
*e-mail: adriana_aadiacenco@yahoo.com.br

Finite Element Reduction Strategy for Composite Sandwich Plates with Viscoelastic Layers

Adriana Amaro Diacencoa*, Antônio Marcos Gonçalves de Limab, Edmilson Otoni Corrêaa

aMechanical Engineering Institute, Federal University of Itajubá – UNIFEI,  
Campus José Rodrigues Seabra, CP 50, CEP 37500-902, Itajubá, MG, Brazil 
bSchool of Mechanical Engineering, Federal University of Uberlândia – UFU,  

Campus Santa Mônica, CP 593, CEP 38400-902, Uberlândia, MG, Brazil

Received: August 18, 2011; Revised: September 19, 2012

Composite materials have been regarded as a convenient strategy in various types of engineering 
systems such as aeronautical and space structures, as well as architecture and light industry products 
due to their advantages over the traditional engineering materials, such as their high strength/stiffness 
relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element 
modeling of composite laminated structures incorporating viscoelastic materials to the problem of 
vibration attenuation. However, the typically high dimension of large finite element models of composite 
structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. 
Within this context, emphasis is placed on a general condensation strategy specially adapted for the case 
of viscoelastically damped structures, in which a constant (frequency- and temperature-independent) 
reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic 
forces is used. After presenting the theoretical foundations, the numerical applications of composite 
plates treated by viscoelastic materials are addressed, and the main features of the methodology are 
discussed.

Keywords: composite materials, finite elements, reduction, viscoelastic damping

1.	 Introduction
In the context of new developments of many types of 

engineering products mechanical, it is observed that the 
composite materials have been intensively investigated 
lately, since they present great advantages over the traditional 
engineering materials, such as high strength/stiffness relation 
characteristics and anti-corrosion properties1. As a result, the 
composite materials have been applied in a large number 
of engineering systems such as automobiles, airplanes, 
communications satellites, civil engineering structures, etc. 
However, the most distinguishable feature of the composite 
structures is that their mechanical behavior depends strongly 
on a number of factors such as the materials properties and 
structural configurations, making the numerical modeling a 
complex task2. This is a reason for which in the last decades, 
a great deal of effort has been devoted to the development 
of finite element models for characterizing the mechanical 
behavior of composite materials, accounting for its typical 
variations of constructions and various orientations 
possibilities1. Much of the knowledge available to date is 
compiled in the works by Reddy1 and Berthelot2 and in 
some papers such as those by de Lima et al.3, Meunier and 
Shenoi4, Chee et al.5 and Lo et al.6.

In engineering applications of composite materials 
in which dynamic loads are involved, the interest in 
achieving vibration attenuation becomes of capital 
importance as vibration amplitudes are directly related to 
fatigue and, as a result, to structural integrity3. Among the 

various techniques for vibration control which have been 
devised, the use of viscoelastic materials to be combined 
with composite structures is an interesting strategy to be 
investigated. Moreover, for finite element (FE) models of 
composite viscoelastically damped structures of industrial 
interest composed by a large number of degrees of freedom 
(DOFs) the time to compute the exact evaluations during 
the iterative processes, performed on the full FE matrices, 
can become prohibitive3. Those difficulties motivate the use 
of a condensation strategy specially adapted for composite 
viscoelastically damped structures with the intent to reduce 
the size of the systems7.

It is known that fiber-reinforced composite materials 
present inherent damping mechanisms associated to the 
viscoelastic behavior of the polymeric matrices and other 
internal dissipation mechanisms1,2. Nonetheless, in a number 
of cases, such damping may be found to be insufficient to 
provide the necessary vibration mitigation and must be 
increased by introducing additional dissipation, which can 
be done, for example, by applying viscoelastic materials 
in the form of surface treatments or internal layers3. This 
strategy is considered in this paper.

