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The phenomenological formalism, which yields Fick’s Laws for diffusion in single phase
multicomponent systems, is widely accepted as the basis for the mathematical description of dif-
fusion. This paper focuses on problems associated with this formalism. This mode of description
of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the cen-
tral material properties) that require a large experimental investment for their evaluation in three
component systems, and, indeed cannot be evaluated for systems with more than three compo-
nents. It is also argued that the physical meaning of the numerical values of these properties with
respect to the atom motions in the system remains unknown.

The attempt to understand the physical content of the diffusion coefficients in the
phenomenological formalism has been the central fundamental problem in the theory of diffusion
in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion
led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal
lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic
fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous sam-
ples which directly report the jump frequencies of the atoms as a function of composition and
temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would
provide the basis for understanding the physical content of interdiffusion coefficients.

Definitive tests of the resulting theoretical connection have been carried out for a number of
binary systems for which all three kinds of observations are available. In a number of systems
predictions of intrinsic coefficients from tracer data do not agree with measured values although
predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete
connection has not been made, even for binary systems. The theory has never been tested in
multicomponent systems.

An alternative path to understanding diffusion behavior in multicomponent systems is pre-
sented which is based upon a kinetically derived version of the flux equations. While this ap-
proach has problems of its own, it has the potential for providing a new range of insights into the
process, and for devising simple models for predicting composition evolution in multicomponent
systems.
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1. Introduction

Diffusion must occur in any process that requires a
change in local chemistry. In crystalline systems this re-
quires that single atoms change their position on the crystal
lattice. The average frequency with which this event occurs
in a local volume element is different for each chemical
component in the system, and varies with the composition
and temperature of the volume element. The pattern of these

events ultimately determines the evolution of the spatial
distribution of the elements in a single phase crystal. Pre-
diction and control of this chemical evolution requires an
understanding of the diffusion process.

To achieve this understanding it is first necessary to be
able to describe the diffusion process, i.e., to develop a for-
malism that relates how the atoms move to the current con-
dition of the system. The phenomenological equations of
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irreversible thermodynamics define fluxes as measures of
the atom motions and relate them to forces defined in terms
of gradients of the properties of the system calculated from
the current condition of the system. These equations have
been widely accepted as the basis for the description of the
diffusion process.

Application of the phenomenological formalism to the
description of interdiffusion of the elements in binary sys-
tems is straightforward and requires modest experimental
effort. However, for three component systems, the formal-
ism becomes cumbersome and the level of experimental
effort required to evaluate the matrix of four interdiffusion
coefficients defined for the system is significant. As the
number of components in the system increases beyond three
the number of diffusion coefficients needed to describe
behavior increases rapidly. Further, values for the matrix of
diffusivities in quaternary and higher order systems cannot
be determined experimentally.

Evidently a practical description of diffusion behavior
in multicomponent systems would require an ability to un-
derstand the physical content of these diffusion coefficients
so that their values could be computed or at least estimated
from more fundamental information. Tracer diffusion ex-
periments, which report the penetration of a radioactive
tracer of an element into a chemically homogeneous alloy,
provide fundamental information about the frequency with
which atoms of a component make a jump between adja-
cent sites on a crystal lattice. If the physical content of
interdiffusion coefficients is to be understood, their values
must be related to this fundamental information about the
pattern of atom jump frequencies in the system.

Kirkendall’s classic observation that the crystal lattice
moves during diffusion first complicated then clarified this
situation. Tracer information describes atom motion rela-
tive to the crystal lattice, but the Kirkendall observation
showed that the crystal lattice moves in interdiffusion.
Darken solved this problem by introducing the concept of
intrinsic diffusion, describing motion of atoms in the non-
uniform flowing system relative to the moving lattice.

The stage was set for what became the central theoreti-
cal problem in multicomponent diffusion: the determina-
tion of the connection between the fundamental tracer dif-
fusion information, through the intrinsic diffusion coeffi-
cients to the practical interdiffusion coefficients. Without
this theoretical connection the description of diffusion in
multicomponent systems would remain impractical.

Subsequent sections review the experimental observables
for each of the three kinds of diffusion experiments: tracer,
intrinsic and interdiffusion. The formalisms devised to de-
scribe each of these kinds of experimental results are then
recalled briefly, followed by a presentation of the estab-
lished theoretical connection between the three kinds of
information. Problems with the formalisms themselves are

discussed. Experimental results that illuminate the inadequa-
cies of the theory connecting these kinds observations are
then presented. These deliberations support the thesis that
the traditional phenomenological description of diffusion
does not provide a useful or practical basis for collecting
and organizing information about diffusion in a
multicomponent system. An alternate approach to this prob-
lem is needed.

One such approach is based upon a kinetically derived
flux equation which avoids the problems associated with
the phenomenological approach. This equation is derived
and discussed. In its rigorous version it has a potential for
providing new insights into influences that operate in diffu-
sion that bias the jumps of components relative to the diffu-
sion direction. A simplified version has been shown to pro-
vide relatively simple models for diffusion behavior that
successfully describe the experimental observables in a
number of ternary systems. The latter has the potential to
make the description of diffusion in multicomponent sys-
tems practical.

2. Experimental Observables in Diffusion

Interdiffusion Experiments

Diffusion produces changes in the distribution of chemi-
cal elements with time. The primary experiment designed
to yield an understanding of diffusion behavior in an alloy
system is based on the diffusion couple. Blocks of two al-
loys, P and Q, are bonded at a temperature that is low enough
so that the components in the alloys cannot intermix, Fig. 1.
The distribution of each component is initially a step func-
tion, Fig. 1a. The couple is then taken to a high temperature
and isothermally annealed for many hours or perhaps days.
The components interpenetrate; each develops its composi-
tion profile after some time, t, Fig. 1b. The couple is cooled,
sectioned and chemically analyzed to yield the functions
C

k
(x,t), (k = 1, 2, ..., c) where C

k
 is the molar concentration

(moles / cc) of component k. The design of the couple guar-
antees that the flow of all of the components will be one
dimensional (call it the x direction, perpendicular to the
original bond interface). Generally the size of the two blocks
is large compared to the diffusion zone (the zone of compo-
sition change) so that the boundary conditions for the diffu-
sion process is “semi infinite”; this simply means that for
sufficiently large values of x the composition profiles after
the anneal remain at the original concentration values on
each side of the couple.

