neotropics and adjacent regions 
including the southern United States. Those maps were 
drawn by hand by the senior author (Dr Rodolfo Car-
cavallo) and there was no explanation for the meth-
odology or procedures used in their drawing. Those 
range maps were scanned and digitized, recording the 
areas of presence at a scale of 0.1 x 0.1 coordinates de-
grees; so, our working data were a set of latitude/lon-
gitude coordinates representing those range maps, both 

graphically and as data in a spreadsheet. The author 
of the Atlas was an excellent “expert” in triatomines, 
collected tirelessly in all of the Americas personally, 
and was an inexhaustible collector of bibliography (his 
atlas is based not only in his personal experience but 
also on hundreds of locations cited by many other re-
searchers). There were 115 triatomine species included 
in this original atlas; however, due to taxonomic revi-
sions since the creation of the Atlas, there are now 112 
valid species in the atlas.(51,52,53)

Confirmed occurrence records for triatomine species 
were gathered from DataTri,(41) the Global Biodiversity 
Information Facility (GBIF),(42) the Integrated Digitized 
Biocollections (iDigBio), and the Symbiota Collections 
of Arthropods Network (SCAN) (see Supplementary data 
for a list of collections accessed). These occurrence re-
cords were then filtered to include only species for which 
we had range map information and in which the point oc-
currence intersected with the range map for that species 
for our inventory analysis. We retained all records for 
our SDM and expert score assessments. Additionally, we 
only included records of kissing bugs observed/collected 
from 1910-2021, further partitioning these into two dis-
tinct datasets for our analysis. All subsequent described 
analyses were conducted in R v. 4.2.1.(54)

Inventory completeness analysis - Expected richness 
was calculated for 100×100 km square cells by layering 
expert range maps and counting the number of overlap-
ping ranges per square cell: observed richness was cal-
culated by counting the number of unique species from 
the filtered occurrence data for each grid cell. Thus, if 
expert ranges for three kissing bug species overlapped in 
a given cell, the expected richness was three. The ratio 
was calculated using the following equation:

Inventory completeness = 
(Observed richness from occurrences)
(Expected richness from range maps)

A ratio of observed richness to expected richness 
was calculated from these two values and fell between 
zero (no records of kissing bugs for which we had range 
maps) and one (complete recording of expected kissing 
bug richness based on range maps). This approach for in-
ventory completeness has been performed elsewhere.(44)

Species distribution models - We ran species dis-
tribution models using Bayesian Additive Regression 
Trees (BARTs) via the package “embarcadero”.(55) Like 
other machine-learning methods, BARTs compute a bi-
nary representation (using a logit-link function where 
applicable) of habitat suitability for a species (see Carl-
son(55) for more detail on the algorithm). In addition, 
BARTs have the added benefit of reduced overfitting 
problems that can be common in decision tree ap-
proaches.(56) We assessed the performance of our SDMs 
by examining the average area under the receiver-op-
erator curve (AUC) across five top models per species. 
AUC indicates the overall performance of the model 
with respect to true and false positive rates.(57) Values 
above 0.5 indicate the model is performing better than 
random chance with respect to predictive capacity. The 
top models for each iteration of the BART procedure 
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were selected using the highest training true skill sta-
tistic (TSS).(58) The AUC and TSS scores for all discov-
ered models can be found in the Supplementary data.