Among the various theories which have been developed 
for modeling layered composite structures, the so-named 
Higher-order Shear Deformation Theory – HSDT proposed 
by Lo et al.6 has been chosen in the present study. Despite 
a more involved analytical framework and an increased 
number of finite element DOFs, when compared to other 
simpler theories, the main advantages of the HSDT, which 

DOI:D 10.1590/S1516-14392012005000185
Materials Research. 2013; 16(2): 473-480	 © 2013



Diacenco et al.

justify such choice, are: (i) it is well adapted to model both 
thin and thick laminated composite plates; (ii) it accounts 
for a more complete strain state. As it takes into account 
transverse shear effects and predicts a parabolic distribution 
of transverse shear strains, it does not require any correction 
factor for the distribution of transverse shear strains, such 
as those required by the First-order Shear Deformation 
Theory – FSDT. Moreover, it accounts for transverse normal 
strains.

In the remainder, various theoretical aspects are first 
presented including: (i) a review of the FE modeling 
procedure of multilayered plate structures containing 
unidirectional fiber reinforced and isotropic viscoelastic 
layers; (ii) the inclusion of the viscoelastic effect into the 
structural matrices using the complex modulus approach, 
accounting the frequency- and temperature-dependence 
of the properties of the viscoelastic material; (iii) the 
formulation of the constant (frequency- and temperature-
independent) reduction basis specially adapted for 
viscoelastically damped structures enriched by static 
residues associated to the external loads and the viscoelastic 
damping forces. For illustration, the description of two 
numerical applications of composite plates incorporating 
viscoelastic materials demonstrates the effectiveness of 
the viscoelastic damping and the condensation strategy of 
composite viscoelastically damped structures.

2.	 Review of the FE Modeling of Laminated 
Composite Plates
In this section the formulation of a composite plate finite 

element is summarized, based on the original developments 
made by Chee et al.5, and implemented by de Lima et al.3. 
Figure  1 depicts a rectangular element formed by k-th 
unidirectional layer, whose dimensions in directions x 
and y are denoted by a and b, where z

k
, h

k
 and θ

k
 indicate, 

respectively, the thickness coordinate, the thickness and the 
fiber orientation angle of each layer.

The discretization of the displacement fields within 
the element is made by using the appropriate interpolation 

functions through the general relation u(x,y,t) = N(x,y)u
(e)

(t), 
where N(x,y) is the matrix formed by the shape interpolation 
functions, matrices B(x,y,z) are formed by differential 
operators appearing in the strain-displacement relations3, 

and ( ) ( ) i i i i i i i i i i i
o o o x y z x y z x ye t u v w = ψ ψ ψ ζ ζ ζ Φ Φ u  with i = 1 to 

8 represents the vector containing the 11 mechanical nodal 
variables as a function of time. The strain-displacement 
relations, ε(x,y,z,t) = B(x,y,z)u

(e)
(t), are used and the resulting 

strains for elastic layer ( ) ( ) ( ) ( ) ( ) ( ) Tk k k k k k
k xx yy zz xz yz xy

 = ε ε ε γ γ γ  ε are 

generated, where ε
xx

 = ∂u/∂x, ε
yy

 = ∂v/∂y, ε
yy

 = ∂w/∂z, 
γ

xy
 = ∂u/∂y + ∂v/∂x, γ

yz
 = ∂v/∂z + ∂w/∂y, and γ

zx
 = ∂u/∂z 

+ ∂w/∂x.
Using the displacement and strain interpolations, 

the expressions of the kinetic and strain energies of the 
composite plate can be formulated, respectively, as follows3:

( ) ( ) ( ) ( )1
2

eT
E t t t=  K u M u

	
(1a)

( ) ( ) ( ) ( )1
2

eT
E et t t=S u K u

	
(1b)

where the elementary mass and stiffness matrices are 
expressed, respectively, as:

( ) ( ) ( ) ( ) ( )
1

1 0 0
, ,

k

k

z b ane T T
k

k z z
x y z z x y dx dy dz

+

= =
= ρ∑ ∫ ∫ ∫M N A A N

	
(2a)