The motion of the atoms of a component in such flow-
ing systems is described by the concept of the interdiffusion
flux of component k. Focus upon a volume element dV in
the couple, Fig. 2. Atoms of component k form a subset of
all of the atoms in this volume. Define v

k
 to be the average

velocity of k atoms in dV during some small time interval.
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Figure 1.  Composition distribution in a diffusion couple: a) be-
fore and b) after the isothermal anneal.  An error function was
employed to generate the composition profile where the inter-
diffusion coefficient,  Do = 10-9 cm2/s, and the time for the diffu-
sion anneal, t = 6 h. Figure 2.  Interdiffusion flux in a flowing system.

average velocity (a “convective” velocity) of all of the com-
ponents.

(2)

X
k
 is the atom fraction of component k in the volume

element dV. It can be shown that this definition of the inter-
diffusion flux yields the relationship1-4

(3)

That is, in a c component system there are (c - 1) inde-
pendent interdiffusion fluxes. Dayananda5,6 showed that
these fluxes can be evaluated from the concentration pro-
file measurements without additional information:

   (k = 1, 2, ..., c) (4)

where t is the time of the diffusion anneal, C
k -

 is the far
field concentration of component k on the left side of the
couple and C

k
(x) is the concentration of component k at the

position x in the couple. The derivation of this result ne-
glects variations in molar volume in the system, a common
assumption in diffusion theory. A sample result of this cal-
culation is shown in Fig. 3. The concentration profiles for
this demonstration were generated using ternary error func-
tion solutions given by Kirkaldy2.

Focus further upon the area element dA bounding the right
side of dV. The number of atoms of k that flow across dA
reported per unit area and per unit time, is defined to be the
flux of component k at dA. The area element is viewed as
being at a fixed position in the couple relative to a coordi-
nate system that is external to the couple. The flux of atoms
relative to a value of x that is fixed in the laboratory is called
the interdiffusion flux of k, can be shown to be1-4

J
k

0 = C
k
(v

k
 – u)  (k = 1, 2, ..., c) (1)

The superscript (o) in this and subsequent equations is
used to describe properties associated with the interdiffusion
process, i.e., with the motion of atoms in a fixed external
(laboratory) reference frame. In this equation u is the molar
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The typical interdiffusion experiment yields a pattern
of composition profiles for all of the c-components in the
system. The pattern of interdiffusion fluxes in that couple
can be computed from this information for each of the com-
ponents. Because these fluxes sum to zero, there are (c - 1)
independent interdiffusion fluxes in a c-component system.

Intrinsic Diffusion Experiments

In 1947 Kirkendall and Smigelskas7 placed thin molyb-
denum wires at the original interface between two alloys P
(pure Cu) and Q (α brass, Cu 70% Zn 30%) and annealed
the resulting couple. The wires moved during the experi-
ment, Fig. 4. Kirkendall concluded that the wires moved
with the crystal lattice in the couple. Subsequent investiga-
tions established that this behavior is pervasive. The funda-
mental diffusion process in crystals is the motion of atoms
from one lattice site to another, i.e., motion relative to the

Figure 3. Calculation of the interdiffusion flux directly from the
concentration profiles using Dayananda’s equation5. a) concentra-
tion profiles; b) interdiffusion fluxes.

Figure 4. Displacement of wires in an interdiffusion experiment
for the Cu-Zn system, a phenomenon known as the Kirkendall ef-
fect7.

crystal lattice. Kirkendall’s experiment established that the
crystal lattice is moving in the external fixed reference frame
that is used to describe interdiffusion. Thus, in order to fol-
low the fundamental diffusion process it is necessary to
define the diffusion flux relative the moving crystal lattice:

J
k
 = C

k
 (v

k
 – v

L
) (5)

where v
L
 is the local lattice velocity. Darken8,9 defined

this measure of atom motion relative to the moving lattice
to be intrinsic diffusion. (In the notation of this paper intrin-
sic diffusion fluxes and other intrinsic properties have no
superscript (o) in order to distinguished from the analogous
interdiffusion properties.) A pervasive assumption in solid
state diffusion is that the convective velocity u in equation
(3) is negligible in the solid state so that the intrinsic and
interdiffusion fluxes are related:

J
k
 = J

k
0 – C

k
 v

L
(6)

Unlike the interdiffusion fluxes (equation (3)) all c in-
trinsic fluxes are independent. They sum, not to zero, but to
the local value of the vacancy flux Jv :

(7)

The original Kirkendall experiment and its successors
could only provide the lattice velocity at the marker plane
inherited from the original bond plane. Thus information
on intrinsic diffusion could be obtained from a single com-
position in a given couple. In later years couples have been
constructed with markers distributed through the diffusion
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zone3,10-14. Figure 5 shows one couple design that incorpo-
rates a marker plane that is oblique to the direction of diffu-
sion. Upon sectioning after diffusion the markers have dis-
placed forming a curve that may be described by a func-
tion, g(x). Philibert3,10,11 has devised an analysis that per-
mits the determination of the lattice velocity distribution
v

L
(x) from the marker pattern g(x) without simplifying as-

sumptions. Thus, both terms in equation (6) are experimen-
tally accessible and the intrinsic diffusion fluxes of all c
components can be computed from experimental composi-
tion profiles and marker displacements without simplifying
assumptions12-14.