We required species to have at least 25 unique oc-
currence records (from the period prior to 1999) to be 
considered for distribution modeling. Unfortunately, 
this eliminated Triatoma brasiliensis from our pre-1999 
analysis; however, given its epidemiological impor-
tance, we included it in the post-1999 analysis (where it 
meets our minimum requirement). Random background, 
or pseudoabsence, points were generated such that the 
number of pseudoabsence points was equal to the num-
ber of occurrence records used for modeling. Five identi-
cally specified models were run per species to obtain an 
average probability of occurrence.(59) We used the Bio-
clim dataset for environmental predictors in our model.
(60) In the past, kissing bug distributions have been mod-
eled using the full Bioclim dataset, with the variables 
BIO4 (Temperature Seasonality), BIO5 (Maximum 
Temperature of the Warmest Month), BIO6 (Minimum 
Temperature of the Coldest Month), BIO13 (Precipita-
tion of the Wettest Month), BIO14 (Precipitation of the 
Driest Month), and BIO15 (Precipitation Seasonality) 
found to be highly predictive of kissing bug occurrence 
in the past.(6) We used correlation plots to identify simi-
lar variables for inclusion in our present study to reduce 
issues with multicollinearity. In the case of purely pre-
dictive approaches, issues such as multicollinearity are 
not as relevant;(61,62) however, we have provided correla-
tion plots highlighting the correlation between BIOs for 
each species in our analysis in the Supplementary data. 
Studies that aim to infer the specific, causal influence 
of environmental factors on distributions should more 
explicitly consider multicollinearity among other signals 
of potential confounders. Finally, we partitioned our 
occurrence dataset into data that were collected before 
1999 (to remain congruent with when the expert range 
maps were drawn); and data from across all periods (to 
examine how well models conditioned on data collected 
both pre- and post-1999 agreed with expert range maps). 
We used a 2.5-minute resolution of the Bioclim dataset 
across all analyses. Full specifications of the models as 
well as AUC diagnostics can be found in Supplementary 
data (Table I) (pre-1999 model diagnostics) and Supple-
mentary data (Table II) (all occurrence model diagnos-
tics). We also include all model files as an additional 
Supplementary data to this work. We used a minimum 
bounding box which fully encompassed both the occur-
rence records and expert range maps with a 500-kilo-
meter buffer zone as the calibration area for the model. 
We used this minimum bounding box to constrain the 
analysis and reduce the potential that more global areas 
of calibration might have on predictions,(63,64) including 
the buffer zone to allow for projections to potentially 
suitable environmental spaces that kissing bugs could 
plausibly occur but have not been explicitly sampled.

Expert score analysis - Following the construction of 
our SDM, we used the package, “expertscore” to com-
pute our metrics for expert range maps.(65) Expert scores 
close to one indicate a high congruence between expert 

range maps and species distribution models while val-
ues close to zero indicate that the expert map is no more 
predictive of species distribution than a null model map. 
Expert scores less than zero indicate that the null model 
map has greater predictive accuracy than the expert range 
map. In our case, the null model map was the minimum 
quadrilateral polygon that encompasses both the expert 
range map and the point occurrence data with a buffer 
of 500 km. Following the calculation of expert scores, 
we compared performance of the pre-1999 and all occur-
rence record analysis to each other and from the current 
time period into 2100 using a two-sided Wilcox test with 
a two-sided alternative hypothesis. We conducted this 
test because our expert score data did not meet assump-
tions of normality of residuals when conducting a t-test. 
These comparisons were made across datasets to assess 
the influence that additional occurrences may have had 
on the stability of expert range maps constructed from 
occurrences pre-1999.

Using our distribution models, we forecasted each 
of the species’ ranges into the periods 2041-2060, 2061-
2080, and 2081-2100 under RCP 8.5 (GCM ACCESS-
ESM1-5, 2.5-minute resolution) to assess the rate at 
which expertly drawn range maps become less/more 
reliable over time according to their expert scores. 
Model transfer to future climatic conditions was per-
formed using the “predict” function in the R package 
“raster”(66) with our BART models that were trained us-
ing current climatic conditions and occurrences. This 
allowed us to project species responses to the current 
environment onto forecasted environmental condi-
tions. We also intersected the average differences in 
SDM predicted occurrence probabilities with our in-
ventory completeness analysis to assess how many ar-
eas forecasted to increase in overall mean kissing bug 
occurrence probability (across all species) overlapped 
with regions that currently have little to no publicly 
available kissing bug data (i.e., large sampling gaps). 
In doing this we generated a map which shows where 
kissing bug probability of occurrence is likely to in-
crease intersected with where the current knowledge 
gaps (represented by inventory completeness) occur. 
We split these metrics into four equally sized parti-
tions representing the shift in kissing bug occurrence 
probabilities (low to high) and the completeness of con-
temporary inventories (complete to incomplete). These 
categories were used to produce a bivariate map high-
lighting where future sampling might be prioritized.