( ) ( ) ( ) ( ) ( )
1

1 0 0
, , , ,

k

k

z b ane kT
e k

k z z
x y z x y z dx dy dz

+

= =
= θ∑ ∫ ∫ ∫K B C B

	
(2b)

where the relation between the displacements at an arbitrary 
point of the element and vector u(x,y,t) is indicated by 
matrix A(z). In Equation  2 matrix C(k)(θ

k
) represents the 

orthotropic elastic matrix of the k-th layer, which are 
constructed according to the Classical Laminate Theory 
(CLT) as follows:

Figure 1. Illustration of the laminated composite plate.
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( ) ( ) ( ) ( ) ( )k k T
k k kθ = θ θC T C T 	 (3)

where ( )kC  is the elastic property matrices of the k-th layer, 
referred to its principal orthotropic axis, and T(θ

k
) is the 

associated rotation matrix1.
From the elementary matrices computed for each 

element of the FE mesh, the global equations of motion 
are constructed, accounting for the node connectivity, 
using standard finite element assembling procedures8. After 
assembling, the global equations  of motion in the time 
domain can be written as follows:

( ) ( ) ( )et t t+ =Mq K q f 	 (4)

where ( )
1

nelem e

e=
=


M M  and 
( )

1

enelem
e e

e=
=


K K  are the global finite 

element mass and stiffness matrices. Symbol ⋃ indicates 
matrix assembling and q(t) is the vector of global DOFs. 
f(t) is the vector of generalized external loads.

The time domain equations of motion (4) can be used 
to perform various types of dynamic analysis such as the 
computation of time domain responses, eigenvalue and 
frequency response analyses. This is considered later in 
this paper.

3.	 Composite Sandwich Plates with 
Viscoelastic Layers
The theory presented in the previous section can be 

easily adapted to the case of sandwich plates containing both 
unidirectional composite layers and isotropic viscoelastic 
layers, which is the case considered herein. For these 
later, constitutive laws must conveniently account for the 
viscoelastic behavior. Clearly, the unidirectional fiber-
reinforced layers can also exhibit viscoelastic behavior 
associated to the inherent behavior of polymeric matrices. 
Such possibility will be considered in one of the examples 
considered herein.

It is widely known that the dynamic behavior of 
viscoelastic materials depend on a number of factors, 
among which the most relevant are the excitation frequency 
and the temperature9. Various mathematical models have 
been developed to represent this behavior and have been 
shown to be particularly suitable to be used in combination 
with finite element discretization9. In this paper, as the 
interest is confined to frequency-domain analyses, the so-

named Complex Modulus is used in combination with the 
Frequency-Temperature Correspondence Principle and the 
Elastic-Viscoelastic Correspondence Principle3,9.

According to the Frequency-Temperature Superposition 
Principle, also known as Williams, Landell and Ferry (WLF) 
Principle10, the viscoelastic characteristics at different 
temperatures can be related to each other by changes (or 
shifts) in the actual values of the excitation frequency. This 
leads to the concepts of shift factor and reduced frequency, 
symbolically expressed by the following expressions:

( ) ( ) ( )
( ) ( ) ( )

0 0

0 0

, , , ,

, , ,
r T

G G r G T

G T T G T

T T T

ω = ω = α ω

η ω = η ω = η α ω
	

(5)

where T indicates an arbitrary value of the temperature, 
T

0
 is a reference value of temperature, ω

r
 = α

T
(T)ω is the 

reduced frequency, ω is the actual excitation frequency, and 
α

T
(T) is the shift function. Functions G(ω

r
) and α

T
(T) can 

be obtained from experimental tests for specific viscoelastic 
materials. In this context, Drake and Soovere11 suggest 
analytical expressions for the complex modulus and shift 
factor the 3M™ ISD112 that is a rubber-like polymer which 
is provided by the manufacturer in the form of adhesive. 
Equations 6 represent the complex modulus and the shift 
factor functions defined in the following temperature and 
frequency intervals 210 ≤ T ≤ 360 K, 1.0 ≤ ω ≤ 1.0 × 106 Hz, 
respectively, where T

0
 = 290 K, for the 3M™ ISD112 

viscoelastic material12, as given by those authors. The 
parameters appearing in the following expressions are 
presented in Table 1.

