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Bifurcation Analysis of Columns of Composite Materials with Thermal Variation
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Civil structures are, normally, subjected to gravitational and thermal loads. The association of the 
effects of these loads should be the object of analysis when the loss of stability of the slender columns 
was verifying. In the case of reinforced concrete structures, temperature variations induce internal 
stresses in addition to gravitational ones since they are caused by the difference in the thermal properties 
of steel and concrete. Since the structure is a slender system, its stiffness was divided into two parts. 
In the first one, the properties of the concrete were introduced, including cracking and creep, doing 
the equations obtained at the time-dependent mathematical process. In the second, the geometric, 
the construction imperfections and the internal efforts mobilized by the temperature variation were 
considered. Additionally, strains and thermal loads were considered together. At the end, the values 
of critical buckling loads for different moments of interest were determined.
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1. Introduction
Civil structures in reinforced concrete commonly are 

subjected to a combination of mechanical and thermal 
loads. These loads must be taken into account jointly in 
checking the stability of slender columns. ABNT NBR 
6118:20141 recommends that the field temperature variation 
in reinforced concrete structures, caused globally by the 
variation in the atmosphere temperature and by direct 
sunlight, should be considered uniform. It depends on the 
location of the construction and dimensions of the structural 
elements that compose it.

Composite structures have a peculiar behavior, justified 
by their heterogeneity2. In this context, reinforced concrete 
structures, when subjected to any thermal variations, might 
have their performance altered mainly due to the concrete 
components3,4, which includes the loss of bearing capacity 
and/or structural performance. Additionally, it is observed that 
the slender the element, the greater the designer’s concern 
regarding the thermal load on the structure.

For slender reinforced concrete columns, the thermal 
variation must be added to the creep effects, as well as those 
produced by the sustained loads, including the structural 
elements self-weight. The thermal variation can potentiate 
or even alleviate the conditions of stability or bifurcation 
of the balance of these systems.

To investigate that hypothesis, a mathematical proposal 
based on the theory of vibrations was used to determine the 
critical buckling load of a real slender reinforced concrete 
structure. The concept behind the used method is one that 
establishes that the imminence of structural collapse occurs 
for the nullity of its first natural frequency, occasion in which 

it loses stiffness. In the calculation developed to determine the 
critical buckling load, the longitudinal and transverse strains 
were considered together and associated with the thermal 
variation, which was included in the geometric portion of 
the total stiffness of the structure. The need for this inclusion 
stems from the existence of internal forces originating from 
the difference in the thermal expansion coefficients of the 
concrete and steel. Due to the consideration of transverse 
deformations, by using the Poisson’s ratio, it was necessary 
to correct the density of the material, because of the change 
in the volume of the structure. This operation is fundamental 
to applications of a dynamic nature.

It is important to emphasize that this paper presents an 
analytical approach to evaluate the frequency and stability 
by buckling, of slender columns subject to thermal variation 
and self-weight. The solution developed in the present work 
is based on the concepts of vibration of structural systems, 
through modal analysis. By using the path of vibration 
analysis, the critical buckling load is defined for the frequency 
nullity, representing the situation in which the structure loses 
its stiffness. It is noteworthy that this method represents, in 
the context of the stability of slender columns, an innovative 
proposal because the internal forces mobilized by the thermal 
variation are considered directly into the structural stiffness. 
In reinforced concrete structures, temperature variations 
induce internal forces because there is different material 
involved. These internal forces, originated by the different 
thermal coefficients of the concrete and reinforcement, are 
treated by mean the geometric stiffness, which is a part of 
the total stiffness of the column.

It is important to be highlighted that in the present work 
an analytical formulation is applied to a non-prismatic element *e-mail: kaiquemagalhaes@usp.br
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whose solution is constructed straightly in the continuum 
dismissing any discretization technique. The previously 
mentioned aspect is an important point in analysis because 
when a structural element with geometry varying along the 
length is presented to study, computational methods based 
on modeling are required for solving the problem. In these 
computational methods, normally, the medium needs to be 
discretized and therefore the results stay conditioned to the 
density of that discretization.