Finally, we aimed to test if expert scores and degrada-
tion/improvement of these scores over time exhibited a 
phylogenetic signal across a tree of kissing bugs obtained 
from Ceccarelli et al.(67) Several of the species in our 
analysis were not mapped onto an existing phylogenetic 
tree of kissing bug species and so we pruned those tips 
from our tree and subsequent analyses. This resulted in 
27 species for the pre-1999 scores and 28 species for the 
scores using all available occurrence data. We tested for 
phylogenetic signal among expert scores and the magni-
tude/direction of expert score shifts across our tree using 
Blomberg’s K, K-star,(68) and Pagel’s λ.(69) Blomberg’s K 
and K-star values closer to or greater than 1.0 are indica-
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tive variance in the trait value being distributed among 
clades while values less than 1.0 are indicative of the 
variance being distributed within clades (i.e., closely re-
lated species do not resemble one another).(68) Pagel’s λ 
values close to 1.0 indicate a high correlation between 
species traits equal to Brownian motion.(69) We used the 
package “phylosignal” to calculate these metrics.(70)

RESULTS

Records for kissing bugs are scarce, especially in 
remote and sparsely populated regions, particularly 
in the Amazon River Basin and northern Mexico  
(Figs 1-2). With respect to inventory completeness, 

several regions of low completeness emerged including 
southern Brazil, Uruguay, Peru, Ecuador, Colombia, 
Venezuela, Guyana, Suriname, and French Guiana. 
Notably, areas in close proximity to major cities such 
as Santiago, Chile; Córdoba, Argentina; Mexico City, 
Mexico; and San Diego/San Antonio, United States 
demonstrates a high density of occurrence records. In 
contrast, however, many regions have no single digi-
tized occurrence record for a kissing bug species (e.g., 
much of the Amazon River basin). Overall, our SDMs 
performed well in their ability to predict current kiss-
ing bug distributions according to AUC metrics [Sup-
plementary data (Tables I, II)].

Fig. 1: point occurrence data and years of observation (inset line plot) colored by each record’s ‘basisOfRecord’ field (of either museum speci-
mens or human observations). A random sampling of 50% of the occurrences (n = 13,641) are illustrated on the map to avoid overplotting.  
Green = observation; Orange = collected specimens.
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Expertly drawn range maps (constructed pre-1999) 
varied in their level of agreement with species distri-
bution models constructed from occurrence data in 
the same time period (Figs 3A, B, C, 4, Supplemen-
tary data - Table III). When we included additional oc-
currence records collected post-1999, the agreement 
between expertly drawn range maps and SDM im-
proved slightly overall [Fig. 4, Supplementary data  
(Table IV)]. In total, we obtained enough information to 
model 32 (pre-1999) and 33 (all occurrence) species of kiss-
ing bugs. We used the full dataset of either 32 or 33 species 
for all subsequent analyses. Among all species modeled in 

both the pre-1999 and all occurrence record frameworks, 
Panstrongylus geniculatus expressed the least agree-
ment (0.24 and 0.29) with its expertly drawn range map. 
P. megistus and T. guasayana expressed the best agree-
ment in the pre-1999 analysis (0.91 and 0.89) and all oc-
currence analysis (0.95 and 0.92) respectively. The aver-
age contemporary expert map score was 0.68 [standard 
deviation (SD) +/- 0.18] for the pre-1999 models and 0.73  
(SD +/- 0.17) for the models using all occurrence records 
(Fig. 4). The distribution of expert scores across species 
from both datasets were not significantly different ac-
cording to the Wilcox test (W = -423, p-value = 0.171).

Fig. 2: kissing bug inventory completeness at the 100×100 km spatial resolution (darker colors indicate greater inventory completeness). The inset 
map indicates expected richness based on overlapping expert range maps (darker colors indicate greater expected kissing bug species richness).