Tracer Diffusion Experiments

The classic tracer diffusion experiment begins with a
block of an alloy of a desired composition. A thin layer
containing the desired radioactive element is dispersed on
one face of the block. The sample is annealed at a predeter-
mined temperature for a predetermined time. The radioac-
tive isotope permits measurement of the concentration of
tracer as a function of depth of penetration even though the
tracer element is present in very small quantity. Thus the

experiment monitors the motion of one of the components
into an alloy that is essentially chemically uniform. A
straightforward analysis of the tracer profile yields the tracer
diffusion coefficient, D

k
*, for that element in that alloy. A

physical argument that describes the tracer flux in terms of
the mean effective jump frequency of component, Γ

k
*, yields

the relation2-4

(8)

where λ is the diffusion jump distance. The jump fre-
quency for each component in a given system is found to
depend upon the composition of the alloy and the tempera-
ture of the anneal. The number of jumps an atom makes
between sites is the central physical descriptor of the diffu-
sion process. In principle it would seem that, given the jump
frequencies of each of the components as a function of com-
position one could predict the other experimental
observables, i.e., the composition distribution function
(C

k
(x, t) for k = 1, 2, ..., c) and the lattice velocity distribu-

tion, v
L
 (x, t) in a chemically evolving system. This connec-

tion between tracer, intrinsic and interdiffusion behavior is
the focus of the physical theory of diffusion.

3. Diffusion Formalism

The information obtained from the diffusion experiments
described above is explicit to that experiment. It is desir-
able to use that information for predicting diffusion behavior
in other situations in the same alloy system. This has been
achieved by devising a formalism that provides a general
description of diffusion phenomena. The experimental re-
sults are then used to evaluate parameters introduced in the
formal description. With the parameters evaluated for an
alloy system, the general, formal equations may be used to
predict diffusion behavior in that alloy system for any set of
initial and boundary conditions.

The time evolution of the distribution of the composi-
tions in a chemically evolving system is formally described
by the phenomenological equations adapted from the ther-
modynamics of irreversible processes1-4,15-17. These equa-
tions are qualitatively based upon the notion that flow rates
increase as a system gets farther from equilibrium. Flow
rates are defined in terms of the fluxes of the things that
move (quantity per m2 - sec) as in equation (1). The condi-
tions for equilibrium specify that, in the absence of exter-
nally applied fields, gradients of certain local intensive ther-
modynamic properties are zero at equilibrium1,18-20, specifi-
cally,

grad T = 0
grad µ

k
 = 0 (k = 1, 2, ..., c) (9)

Figure 5. Oblique marker plane for the determination of lattice
velocities for the entire diffusion zone before and after the
interdiffusion anneal.
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where µ
k
 is the chemical potential of component k. In

the absence of external fields in an isothermal system the
chemical potential is an algebraic function of composition,
so that the condition  grad µ

k 
= 0 implies grad C

k
 = 0

(k = 1,2, ..., c). When the gradients vanish, the correspond-
ing flows are zero. It is natural to write the flow equation
based on the assumption that each flux is proportional to all
of the independent gradients in a nonequilibrium system.

Interdiffusion Formalism

For isothermal interdiffusion in a system with c compo-
nents the phenomenological equations may be written

   (k = 1, 2, ..., c–1) (10)

The components of the matrix of phenomenological
coefficients, Lkj

o, are called the mobilities in this formalism.
It is these coefficients that must be evaluated from diffusion
couple experiments. If they are determined as a function of
composition and temperature then equation (10) permits
prediction of the evolution of composition distribution in
the system. Recall that, in a c-component system there are
(c - 1) independent interdiffusion fluxes, equation (3).

An alternate, and more traditional formalism for describ-
ing the interdiffusion fluxes in a multicomponent system is
a generalization of Fick’s law for binary systems:

   (k = 1, 2, ..., c–1) (11)

where D
kj

o is a matrix of interdiffusion coefficients.
Note that in either formalism there are (c - 1) independ-

ent fluxes in the system (because the interdiffusion fluxes
sum to zero, equation (3)) and (c - 1) terms in each equa-
tion. There are (c - 1) independent chemical potential gra-
dients in equation (10) because the chemical potentials of
the c components are related by the Gibbs-Duhem equation
in thermodynamics1,2,18-20. There are (c - 1) independent con-
centration gradients in equations (11) because the atom frac-
tions sum to 1. There are thus (c - 1)2 coefficients in the
description of a c component system. In the thermodynam-
ics of irreversible processes the principle or microscopic
reversibility devised by Onsager16 shows that the square
matrix of mobility coefficients is symmetrical, i.e. corre-
sponding off-diagonal terms are equal. This reduces the
number of independent phenomenological coefficients in a
c-component system to ½ c (c - 1). The two descriptions in
equations (10) and (11) are interconvertible since the chemi-
cal potentials are functions of composition. Accordingly,
the matrix of diffusion coefficients, D

kj
o, or, alternatively,

the matrix of mobilities, L
kj

o, can be computed from one

another2,3. The analyses of experimental penetration pro-
files yields the matrix of diffusivities2-4,21. If desired the ma-
trix of mobilities can then be computed by combining the
diffusivity results with a thermodynamic solution model that
permits calculation of the chemical potentials from the con-
centrations.

Intrinsic Diffusion Formalism

Phenomenological equations used to describe intrinsic
diffusion behavior appear to be very similar to equations
(10) and (11) with two important differences:

a. The fluxes and diffusivities are “intrinsic” properties
of the process, in the sense that this word is used in
diffusion theory (indicated by dropping the super-
script o in the notation) , and

b. The fluxes do not sum to zero, see equation (7).