In the presented analytical approach, important nonlinear 
aspects were considered at the same time in calculation. These 
nonlinear aspects are geometric and material. The analysis 
includes the creep and cracking of the concrete together 
with a thermal variation. For doing that, a routine of 
programming needed to be elaborated to solve a multi-step 
complex mathematical formulation. This is not a trivial task. 
It is worth mentioning that numerical processing is a time-
consuming process, revealing the computational enormous 
effort required for making it possible. Since its application 
can be extended to other structures and similar (or not) 
loading situations, the presented method can be applied for 
assessing the stability of columns in a fire condition.

To contextualize the present approach, a real reinforced 
concrete structure submitted to thermomechanical effects 
associated with gravitational loads was analyzed5-9. A 46 m 
high column, having 40 m of exposure to the environment, 
6 m buried, with a slenderness rate greater than 400, was 
selected for the study. The analyzes were considered as time 
functions due to the viscoelastic behavior of the concrete. 
Constructive imperfections and/or second-order effects 
were linearized using the geometric stiffness, the material 
non-linearity of the concrete was considered by reducing 
the flexural stiffness, and its viscoelastic behavior obeyed 
the creep criteria provided by the Brazilian normative code1. 
At the end of the process, the values of critical buckling loads 
at different moments of interest were determined.

2. Mathematical Proposal for Consideration 
the Thermal Variation
Consider the model shown in Figure  1. This model 

concerns a column clamped at the bottom and free at the top, 
where t represents time; ϕ(x) is a mathematical function that 
is the form of the first buckling mode; L is the total length 
(or height) of the structure; Ls and Ls - 1 are the positions 
at the upper and lower limits of a segment s, therefore the 
length of that segment is obtained by the difference between 
these two positions; and v(t) is a generalized coordinate of 
the system, located at the free end of the column. Equation 
1 refers to a trigonometric function taken as a shape function, 
which describes the first mode of undamped free vibration, 
or buckling10, being considered valid at any point in the 
structural domain and that obeys the boundary conditions 
of the problem, where x originates from the base.
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Applying the principle of virtual works and their 
derivatives11, the generalized stiffness and mass of the 
system can be obtained, among which the geometric stiffness 

portion12-15. This portion is presented as a function of the 
axial force, including the contribution of the own weight, 
and where the internal forces induced by a temperature 
variation are introduced16.

The conventional generalized elastic/viscoelastic stiffness 
portion is defined as:
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where for a segment s of the structure, Es(t) is the viscoelastic 
modulus of the material with respect to time; Is(x) is the variable 
moment of inertia of the section along the segment in relation 
to the considered movement, obtained by interpolation of the 
previous and following sections, already homogenized (if 
it is constant, it is simply Is); k0s(t) is the temporal term for 
the stiffness; K0(t) is the final conventional stiffness varying 
over time; and n is the total number of segment intervals 
given by the structural geometry. In Equation 2, obviously, t 
vanishes when the analysis considers a material with purely 
elastic, time-independent behavior.

The geometric stiffness appears as a function of the 
axial load, including the self-weight contribution, and is 
expressed as:
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where kgs(m0) is the geometric stiffness in segment s, Kg(m0) 
is the total geometric stiffness of the structure with n as 
defined previously, T sN , is the internal force mobilized by 
the thermal variation given by Equation 4, where ∆T indicates 
de thermal variation, the symbols c refers to concrete and 
st to steel of reinforcement, with E, A, and a representing 
the modulus of elasticity, area, and thermal coefficients of 

Figure 1. Mathematical model of the structure.
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the materials. Note that for this first approach these internal 
forces are not time dependent yet, but they should be.
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The term N0(m0) in Equation 3 is the concentrated force 
at the top, all of which are dependent on the mass m0 at the 
tip, written in the form of following equation:

( )0 0 0N m m g= .	 (5)

The total generalized geometric stiffness is calculated 
by Equation 6, in the form of:
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As can be seen, all the previous parameters depend on the 
mass m0 located at the free end of the column. In Equation 
3, Ns represents the normal force in the segment superior to 
the analyzed segment, which can be obtained from:
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The generalized mass of the system can be found by:
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where ( )sm x  is the mass distributed to each segment, 
defined by Equation 9:
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where As(x) represents the variable area of the cross section, 

sρ  and a
sm  are the density of the material and the additional 

distributed mass externally joined for the segment, respectively. 
If the cross section has a constant area, As(x) will simply be 
As, and, consequently, the mass distribution per unit length 
will also be constant. Likewise, if the mass m0 does not vary, 
all parameters dependent on it will also be constant. To limit 
the influence of the soil on the balance of the system, it is 
necessary to represent it by a series of springs distributed 
vertically along the foundation. In this way, the contribution 
of the soil to the stiffness of the structure can be written as:
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where the parameter ( )so
sk x  is an elastic characteristic along 

the foundation depth, which dependents on the geometry of 
the foundation Ds(x), and the soil parameter Ss. The parameter 
Ss must be provided by a specialist geotechnical engineer. 
Considering the compressive force as positive, the total 
structural stiffness is obtained as:

( ) ( ) ( )0 0 0, g SoK m t K t K m K= − + .	 (11)

Therefore, the frequency of the first undamped free 
vibration mode, in Hertz, can be found using Equation 12:
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Taking into account the previous postulations and assuming 
the concentrated mass m0 as the variable independent of 
the problem, once the instant of interest has been defined, 
the critical buckling load Nfl can be determined using the 
mathematical concept present in Equation 13, which defines 
the proximity of the loss of balance to when the structure 
loses its stiffness, making its frequency null:
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The workflow of the mathematical programming routine 
used to find the buckling load in accordance with the concept 
of Equation 13 is described in Figure 2.

3. Results and Discussion
The analyzed structure was a real, extremely slender, 

reinforced concrete pole, 46 m high, including the 40 m 
superstructure, exposed to the environment, with a circular 
hollow section and a 6 m deep foundation, which is relatively 
deep, is a belled shaft foundation. The dimensions, heights 
and the structural arrangement are shown in Figure 3, letters 
(a) and (b), where g is the acceleration of gravity; S1, S2, 
S3, S4, and S5 are the cross sections from 1 to 5; D and th 
indicate, respectively, the outside diameter and the wall 
thickness of these sections; db and nb represent the diameter 
and number of reinforcement bars; c´ is the cover of concrete 
in the respective cross sections and “Var” indicates a variable 
section in the segment. It is assumed that thermal equilibrium 
occurs for the entire system.

The elasticity modules of the concrete calculated at 
28 days after its production, for the superstructure and for the 
foundation, are, respectively, 34279 MPa and 21287 MPa, 
defined according to ABNT NBR 6118:20141, considering 
the characteristic strengths of the concrete fck equal to 45 MPa 
and 20 MPa. Equipment is fixed on the upper part of the 
structure, establishing a concentrated mass, whose limit 
value in relation to the loss of stability by buckling must be 
determined. Additional devices are also installed along the 

Figure 2. Workflow of the mathematic programming.
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superstructure, configuring a distributed mass of 40 kg/m. 
The foundation is a belled shaft, with a bell diameter of 
1400 mm and length of 200 mm; the shaft is 800 mm in 
diameter and 5800 mm long. The lateral interaction of the soil 
with the foundation was represented by an elastic parameter 
with a property equal to 2669 kN/m3.