Vaughn Shirey, Jorge Rabinovich6|13

Over time, most expertly drawn range maps degrade 
in their ability to convey accurate information about kiss-
ing bug species distributions under a “business-as-usual” 
carbon emissions scenario (RCP 8.5) (Fig. 4). On average, 
expert range maps scores from now through the 2100s 
shifted by -0.046 (SD +/- 0.11) and -0.054 (SD +/- 0.13) 
for the pre-1999 models and all occurrence models re-
spectively (Fig. 4). There was no significant difference 
between the shift in expert score across the pre-1999 and 
all occurrence models (W = 553, p-value = 0.75). Expert 
range maps for T. lecticularia (-0.35) had the greatest de-
cline in being able to convey information about kissing 
bug occurrence into the 2081-2100 time period from the 
pre-1999 model. When examining declines in the ability of 
expert range maps to convey accurate information about 
species using all available occurrence data, T. lecticularia 
(-0.36) and T. brasiliensis (-0.35) emerged as range maps 
with sharply declining accuracy into 2081-2100. Notably, 
several species range maps became more accurate over 
time including R. pallescens (+0.26) and T. rubrofasciata 
(+0.12) (pre-1999 models); and R. pallescens (+0.25) and 
E. cuspidatus (+0.16) (all occurrence models).

When examining the mean occurrence probability 
shift into 2081-2100 for all kissing bugs over our time 
period of inference, regions experiencing notable sample 
gaps today are also regions forecasted to increase in the 
occurrence probability of kissing bugs on average (Fig. 
5). Notably, regions already experiencing sampling gaps 
with respect to inventory completeness such as the eastern 
Amazon River Basin, parts of Venezuela, central Mexico, 
the Argentina/Paraguay/Bolivia border, and the Mexico/
United States border were identified as key regions where 
average kissing bug occurrence is forecasted to increase 
and notable contemporary sampling gaps occur.

Across the kissing bug tree, we found generally low 
support for expert scores/change in expert scores being 
related strongly to phylogeny. In our pre-1999 analysis, 
Blomberg’s K and K-star were estimated to be smaller 
than 1.0 (0.26 [p = 0.50] and 0.31 [p = 0.49] respectively). 
Pagel’s  for this set of expert scores was estimated to be 
0.31 (p = 0.15). The estimated shift in expert range map 
score also exhibited low phylogenetic signal for the pre-
1999 analysis with Bloomberg’s K at 0.399 (p = 0.16), 
but K-star was estimated at 0.58 (p = 0.029) indicating 

Fig. 3: agreement between expert range maps (drawn in 1999 and shown here as red polygons) and species distribution model (SDM) output 
produced from only occurrence records collected before 1999 (A ,B, C) and occurrence records collected in all time periods (D, E, F). Only three 
species are highlighted here. Species and corresponding scores, from left to right pairs of panels, are (A, D) Triatoma delpontei (0.53, 0.60); (B, 
E) Rhodnius pallescens (0.54, 0.58); and (C, F) Rhodnius prolixus (0.51, 0.52).
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stronger phylogenetic signal in the shift in expert score 
from now into 2100. Pagel’s λ for the shift in expert score 
metric in this analysis was estimated to be 6.2 x 10-5 (p 
= 1.0). In our analysis of expert score using all available 
occurrence information Blomberg’s K and K-star were 
estimated to be 0.31 (p = 0.33) and 0.33 (p = 0.49) for the 
contemporary score respectively. Pagel’s λ was estimat-
ed to be 0.35 (p = 0.03). With respect to the change in ex-
pert score from now into 2100, Blomberg’s K and K-star 
were estimated to be 0.36 (p = 0.27) and 0.54 (p = 0.09) 
respectively. Pagel’s λ was estimated to be 4.5 x 10-5 (p 
= 1.0). A full table including all scores can be found in 
Supplementary data (Table V). This pattern of detecting 
both low phylogenetic and slightly elevated phylogenetic 
signal across metrics may be, in part, due to the smaller 
size of the phylogeny we used in this analysis.(71)