For intrinsic diffusion:

   (k = 1, 2, ..., c) (12)

  (k = 1, 2, ..., c) (13)

There remain (c - 1) terms in each flux equation (there
remain (c - 1) independent composition variables) but now
there are c independent fluxes. The matrix of diffusion co-
efficients is thus not a square matrix, but contains c (c - 1)
elements.

In principle the matrix of intrinsic diffusivities for a
multicomponent system can be evaluated by combining
experiments that report concentration evolution data and
lattice marker displacement measurements. The correspond-
ing matrix of mobilities can be computed from this infor-
mation and a thermodynamic solution model to compute
the chemical potentials.

4. Problems with the Phenomenological
Formalism and its Implementation

Interdiffusion

The interdiffusion equations provide a basis for incor-
porating results of diffusion couple experiments into a
framework that permits prediction of the evolution of con-
centration patterns for that system for any set of initial
and boundary conditions. Given C(x, t) for a full range
diffusion couple in a binary system, Do(C) can be com-
puted from the classic Matano analysis, a procedure that
has been in introductory textbooks for more than half a
century1-4. Then, given Do(C) an appropriate simulation of
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the governing flux equation can be used to predict the
chemical evolution for any other situation involving that
binary alloy system.

The trouble begins when this analysis is extended to three
component systems and beyond. In a three component sys-
tem there are only two independent compositional variables
and two independent interdiffusion fluxes. Thus, a variety
flux equations can be written for the same system, depend-
ing upon which component is chosen to be the dependent
variable. e.g.,

Component 3 as dependent variable:
J

2
0 = – D

21
3o grad C

1
 – D

22
3o grad C

2

Component 1 as dependent variable:
(14)

J
2

0 = – D
22

1o grad C
2
 – D

23
1o grad C

3

It becomes necessary to add a superscript to the nota-
tion to make explicit the choice of dependent variable made
in writing the equation. It is evident that the coefficients
D22

3o and D22
1o, both of which report the effect of the gradi-

ent of component 2 on the flux of component 2, are not
equal.

In general, the values of the phenomenological coeffi-
cients depend upon the choice of independent variable made
in setting up the problem. In the light of this observation it
is unlikely that these coefficients will convey much physi-
cal understanding of how the atoms move in the system.
This approach may be used to describe the composition
evolution, but not to explain or understand it.

The analysis can be significantly simplified if it is as-
sumed that “off-diagonal terms”, Dkj

o, which describe the
contribution of the gradient of component j to the flux of
component k, may be neglected as small in comparison
with “on-diagonal terms”, Dkk

o, which describes the con-
tribution of gradient of component k upon its own flux, Jk.
This is a convenient and intuitive assumption because it
decouples the flux equations and greatly simplifies the
mathematics of the description. This is a dangerous as-
sumption. Analysis of relations between coefficients de-
fined for two different choices of dependent variable, as
illustrated in equation (14) for example, shows that some
off-diagonal terms in one description contain an on-di-
agonal term in the other description. For example it can
be shown that D32

3 = D32
1 - D33

1. In addition one can al-
ways find local situations in the patterns that develop in
which the concentration gradient for the on diagonal term
is small so that the local flux is primarily determined by
the off-diagonal term.

In order to determine the matrix of four diffusion co-
efficients in a three component system it is necessary to
prepare and analyze two diffusion couples with composi-
tion paths that cross in the Gibbs triangle. At the position

of the crossing point both couples will have the same com-
position (and hence the same set of values for the D

kj
o

matrix) but different values of the fluxes and gradients.
The two flux equations (11) for each couple yield four
equations in four unknowns (the D

kj
o matrix), and may be

solved for their values at that specific composition. To
obtain the pattern of composition dependent functions for
the diffusivities, D

kj
o(C

2
, C

3
) for the whole system, it is

necessary to construct and anneal a series of diffusion cou-
ples with composition paths that criss-cross each other in
the Gibbs triangle. Values of the each of the four
diffusivities are computed at crossing points. These iso-
lated values may be analyzed statistically to deduce best
fit functions, - four surfaces over the Gibbs triangle -, that
complete the data base for interdiffusion in the system for
the temperature chosen for the diffusion anneals. A com-
plete data base would require that this process be repeated
at other temperatures.

Because of the level of effort required to obtain these
data there have been relatively few determinations of this
matrix in the five decades since the procedures were first
outlined2. In their text, Kirkaldy and Young2 list 26 refer-
ences reporting such analyses where “the data is sufficiently
accurate and comprehensive that a closure with theory can
be illustrated.” Only four of these cover the full composi-
tion range or even an entire phase field. Evidently the level
of effort required to generate interdiffusion data bases for
three component alloys is difficult to justify. This situation
is not helped by the fact that the interdiffusion coefficients
do not convey a physical understanding of how the atoms
move in the system as discussed above. The data do not
contribute to a physical understanding of the processes go-
ing on in diffusion so that patterns might be divined or pre-
dictions hypothesized.

Determination of the matrix of nine diffusivities for a
single composition point in a quaternary system requires
an experiment involving a set of three diffusion couples with
composition paths that intersect at a point in the three di-
mensional composition space of the Gibbs tetrahedron.
Unfortunately the probability that three space curves inter-
sect in three dimensional space constitutes a set of points of
measure zero. Accordingly, this matrix has never been meas-
ured for any quaternary system*. Experimental methods for
measuring interdiffusion coefficients in quaternary and
higher order systems are evidently impractical.