The non-linearity of the concrete was calculated by the 
recommendations of ABNT NBR 6118:20141 which suggests 
a 50% reduction in the moment of inertia of the sections for 
analysis in similar circumstances, foreseeing the structure 
will be working in a bent condition. The density of reinforced 
concrete was defined as 2600 kg/m3 for the superstructure 
and 2500 kg/m3 for the foundation. The homogenization 
factors were calculated, which multiply the moment of 
nominal inertia, in order to take into account, the presence 
of the steel bars of the reinforcement. The creep, due to the 
rheological behavior of the concrete, was considered in the 
superstructure1.

Thereby, it was possible to evaluate, comparatively, the 
effects of a positive and negative thermal variation to the 
load capacity of the structure. These loads were defined for 
the nullity of the natural frequencies of the system. Figure 4, 
Figure 5, and Figure 6 represent the structural frequency 
without (W/O-TV) and with (W/I-TV) thermal variation 
field. When the thermal variation field (ΔΤ) is taken account, 
a positive and negative interval of  15ºC, respectively, is 
adopted. In all of those graphs, N(m0) is the normal force at 
the top of the column. To obtain those curves, a Poisson’s 
ratio of 0.2 was used for the homogenized concrete section.

Analyzing the results present in Table 1, it is possible to 
observe that differences between the critical load calculated 
considering of thermal variation increase up to a maximum 
of 16.11%, with an average of 14.18%, in relation to that 
calculated without thermal variation, for the time interval 
assumed to the simulation.

Table  2 brings the results for the negative thermal 
variation. There, it is possible to observe there is a peak 
variation of 8.37% for the critical load, with average values ​​
of 6.29%, which represents an average variation smaller than 
that presented for a positive thermal variation.

It is important to observe that the mathematical routine 
give a processing, which used an Intel CPU (R) 2.70 GHz, 
i7 (7th generation), Core (7 M) 7500U, running Windows 

10 (64 bits), 8 GB RAM, needed approximately 24 h to be 
completed, when using Δm0 increments of 0.1 kg for the 
mass, and Δt of 100 days for time, adopting initial values 

Figure 3. System analyzed (all measures in “mm”): (a) details of 
geometry; (b) heights and structural arrangement.

Figure 4. Results for initial condition (environmental temperature).

Figure 5. Results for ΔT = +15ºC.

Figure 6. Results for ΔT = -15ºC.
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equals to 5,000 kg for m0 and 0 for t, with a final time equal 
to 4000 days.

4. Conclusions
In this paper, an innovative analytical mathematical 

approach is used to determine the critical buckling load of a 
real slender reinforced concrete structure subjected to thermal 
variation and self-weight. For this proposal, it was applied 
a development based on the concepts of the mechanics of 
vibrations, by modal analysis.

The necessity and the main importance of the present 
analysis comes up due the fact that reinforced concrete 
structural elements are submitted to additional forces when 
subjected to thermal variation because their cross-sections 
are formed by materials with different expansion coefficients. 
This difference alters the internal equilibrium of forces 
and conditions of compatibility of the displacements, in 
the referred sections, producing changes in the geometric 
stiffness of the structure and, consequently, in the vertical 
loading capacity of the system.

From the analyzes performed, it was possible to verify 
that a positive thermal variation of 15ºC, taken into account 
in association with the temporal change in the concrete 
elasticity and with the effects of gravitational forces, 
elevated the values of the critical buckling load by 14%, 
which represents an increase in the vertical load-carrying 
capacity. When considering a negative thermal variation of 
same magnitude, the structure presented a loading capacity 
8.37% lower to that without thermal variation, representing 
to be that the most critical situation among those analyzed.

The computational cost and the results generated from 
the mathematical proposal developed to solve the analyzed 
problem are conditioned to the discretization used in the 
programming routine. This means that the smaller this is, 
the better the results will be. However, the computational 
processing time increases proportionally.

For future studies, analysis considering the temporal 
variation of the Young’s Modulus of concrete into the internal 
forces mobilize by thermal variation together with changes 
to the structural volume due to the transversal deformation 
is desired. On the other hand, evaluation of structures in fire 
condition is equally waited.
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