DISCUSSION

Despite their importance for public health, avail-
able information on kissing bug occurrence is shock-
ingly sparse, mainly from regions that include much of 
the Amazon River Basin and parts of Mexico, Central 
and Northern South America (Figs 1-2). Even in regions 
with relatively high densities of occurrence records such 
as those in south-eastern Brazil and parts of Venezuela, 
inventory completeness for the group is low (Fig. 2), and 
this is even more surprising given that those areas have a 
high-density rural as well as metropolitan centers. In con-
cordance with previous research, our expert range maps 
indicate high species richness for kissing bugs in Brazil(7) 
and across northern South America.(6) Specifically, Gur-
gel-Gonçalves et al.(7) in particular demonstrated high 
species richness along the Atlantic coast of Brazil which 

we also find from overlaying expert range maps (Fig. 2). 
We did not find high richness in the states of Ceará, Rio 
Grande do Norte, Paraíba, Pernambuco, and related re-
gions, but this may be due to the range maps having been 
constructed from fewer data points pre-1999.

Our phylogenetic analysis of expert scores revealed 
low phylogenetic signal among contemporary scores 
(and, for that matter, scores across other projected time 
periods) [Supplementary data (Table V)]. We assumed 
that as all species belong taxonomically to one subfam-
ily, the ability to accurately convey a range map may be 
similar for closely related species (e.g., closely related 
species may be similarly detectable or share a similar 
niche space).(72,73,74) Similarly, we expected that there may 
be a phylogenetic signal in the change in expert score 
over time given that closely related species may respond 
similarly to changing climatic conditions. This was not 
the case in our analysis as Blomberg’s K and Pagels λ 
estimates were quite low [Supplementary data (Table 
V)]. Testing expert scores and their forecasts shifts over 
time using a larger sample of kissing bug species and a 
tree with additional tip reflecting those species may help 
resolve this apparently conflicting evidence for phyloge-
netic signal in scoring.

Some of the same locations with notable sampling 
gaps (Fig. 2) correspond with where kissing bugs are ex-
pected to increase in their occurrence probability into 
2081-2100 under a “business-as-usual” climate change 
scenario (Fig. 5). This may make these regions, espe-
cially the eastern Amazon River Basin, parts of Vene-
zuela, central Mexico, the Argentina/Paraguay/Bolivia 
border, and the Mexico/United States border, important 
to sample in the future both to confirm the results of our 

Fig. 4: degradation of expert ranges maps over time under climate change scenario RCP 8.5 into 2041-2060, 2061-2080, and 2081-2100 (Global 
Circulation Model: ACCESS-ESM1-5, 2.5-minute resolution) based on species distribution projections from (A) the only pre-1999 occurrence 
record model and (B) the full occurrence record model. Species are summarized into two groups, declining expert scores over time (red) and 
increasing export scores over time (blue). The shaded area represents on standard deviation of variation around the mean trend line.
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species distribution forecasts but also to detect emerging 
and important vector species on the move. Baseline ex-
pert range map scores may also be impacted by misiden-
tifications of historical material, as may be the case with 
the Rhodnius species group, where the expert range map 
indicates a wide distribution of R. proxilus (Fig. 3), but 
many specimens may have actually been R. neglectus 
based on a more recent morphometric analysis.(75)

Several triatomine species have been recorded to have 
been expanding both in range and in habitat type: e.g., 
P. geniculatus, considered until recently a sylvatic triato-
mine(50) that fed almost exclusively on the nine-banded 
armadillo (Dasypus novemcinctus), is now being found 
in human habitations in Colombia,(11,76) Brazil,(77,78) and 
Venezuela.(79) However, to determine if the cause of such 
distribution/habitat changes can be attributed to climatic 
or non-climatic factors is extremely difficult, for usually 
several factors are concomitant in determining these geo-
graphic/habitat changes. Catalá(80) has shown that in T. 
infestans the most attractive habitats for dispersing bugs 
would be those at short distance, with high CO2 emission 
and strong IR radiation, indicative of host presence (with-
in the domestic habitat goat corrals may be the most at-
tractive habitat to disperse); additionally, dispersal would 
be favored in periods of low atmospheric water saturation 
when IR perception is highest.(80) Furthermore, Baines et 
al.(81) have suggested that phenotype-by-environment in-
teractions strongly influence dispersal of populations. On 
the other hand, transient changes in dispersal are common 
in many species undergoing range expansion, and may 
have major population and biogeographic consequences.