Intrinsic Diffusion

Because the intrinsic diffusion fluxes are independent
the description of the intrinsic behavior of a c component
system requires an additional flux equation requiring addi-
tion of (c - 1) diffusion coefficients. Darken analyzed the
problem of determining intrinsic diffusion coefficients in a
binary system8-9. He derived the result
* The nine diffusivities have been estimated at a single quaternary compo-
sition in the Ni-Cr-Al-Mo system by constructing three incremental cou-
ples (i.e., with small composition differences) with crossing diffusion vec-
tors and applying the approximation that the nine diffusion coefficients
may be treated as constants in this composition interval22.
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(15)

In a binary system the interdiffusion coefficient can be
obtained by applying the Matano analysis to composition
profiles and the lattice velocity can be obtained from marker
displacements during diffusion. D

1
 and D

2
 may then be

evaluated at any composition for which v
L
 is measured. The

original Kirkendall experiment placed a marker at a single
point, the original interface, and measured its displacement.
Thus, v

L
, and hence D

1
 and D

2
, could be determined at a

single composition in this experiment. That composition was
not known a-priori; it was determined as the composition at
the marker plane after the experiment. To generate a data
base for a range of compositions required the preparation
of a number of diffusion couples with initial composition
pairs that produced marker plane compositions that spanned
the range. If the oblique marker plane experiment, Fig. 5, is
implemented, v

L
 can be determined at each composition in

the couple. Combination with Do values for the couple will
permit computation of the two intrinsic diffusivities at all
compositions that exist in the couple. The values of D

1
 and

D
2
 are indicative of the relative rates of motions of the two

components on the crystal lattice.
Darken and others extended his analysis to ternary sys-

tems2,9,23. Implementation of the analysis requires determi-
nation of the matrix of interdiffusion coefficients, D

kj
o, in

the system using a pair of couples with intersecting compo-
sition paths with the attendant difficulties described above.
In addition the lattice velocity must be determined in both
couples at their common composition. Evidently this can-
not be achieved with traditional, single marker couples be-
cause the compositions at the marker planes in each couple,
where v

L
 may be determined, will not in general coincide

with the composition at the intersection point of their com-
position paths. The oblique marker plane experiment per-
mits determination of v

L
 at all points in the compositions

that exist in the couple, including that of the point of inter-
section of the composition paths. The resulting six equa-
tions (three flux equations in each couple) may be solved
simultaneously to determine the matrix of six intrinsic dif-
fusion coefficients at the composition of the intersection
point.

Given the level of effort involved it is not surprising that
intrinsic diffusivities have been estimated at but a few points
in a few ternary systems24. There has been no systematic
study attempting to determine this matrix, D

kj
 , as a func-

tion of composition in any ternary system.

The extra effort might be justified in the light of the fact
that intrinsic fluxes provide a more direct view of how the
components move with respect to one another, since they
report independent motions of the components relative to
the crystal lattice. However this insight is not supplied by
the numerical values of the elements of the diffusivity ma-
trix, D

kj
. These properties suffer from the same problem

cited for the interdiffusion coefficients: their values depend
upon the choice of independent compositional variable in
the analysis. D

22
1 and D

22
3 are different numbers, though

both purport to describe the effect of the concentration gra-
dient of component 2 on the intrinsic flux of component 2.
Evidently the numerical values of the elements in the diffu-
sivity matrix is not a useful basis for understanding these
atom flows in the system.

The intrinsic fluxes themselves have the potential to pro-
vide a level of physical understanding of the real motion of
the components in the system. Equation (6) provides the
relationship between intrinsic fluxes and the interdiffusion
fluxes and lattice velocities. On the right side of this equa-
tion Dayananda’s analysis permits determination of the
interdiffusion flux J

k
o(x) for each component by applying

equation (4) to the measured composition distribution. The
lattice velocity distribution v

L
(x) can be determined from a

couple with an oblique marker plane, using Philibert’s analy-
sis. Thus the pattern of the intrinsic fluxes in a couple can
be determined experimentally from the composition pro-
files and marker shift pattern in that couple. These relation-
ships make no simplifying assumptions. Unfortunately, the
oblique marker plane experiment has only been applied to
a few binary systems25,26. It has never been applied to ter-
nary or higher order systems, though the methodology
makes such an application relatively straightforward.

Summary of the Problems with the Phenomenological
Formalism

For the description of interdiffusion the implementation
of the formalism requires the determination of ½ c (c - 1)
Dkj

o values as functions of composition and temperature.
This is straightforward for a binary system. A significant
investment of experimental effort is required for a three
component system. The approach cannot by implemented
for quaternary and higher order systems. The description
cannot be simplified by neglecting cross terms. The values
obtained depend upon the choice of dependent com-
positional variable in setting up the description of the sys-
tem. The pattern of values of the Dkj

o ‘s for a system does
not provide a basis for understanding the physics of the dif-
fusion process.

The phenomenological description of intrinsic diffusion
suffers from the same set of problems though the atom
motions described are fundamental in the sense that the in-
dependent fluxes of the components relative to the lattice
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may be accessed in individual couples. Even more experi-
mental effort is required to determine the matrix of
diffusivities, since information on the pattern of motion of
markers in the diffusion zone must be determined in ex-
periments. This pattern has been measured on some binary
systems12-14,24-26. It’s measurement has not been undertaken
in a single ternary system. Even if they were determined,
the patterns of values of the D

kj
 matrix would not provide a

basis for understanding the physic of the process.

5. Connection Between Tracer, Intrinsic
and Interdiffusion Information

The phenomenological formalism was devised so that
information extracted from diffusion couple experiments
could be used to make more general calculations. It has
proven to be a cumbersome basis for developing a diffu-
sion data base. Perhaps if a physical understanding of the
content of the diffusivities could be developed patterns could
be recognized and correlations evoked that would foster the
generation of a more useful diffusion data base. Tracer dif-
fusion data provides the most direct link to a physical un-
derstanding of atom motions in binary and multicomponent
systems. Darken recognized this in his initial paper on the
subject8. He set out to establish the connection between tracer
diffusion information and intrinsic and interdiffusion
behavior.