( ) ( ) ( )6 4– –
1 2 5 3 3/ 1 / /B B

r r rG B B B i B i B ω = + + ω + ω   	
(6a)

( )

( )

10
0 0 0

02
0 0

1 1 2log – 2.303 – log

– – –

T

AZ

a Ta b
T T T T

b a S T T
T T

     
α = + +          

 
 
 

	

(6b)

From the reduced temperature nomogram generated 
by the computation of expressions (6), the designer can 
obtain the complex modulus and the loss factor at any given 
temperature into a frequency band of interest, as illustrated 
in Figure 2 for the particular material considered above13.

According to the Elastic-Viscoelastic Correspondence 
Principle10 the derivation of the FE model accounting for 

Table 1. Parameters of the 3M™ ISD112 provided by Drake and Soovere11.

Complex Modulus – Equation 6a

B
1
[MPa] B

2
[MPa] B

3
B

4
B

5
B

6

0.4307 1200 1543000 0.6847 3.241 0.18

Shift factor – Equation 6b

T
0
[K] T

L
[K] T

H
[K] S

AZ
[K]–1 S

AL
[K]–1 S

AH
[K]–1

290 210 360 0.05956 0.1474 0.009725

a = (D
B
C

C
 – C

B
D

C
)/D

E
b = (D

C
C

A
 – C

C
D

A
)/D

E

C
A
 = (1/T

L
 – 1/T

O
)2 C

B
 = (1/T

L
 – 1/T

O
) C

C
 = (S

AL
 – S

AZ
)

D
A
 = (1/T

H
 – 1/T

O
)2 D

B
 = (1/T

H
 – 1/T

O
) D

C
 = (S

AH
 – S

AZ
) D

E
 = (D

B
C

A
 – D

A
C

B
)
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the viscoelastic behavior can be carried-out in two distinct 
phases: first, the element and global stiffness matrices 
are obtained by considering pure elastic behavior (hence, 
frequency- and temperature-independent material moduli), 
accounting for the strain state assumed by the underlying 
theory. This step has been accomplished in the preceding 
section. Then, the material moduli are modified to account 
for the viscoelastic behavior (according to the model 
expressed by Equation  6). Clearly, this approach leads 
to frequency- and temperature-dependent FE stiffnesses 
matrices, which are expressed, after a proper adaptation of 
Equation 2b, as follows:

( ) ( ) ( ) ( ) ( )
1

1 0 0
, , , , , ,

k

k

z b ave T
v k k k

k z z
T x y z T x y z dx dy dz

+

= =
ω = ω∑ ∫ ∫ ∫K B C B  (7)

At this step, one of the moduli can be factored-out of the 
viscoelastic stiffness matrix that represent its contribution 
to the stiffness matrix of the sandwich plate as follows:

( ) ( ) ( ),e e
v vG T= ωK K 	 (8)

where ( )e
vK  is frequency- and temperature-independent 

matrix, which is combined with the stiffness matrix 
represented by the Equation 2b, to produce the following 
complex global stiffness matrix of the composite sandwich 
plate with viscoelastic material:

( ) ( ) ( ), , ,e v e vT T G Tω = + ω = + ωK K K K K 	 (9)

where K
e
 and K

v
(ω,T) are, respectively, the contributions 

of the purely elastic and viscoelastic layers to the global 
stiffness matrix. Neglecting other forms of damping, 
after Fourier transforming of Equation 4, the global finite 
element equations of motion in the frequency domain of 
the composite sandwich plate can be expressed as follows:

( ) ( ) ( )2, – ,e vG T T + ω ω ω = ω K K M Q F
	

(10)

where N is the total number of DOFs. M ∈ RN × N is the mass 

matrix and K
e
 ∈ RN × N and ( ), N N

vG T R ×ω ∈K  are the stiffness 

matrices corresponding to the elastic and viscoelastic 
layers, respectively. Q(ω,T) ∈ R

N
 and F(ω)  ∈  RN are, 

respectively, the vectors of the amplitudes of the harmonic 
generalized displacements and external loads. The so-named 
receptance or frequency response function matrix (FRFs), 
the components of which are complex functions of the 
excitation frequency that establish linear relations between 
the amplitudes of the harmonic responses and the amplitudes 
of the excitation forces and moments is expressed as:

( ) ( ) –12, , –e vT G T ω = + ω ω H K K M
	

(11)

4.	 Reduction of Composite Structures with 
Viscoelastic Material
In the case of complex composite structures of industrial 

interest, FE models are usually constituted by a large number 
of DOFs. In such cases, it becomes practically impossible 
to compute the FRFs directly from Equation 11, owing to 
the prohibitive computation times and storage memory 
required. This fact motivates the use of model condensation 
procedures, which aims at reducing the model dimensions 
(and the associated computational burden), while keeping 
a reasonable predictive capacity of the numerical models. 
This can be done based on the assumption that the exact 
responses, given by the resolution of expression (10), can 
be approached by projections on a reduced vector basis as:

Q(ω,T) = TQ̂(ω,T)	 (12)

where T ∈ CN × NR is the transformation matrix formed 
column-wise by a vector basis, Q̂(ω,T) ∈CNR are generalized 
coordinates, and NR << N is the number of reduced vectors 
in the basis. The generalized coordinates representing the 
contribution of each column of T are chosen arbitrarily in 
which the reduced model provides a reasonable predictive 
capacity into a frequency bandwidth.

It must be emphasize that the frequency band of interest 
is taken into account by computing a number of normal 

Figure 2. a) Storage modulus and b) loss factor for the 3M™ ISD112.
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modes and retaining those below a certain frequency (1.5 
times the last frequency of interest is typically).

By considering Equations 10 and 12, the FRF matrix 
(11) can be rewritten as follows:

( ) ( ) –12ˆ , , –T T T
e vT G T ω = + ω ω H T K T T K T T MT

	
(13)

For models containing viscous or structural damping, 
it is relatively common to use a constant projection basis 
formed by the eigenvectors of the associated conservative 
structure, as the mass and stiffness matrices are invariant7,9. 
However, for viscoelastic systems, the selection of the 
reduction basis is more delicate as this condition does not 
hold. Owing to the dependence of the stiffness matrix with 
respect to frequency and temperature, the reduction basis 
should be able to represent the changes of the dynamic 
behavior as frequency and temperature vary. In this work, 
the strategy proposed consists in using a reduction basis 
formed by a constant modal basis (named herein nominal 
reduction basis), enriched by static residual vectors or 
equivalently static responses to account for the static effects 
of the modal truncation. These static responses are computed 
by using the tangent stiffness matrix representing the static 
behavior of the viscoelastic materials. As can be seen by 
Balmès and Germès14, in the low frequency range, as the 
modulus and loss factor curves are prolonged by asymptotes, 
the extrapolation leads to the real values G

0
 and η

0 
= 0. On 

the other hand, for high frequencies, the extrapolation gives 
the complex values G∞ and η∞. The tangent stiffness 
matrix can thus be calculated as follows13:

0 0e vG= +K K K 	 (14)

The nominal basis can be obtained by the resolution of 
the eigenvalue problem:

( )
( )

0

0 1 2 0 1

– 0 1,...,

... , , ...,
i i

NR NR

i N

diag

λ = =

= = λ λ  

K M φ

φ φ φ φ Λ
	

(15)

This basis is enriched by introducing the residues formed 
by the static displacements associated to external forces,

R = K
0
–1b	 (16)

that must be further completed by the residual vectors 
associated to the viscoelastic damping forces:

0 –1
0 0v vK= φR K 	 (17)

where matrix b ∈ RN is a Boolean matrix which enable 
to select, among the DOFs, those in which the excitation 
forces are applied.