(82) In the case of triatomines, inter-specific competition 
seems to be one of those non-climatic factors; e.g., (a) T. 
rubrovaria in Brazil is found in the wild in rocky habitats, 
but between 1975 and 1997, a growing domiciliary and 
peridomiciliary invasion of T. rubrovaria has taken place 
since the control of T. infestans,(83) an effect determined by 
inter-specific competition,(84) (b) Abrahan et al.(85) found 
that, after insecticide spraying, the sylvatic triatomines T. 
guasayana, T. eratyrusiformis, T. garciabesi, and T. pla-
tensis, not targeted by insecticide spraying, were captured 
simultaneously within peri-domestic areas and showed 
higher house invasion pressure than T. infestans, and (c) 
in Venezuela, P. geniculatus has been recorded to be in 
a process of domiciliation as a result of the control of R. 
prolixus, suggesting a competition for resources;(79) maybe 
this range dispersal and habitat change of P. geniculatus 
explains why this species showed in our analysis the least 
agreement (0.23 and 0.28) with the expertly drawn range 
map. On the other hand, T. infestans in itself is an exam-
ple of the complexity of factors affecting the geographic/
habitat occupation of triatomines, mainly because it has 
expanded its range into rapidly developing cities of Latin 
America,(86) but also restricting its range due to the inten-
sive use of insecticide campaigns to control this vector spe-
cies. Reductions in the geographic area of these important 
vector species have been quantified in the literature after 
such vector control programs have been implemented. 
For example, Ribeiro Jr et al.(87) demonstrated a reduced 
area of occurrence for P. megistus and T. infestans but in-
creases in T. sordida and T. pseudomaculata after control 
programs were implemented in Bahia, Brazil.(87) Further 

Fig. 5: potential regions in which to better sample kissing bug occurrence across the Americas. Targeted regions of sampling (green axis) 
between the (A) pre-1999 occurrence and (B) all occurrence models mostly overlap. Please note that this figure does not include measures of 
disease risk, simply projected distributions, and existing sampling gaps. Grey-green scale indicates higher probability of future kissing bug 
occurrence in 2080-2100 (green indicates higher probability) while the purple-grey scale indicates inventory completeness (purple indicates 
higher inventory completeness).
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examples of the influence of control campaigns on kissing 
bug distributions are: (a) In 1997 Uruguay was the first 
country to receive the International Evaluation Commis-
sion certification for achieving the interruption of T. cruzi 
transmission, through the total elimination of T. infestans 
populations,(88) and a similar certification was given to 
Brazil in 1999;(89) these two cases of human interven-
tions impinge on the disappearance of T. infestans from 
very large regions; (b) however, there is another human 
intervention that acts opposite to the point above: the pas-
sive dispersal of T. infestans carried by people (and their 
domestic animals);(90) further, Abrahan et al.(91) consider 
that passive dispersal is one of the most frequent ways of 
spreading for triatomines over large areas. Passive disper-
sal of Rhodnius spp. by birds has also been observed.(92) 
To make things more complex, Richer et al.(93) showed by 
means of the detection of restricted gene flow between 
close but distinct sylvatic sites, that wild T. infestans does 
not disperse by flying at high altitude (2,750 meters above 
sea level). Recently, genomic techniques have helped to 
better understand the dispersal and habitat adaptation in 
triatomines; e.g., Hernandez-Castro et al.(94) have shown 
that R. ecuadoriensis shares outlier loci consistent with 
local adaptation to the domestic setting, which mapped 
to genes involved with embryogenesis and saliva pro-
duction; and in the case of T. infestans Panzera et al.(95) 
showed that the ribosomal patterns are associated with a 
particular geographic distribution, and that chromosomal 
markers allowed to detect the existence of a hybrid zone 
occupied by individuals derived from crosses between 
two chromosomal groups.