In proposing a solution to this problem Darken consid-
ered the phenomenological equations for tracer and intrin-
sic diffusion in a binary system:

where the superscript (*) indicates properties of the tracer
experiment. The derivatives can be evaluated from solution
thermodynamics2-4,8-9:

(17)

where γ
k
 is the activity coefficient of component k in the

alloy system. Evaluation of the right hand side of the tracer
equation is simplified because the tracer forms a very dilute
solution in the otherwise uniform alloy. Darken then made
a very plausible assumption: the mobility of a tracer in a
uniform alloy is identical with the mobility of that compo-
nent in a volume element in a flowing system that has the
same composition and temperature:

L
k 
= L

k
* (18)

Inserting this assumption and the evaluation of the ther-
modynamic derivatives into equations (16) produces the
Darken relation between tracer diffusivities and intrinsic
diffusivities:

(k = 1, 2) (19)

The predicted relation between interdiffusion coefficients
and tracer behavior may then be derived:

(20)

In order to test Darken’s hypothesis it is necessary to
carry out all three kinds of diffusion experiments (tracer
profiles, marker displacement and composition profile) over
a composition range in a binary system. There are a few
examples of binary systems in the literature for which this
information exists. The definitive test combines tracer dif-
fusion coefficients, thermodynamic information and intrin-
sic diffusivity measurements to test equations (19). Analy-
ses for a number of these systems have been reported in the
literature12-14,25-31. If the two components have similar tracer
behavior then the tests support Darken’s hypothesis within
experimental error14. However if the tracer behavior is sig-
nificantly different, then the results show that the theory is
inadequate to explain the differences between tracer and
intrinsic diffusivities. Examples of tests for such systems
are shown in Figs. 6 and 7. Assessments of the data have
shown that the disagreement in the intrinsic diffusion coef-
ficients and hence the lattice shifts, are well outside the ex-
perimental error in these systems. It must be concluded from
these results that Darken’s hypothesis yields a theory that is
inadequate to explain the connection between tracer and
intrinsic diffusion coefficients.

Manning23,36-39 and others17,28,40 have analyzed this con-
nection at a more sophisticated level, introducing concepts
such as the vacancy wind effect. Examples of the predic-
tions of Manning’s more detailed analysis are also shown

Intrinsic Diffusion:

Tracer Diffusion:
(16)

Intrinsic
Diffusion:

Tracer
Diffusion:
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in Figs. 6 and 7. In some cases the additional term produces
a small correction to Darken’s prediction, within the range
of experimental error in most cases. In other cases Man-
ning’s correction is in the wrong direction.

Darken’s treatment, and Manning’s corrections, have
been expanded to describe three component systems2,3,17,23.
Experimental studies in a few ternary systems would pro-
vide a truly definitive test of this explanation of the

phenomenological coefficients. The effort involved to make
such a series of tests appears daunting. There is but one
ternary system for which tracer data exists for all three com-
ponents over a significant composition range: Cu-Ni-Zn33.
Interdiffusion data exists for the same system in the same
composition range. There is anecdotal information about
marker displacements for couples in this system, but no
systematic study exists that would permit determination of
the intrinsic diffusion coefficients. It is possible that, with

Figure 6. Darken-Manning relations in the Cu-Zn system at 915 °C.
The experimental intrinsic diffusion data was obtained from Horne
& Mehl32, the tracer data was obtained from Anusavice & DeHoff33

and the thermodynamic data was obtained from Kowalski and
Spencer34.

Figure 7. Darken-Manning relations in the Ag-Cd system at 600 °C.
The experimental intrinsic diffusion and tracer diffusion data were
obtained from Iorio et al.29 and the thermodynamic data was ob-
tained from Filby and Pratt35.
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the use of a suitable simulation of intrinsic diffusion one
could arrive at an intrinsic diffusion model that provides a
satisfactory description of the available marker data, but this
has not been reported. Thus, the generalization of Darken’s
hypothesis to ternary systems has not been tested.

The phenomenological formalism is too cumbersome
to be practical, and too abstruse to be physically meaning-
ful. Hypotheses designed to provide physical interpretation
of the descriptors of diffusion have proven to be inadequate.
The formalism has not provided the physical context needed
to explain or understand observed diffusion behavior. A dif-
fusion data base without such a context is severely limited.
The science of diffusion behavior is ripe for an alternate
point of view.

6. Jump Frequency Kinetic Formalism

In parallel with the evolution of the phenomenological
formalism there has been a continuing development of ki-
netic descriptions of diffusion processes. This approach
seeks to devise flux equations for the components begin-
ning with the jump frequency of the atoms. Early applica-
tions of this point of view established connections between
tracer diffusion coefficients and the jump frequency of the
tracer atoms. These studies identified correlation effects in
self diffusion26,36-39 and demonstrated the complexities of
behavior even in dilute binary and ternary alloys2-4. Appli-
cations of these descriptions to concentrated binary solu-
tions, much less multicomponent systems, appears to re-
quire a level of detailed information about the system that
is not experimentally accessible.

A version of this kinetic approach has been developed

at the University of Florida, along with a simulation of dif-
fusion behavior that permits modeling and prediction of
patterns of behavior of the experimental observables. This
theory begins with the assumption that the jump frequen-
cies of the components in a multicomponent diffusion proc-
ess are functions only of the local thermodynamic state, (i.e.,
functions of composition in an isothermal system). This
hypothesis is analogous to the assumption in the
phenomenological approach that the individual diffusivities
or mobilities are functions only of the local composition.