These residuals are interpreted as the columns of the 
flexibility matrix of the associated undamped system, related 
to the coordinates of application of two types of forces to it: 
the external excitation forces and the viscoelastic damping 
forces. These latter can be better understood by examining 
Equation 10, noting that the term involving the viscoelastic 
behavior can be moved to the right-hand side, where it 
plays the role of additional forces applied to the associated 
conservative structure. Thus, the enriched basis of reduction 
for the viscoelastic system is given as follows:

0
0 0 v =  T R Rφ

	
(18)

It is important to note that the time required to compute 
the exact matrix K

0
–1 for FE models composed by a large 

number of DOFs can become prohibitive. The numerical 
technique considered to be more accurate and time-effective 
consists in perform the Cholesky decomposition into the 
product of a lower triangular matrix and its conjugate 
transpose easier to be inverted7. Also, experience has 
demonstrated that the nominal basis (18) can be used to 
reduce the viscoelastic systems with reasonable accuracy, 
but is not capable of representing the modifications of 
the dynamic behavior provoked by the modifications 
which must be introduced into the model during iterative 
optimization or model updating processes7,14.

5.	 Numerical Applications

5.1.	 Condensation of composite structures with 
inherent structural damping

In this section, numerical tests were performed 
using the FE model of a square composite plate without 
viscoelastic material depicted in Figure 3 with dimensions 
L

x
 = L

y
 = 0.16 m and thickness h = L

x
/128 m. In the same 

figure, the FE mesh composed by a total number of 64 FE 
and 225 nodes is also presented. The following simply 
supported boundary conditions are applied on the plate15: u

0
 

= w
0
 = ψ

z
 = ζ

x
 = ζ

z
 = 0 at y = 0 and y = L

y
, and u

0
 = w

0
 = ψ

z
 = 

ζ
x
 = ζ

z
 = 0 at x = 0 and x = L

x
. The composite plate structure 

consists of 5 unidirectional layers of same thickness h/5, with 
the following orientation angles θ = (45°/0°/45°/0°/45°). 
The values of the elastic material properties of each layer 
are4 1 172.4E GPa= , 2 3 6.89E E GPa= = , 12 13 3.45G G GPa= =  

23 1.38G GPa= , v
23 

= 0.30, v
12

 = v
13

 = 0.25. A homogenized 
material density ρ =  1566 kg.m–3 is adopted.

Figure 3. Illustration of the composite plate geometry with the FE 
discretization mesh.
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It is assumed that the composite material present inherent 
hysteretic damping, represented by complex, frequency-
independent moduli of the form ( )1mn mn mnE E i= + η  and 

( )1mn mn mnG G i= + η , in which a single value of the loss 
factor η

mn
 = 0.001 is adopted for all the moduli3.

The interest is to evaluate the nominal enriched basis 
of reduction by using the static residues associated to the 
applied external loads. The computations consisted in 
obtaining the driving point FRFs ( )ˆ

II ωH  associated to 
point I indicated on Figure 3 for a frequency band of interest 
[0‑1600Hz]. To verify the direct condensation, one considers 
the following nominal basis: 01 0=   T φ  (10 eigenvectors); 
and 02 0=   T Rφ  (10 eigenvectors, plus one residual vector 
computed by the Equation 16).

Figure 4 show the amplitudes of the FRFs computed 
by using the nominal basis, as compared to the amplitudes 
of the dynamic response computed by using a reference 
basis formed by a far larger number of eigenvectors (400) 
and one residual vector associated to the applied external 
load. Also, the FRF amplitudes have been computed by 
using a convenient reference factor through the relation 

[ ] ( ) 6
10

ˆ20 log / 10IIFRF dB  = × ω H
.