Importantly, we want to highlight the potential risks 
of inferring the direct transferability of our SDMs for 
kissing bugs through time. Non-stationarity is likely 
present in many biological populations.(96) In other 
words, the effect of a climatic factor such as tempera-
ture may not be consistent across a species’ range due 
to underlying biological variation. This problem may be 
exacerbated in species with fairly large distributions that 
likely experience and have locally adapted to a variety of 
climatic conditions across their range.(96) Additional un-
certainty in our future projections may also come from 
the fact that we used a single RCP scenario, assuming 
a “business-as-usual” carbon emissions trajectory and 
one global circulation model. This scenario and its inter-
action with global circulation models may not entirely 
convey future conditions should human development or 
unforeseen climate effects take place, especially those 
farther out from the present. Future work in this sphere 
could examine the impact that these global models 
would have on inference regarding species ranges and 
expert range maps, especially for more fine-scale analy-
ses than presented here.(97) Further, we did not include 
information in our distribution models about land-cover 
or human/livestock population densities, instead opting 
to focus on climate change, but these factors may also 
contribute strongly to the distribution of kissing bugs.
(1,19,20,21) When considering these forecasted areas of sam-
pling, it will be important to account for geographical 
spaces that kissing bugs could or could not occupy in re-
lation to the environmental spaces predicted by our dis-

tribution models, for example in spaces that are hard to 
reach through dispersal. Finer scale study should explic-
itly incorporate this distinction.(98) Additionally, SDMs 
are likely to capture the realized rather than fundamen-
tal niche of a species(99) which may mean that our future 
projections are merely projections of the realized niche 
space which could change over time due to a myriad of 
factors. The temporal transfer of niche models to future 
conditions should be treated with caution as truly novel 
environments could indeed be suitable for species oc-
currence in addition to errors of environmental omission 
based on the extent of the calibration area.(100,101) Risks 
of over- and underpredicting are possible considering 
that projections to future scenarios may include falsely 
suitable regions and decisions made in modelling may 
lead to partial niche characterization. Finally, although 
closely related kissing bug species may have similar 
niches, they may not respond to changing climates in the 
same or similar way. Further study should aim to disen-
tangle the roles of geography and evolution in driving re-
sponses to future climate change in the region. Thus, we 
encourage that our future projections are considered in 
the context of these omissions and modeling decisions.

Finally, we enthusiastically encourage the continued 
collection and monitoring of kissing bug distribution 
data which will undoubtable serve as a useful valida-
tion tool for this and future analyses. Early surveillance 
programs including those in Brazil(83) as well as the im-
portance of community-science programs for the early 
detection of kissing bug occurrence are critical for edu-
cating and preventing potential outbreaks of CD.(102,103) 
Such programs will likely become more popular and 
better at identifying novel occurrences of kissing bugs, 
especially with the advent of artificial intelligence tools 
like computer vision, which are already being developed 
to catalogue and identify kissing bug species from cell-
phone and other photography.(103,104,105,106,107,108)

Kissing bugs are an increasingly important group of 
vector insect species in the Americas. Here, we have dem-
onstrated that our current understanding of their distribu-
tions via expert range maps is quite variable at the spe-
cies level and that, on average, the ability of these expert 
range maps to convey accurate information about kissing 
bug distributions will likely decline under a “business-
as-usual” carbon dioxide emissions scenario. Further, re-
gions that are currently under-sampled for kissing bugs 
may also be regions that are increasing in climatic suit-
ability for many species. With increasing human devel-
opment and habitat fragmentation, interactions between 
kissing bugs and their hosts (both human and non-human) 
is quite complex: e.g., Ceballos et al.(109) showed that mas-
sive deforestation around villages or selective extraction 
of older trees in the Dry Chaco in Argentina, has led to 
reductions in opossum abundance jointly with increases 
in foxes and skunks, leading to a dramatic decrease of T. 
cruzi infection in wild reservoir hosts, but may be on the 
rise in urban and suburban habitats, despite the State and 
community triatomine control activities. As an important 
vector of CD, we should make a concerted effort to ac-
curately and publicly document the occurrence of this im-
portant insect group well into the future.
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