Consider two adjacent lattice planes, labeled 1 and 2, a
distance λ apart; λ is the jump distance in the diffusion for-
mulation, Fig. 8. Define Γ

k
 to be the jump frequency of

atoms of component k on plane 1. In an isothermal diffu-
sion couple Γ

k
 is a function of composition, and therefore

position in the system. Γ
k
dt is the average number of jumps

made by an atom of component k on for the composition on
plane 1 in a time interval dt. Let C

k
 be the molar concentra-

tion of atoms of component k on plane 1. Approximate the
variation of these quantities with position as continuous
functions. Then their values on the two planes are

 (21)

Let dA be the area of each of the planes. The volume
occupied by the atoms on these planes is λ. The number of
atoms of k in the slab associated with plane 1 is Ck × λdA.
On the average each atom of k makes Γk dt jumps in a time
interval dt. The total number of jumps made by the atoms
of component k on plane 1 in time dt is (Ck × λdA) × (Γk dt).
Let fk+ be the fraction of these atoms jumps that take the
atom of k to plane 2. The number of k atoms transferred
from plane 1 to plane 2 in time dt is

dn
k,1-2

 = f
k+ 

(C
k
 λ dA) (Γ

k
dt) (22)

In an isotropic crystal, in the absence of bias effects in
the jumping process, fk+ would be 1/6.

This analysis can also be applied to atoms on plane 2
that jump to plane 1 using values for composition and jump
frequency for k on plane 2. The total number of atoms of k
on plane 2 that make a jump to plane 1 in time dt is

(23)

where fk- is the fraction of atom jumps of k on plane 2
that move the atom to plane 1. To obtain the net number of

Figure 8. Schematic representation of two adjacent planes in a
solid, emphasizing the diference in the concentration and jump
frequency of a particular species upon each of the planes.

Ck  (plane 1)

Γ
k 
 (plane 1)
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atoms of k that transferred from plane 1 to plane 2 in time
dt subtract the number that jump from 2 to 1 from the number
that jump from 1 to 2.

(24)

Multiply the factors on the right side of the equation
and neglect the term involving λ3. Collect terms and sim-
plify:

(25)

The flux of component k from plane 1 to plane 2 is the
number of atoms transferred per unit area per unit time:

(26)

This is a kinetic equation for the intrinsic flux of com-
ponent k (as contrasted to a phenomenological equation).
All of the terms in the equation have a defined physical
meaning. Note that this equation applies to component k no
matter how many components there are in the system.

The first term in this equation contains the factor (fk+ - fk-).
If the jumps between plane 1 and plane 2 are not biased by
the flow process, then fk+ = fk-, and the first term in equation
(26) is zero. If this term is not zero, then influences are
operating to produce a bias in the directions of jumps for
atoms of component k. Accordingly the first term in equa-
tion (26) may be defined as a biased component to the in-
trinsic diffusion flux:

J
k
B = (J

k+
 – J

k-
) λ C

k
Γ

k
(27)

Presumably this bias is associated with the fact that there
is a direction to the net flow of atoms in the system.

These fractions may be expressed in terms of their de-
viation from the isotropic values of 1/6:

and (28)

On a given plane the fractions of jumps in all six direc-
tion sum to 1. If it is assumed that the bias in jumps in the
direction of diffusion does not affect the jumps occurring
perpendicular to the flow direction

(29)

This yields the result that

α
k+

 = – α
k-

(30)

That is the deviation from the isotropic values for the
fractions for jumps in the direction of the flux and against it
are equal in magnitude and opposite in sign. The difference

f
k
 – f

k-
 = α

k+
 – α

k- 
= α

k+
 – ( – α

k+
 ) = 2 α

k+
(31)

The sign and magnitude of αk+ varies with position in a
couple and is a different function for each component.

Since the net number of atoms transferred is a very small
fraction of the total number of atoms that jump it may be
argued that αk+ is very small in comparison to 1/6. Thus, in
the second term in equation (26) fk- may be replaced by 1/6.
This term may be written

(32)

This is the value of the intrinsic flux if the biased term is
zero and may thus be defined as the unbiased contribution
to the intrinsic vacancy flux.

With these evaluations the total flux of component k
may be rewritten

(33)

This is a kinetic flux equation, based upon a physical
description of the atomic processes involved.

The product (C
k
 Γ

k
) has the units (jumps of k atoms per

m3 per second) and may be visualized as the local concen-
tration of atom jumps of k per second. This yields the physi-
cally visualizable and plausible result that the unbiased flux
component is determined by the gradient of the local con-
centration of atom jumps of k per second.

The biased component of the flux is introduced in this
formalism. The role that it plays in the observable flux, and
the influences that determine the value of α

k+
, are yet to be

explored.
There is no phenomenological assumption in this equa-

tion. This does not mean that equation (33) violates the tenet
of irreversible thermodynamics that states that each flux is
influenced by all of the driving forces, equations (10) and
(11). Because the jump frequency of component k depends
upon all of the (c - 1) concentration variables the gradient
term in equation (33) implicitly contains all of the concen-
tration gradients. It is likely that α

k+
 also depends on the

magnitudes of the flows in the system, and thus all of the
independent gradients.

Equation (33) describes the flux of component k no
matter how many other components there are in the system.
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It is a flux equation that applies to multicomponent sys-
tems.

The number of descriptors in this equation, Γ
k
(C

k
) and

α
k+

, is much smaller than the ½ c (c - 1) descriptors in equa-
tions (10) and (11). However, this simplification is miti-
gated by the fact that the content of α

k+
 is as yet unknown.

In a sense, all of the complexity of the kinetic approach is
contained in α

k+
 in the biased term. The challenge posed by

this formalism is to develop an understanding of what in-
fluences operate to bias the jump direction of atoms, and
how these influences operate.