It can be clearly seen that the accuracy is continuously 
improved upon enrichment of the reduction basis by the 
inclusion of the static residues associated to the external 
loading to form the nominal basis T

02
. Thus, the use of 

first order residues associated with external forces are 
sufficient to represent with accuracy the dynamic behavior 
of composite laminated structures with inherent structural 
damping.

5.2.	 Condensation of composite sandwich 
structures with viscoelastic layers

The interest now is to evaluate the accuracy of the 
nominal basis further enriched to account for viscoelastic 

damping forces for composite structures incorporating 
viscoelastic materials. It is considered a sandwich 
rectangular plate composed by 4 unidirectional fiber-
reinforced composite layers and a polymeric core made of 
viscoelastic material 3M™ ISD112, with modulus given 
by Equations 6 and mass density ρ = 950 kg.m–3. The FE 
discretization mesh, the geometrical characteristics and the 
boundary conditions of the composite sandwich structure 
considered here is the same as those of the plate illustrated in 
Section 5.1 (see Figure 3), with the exception that the middle 
layer consists of the viscoelastic material with thickness 
h

v
 = L

x
/128 m. The upper and the bottom fiber-reinforced 

layers have the same thickness and material properties as 
those considered in the previous section.

To verify the condensation, one considers the following 
nominal basis: 01 0=   T φ  (10 eigenvectors); 02 0=   T Rφ  
(10 eigenvectors, plus one residual vector computed by 

the Equation 16); 0
03 0 v =  T R Rφ  (10 eigenvectors, one 

residual vector computed by the Equation 16, 8 residual 
vectors computed according to the Equation 17) after SVD 
filtering). The residues R

v
0 were computed based on the 

largest singular values, for which the relation σ
1
/σ

i
 ≤ 1 × 105, 

for i = 1 to 10 holds.
Figure 5 shows the FRF amplitudes computed by using 

the three nominal bases as compared to the amplitudes of 
the dynamic response of the reference system evaluated for 
a nominal temperature value of the viscoelastic material 
of 25 °C. It is shown that the enrichment of the classical 
basis of reduction associated to the external loads and 
the viscoelastic damping effects improves the results in 
the frequency band of analysis, leading to conclude that 
approximations based only on the use of static residues 
due to the external loads might not be accurate enough to 
predict the dynamic behavior of the viscoelastically damped 
composite structures.

Figure 4. FRF amplitudes of the reference and reduced systems by using the nominal basis T
01

 (a) and T
02

 (b) for composite structures 
with inherent damping.
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6.	 Concluding Remarks
A condensation procedure intended to be used for 

dealing with viscoelastically damped composite laminated 
structures was suggested and evaluated. The original aspect 
of the procedure lies in the adaptation of the concept of 
condensation, initially developed for undamped structures, 
for composite structures containing viscoelastic materials 
to the problem of vibration attenuation. This approach 
allows design procedures of real-word complex engineering 
structures made of composite materials with viscoelastic 
damping, for example in the context of an optimization 
and/or model updating processes, without the necessity to 
compute the dynamic responses of the complete system. 
Thus, this condensation strategy has been proposed aiming at 
alleviating the computational costs involved in the analyses 

based on large-scale FE models of composite structures 
containing a large number of DOFs.

The academic examples were used to illustrate the 
efficiency of the condensation procedure, mainly in terms 
of the drastic reduction of the number of DOFs, which 
demonstrates that the suggested technique is adapted to more 
complex viscoelastically damped composite systems, and 
being a very useful tool for the design, analysis, structural 
optimization and/or model updating processes.
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Figure 5. FRF amplitudes of the reference and reduced systems by using the nominal basis T
01

 (a), T
02

 (b) and T
03

 (c) for viscoelastically 
damped composite structure.
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