Simulation of Diffusion Behavior

The central fundamental problem in the description of
diffusion is the explanation of the connection between the
three classes of experimental observables. The penetration
of tracers in uniform alloys, the pattern of lattice velocities,
and the evolution of the concentration distribution, are the
observables derived from tracer, intrinsic and interdiffusion
experiments. The corresponding data bases are sets of tracer,
intrinsic and interdiffusion coefficients. In order to explore
the connection between these data sets it is essential to be
able to convert data base information to the corresponding
experimental observables so that comparisons can be made.
A flexible computer simulation of diffusion behavior that
can take any of the three types of data base information and
predict the corresponding experimental observable would
be a very useful analytical tool. The same simulation could
be used to explore the terms in the kinetic formalism.

Simulation of Interdiffusion

The data base is the set of interdiffusion coefficients,
Dkj

o, as a function of all of the composition variables in a
multicomponent system. The experimental observables are
the composition profiles, Ck (x,t) for th set of c components.
These are connected by the interdiffusion flux equation (11).
The simulation focuses on a slab-shaped volume element
of thickness dx at position xi in the couple. In a given time
step the change in the number of atoms of component k in
that slab may be computed by applying a finite difference
version of equation (11) to evaluate the interdiffusion flux
of k at xi and xi + dx = xi+1 , positions that are fixed in the
external reference frame. This calculation can be applied to
each of the (c - 1) independent components. The fact that
the fluxes in the laboratory frame sum to zero guarantees
that there will be no change in the total number of atoms in
the volume element between xi and xi+1. New values of con-
centration of each component in the volume element at the
end of the time step may be computed and assigned to the
midpoint of the element. Values of the concentrations at xi,
xi+1, etc. are interpolated to provide the starting concentra-
tion distribution for the next time step. Time steps are re-

peated until a stable pattern of composition profiles (nor-
malized by plotting versus ) is obtained. The results
may be compared with experimentally determined compo-
sition profiles, or with the experimental pattern of paths in
composition space. Since these connections only involve
definitions there are no hypotheses to be tested. In this ap-
plication the simulation provides a valuable assessment of
the consistency of interdiffusion data.

Simulation of Intrinsic Diffusion

The data base is the set of intrinsic diffusion coefficients,
D

kj
, as functions of composition. Besides the concentration

distribution, C
k
(x, t), the additional experimental observ-

able is the distribution of lattice velocities, v
L
(x, t) which

characterizes intrinsic diffusion. The connection between
the data base and the observables is the phenomenological
equations for intrinsic diffusion, equations (13). In the lat-
tice (intrinsic) reference frame the c intrinsic diffusion fluxes
are independent. Focus on a slab of thickness dx

i
 at posi-

tion x
i
 at some time t. In the next time step use a finite dif-

ference version of equation (13) to compute the intrinsic
fluxes of component k at x

i
 and at x

i
 + dx

i.
. This permits the

computation of the change in the number of atoms of k in
dx

i
 during that time step.
Because all c fluxes are independent the total number of

atoms of all of the components in dx
i
 will in general change

during the time step. Some slab elements will finish the time
step at t + dt with more atoms than were there at time t, and
some will have less. These accumulations are accommo-
dated by changing the thickness of each slab by an appro-
priate value, δdx

i
, which will preserve the average volume

of atoms in the element*. The position of each slab bound-
ary at time t, x

i
(t), translates to some new position x

i
(t + dt)

which is the position at x
i
(t) plus the sum of all of the slab

thickness changes δdx
i
 for all of the slabs from the left end

of the diffusion couple to x
i
(t).

(34)

Since the total number of atoms of k and the total number
of atoms in the slab are computed in each slab, the value of
the atom fraction of k, and hence the molar concentration
C

k
, can be computed in each volume element at the end of

the time step. An updated composition distribution may then
be described at the end of the time step. The shift in position
of each value of x

i
(t) corresponds to the incremental change

in the position of a marker that may have existed at x
i
 ; the

local velocity of a marker at x
i
(t) may be computed as

(35)

* Inclusions of the variation of molar volume with composition in the simu-
lation appears to be relatively straightforward, but has not been undertaken
at this writing.
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Iterations of the time step are continued until stable dis-
tributions in a plot of C

k
(x, t) and v

L
(x,t) are obtained in

 coordinates.
The simulation provides definitive tests for the formal-

ism and the consistency of the data for binary systems for
which D

1
 and D

2
 are available. The oblique marker plane

experiment has been used only in a few isolated cases. Most
intrinsic data is based upon analysis of a set of incremental
couples prepared in the alloy system with a single marker
at the original interface. The marker displacement, the
Kirkendall shift, is reported for each couple. The simula-
tion may be used with D

1
 and D

2
 as input to predict compo-

sition distributions and Kirkendall shifts in these couples.
Figure 9 shows comparisons with these experimental

observables for the Cu-Zn system. The consistency of the
underlying procedures, the simulation and its predictions
are clearly demonstrated in this comparison.

The simulation can be used to assess the connection
between Darken’s hypothesis and the experimental
observables. Figs. 6 and 7 showed that the thermodynamic
correction of tracer data proposed by Darken does not suc-
cessfully describe the difference between tracer and intrin-
sic diffusivities. Figure 10 shows the correlation between
measured composition distributions and Kirkendall shifts
and values predicted by Darken’s evaluation of the intrinsic
diffusivities from tracer data. Kirkendall shifts predicted by
Darken’s equation are generally smaller than the measured
shifts providing, another illustration of the inadequacy of
Darken’s hypothesis.

Figure 9. a) Composition profile and b) Kirkendall shifts for the
Cu-Zn system32 obtained using the experimentally determined in-
trinsic diffusion coefficients as inputs to the diffusion simulation
software.

Figure 10. a) Concentration profile and b) Kirkendall shifts using
the intrinsic diffusion coefficients obtained from the Darken
theory8,9 as input to the simulation.



Vol. 5, No. 3, 2002 The Trouble with Diffusion 223

The distributed marker experiment has not been under-
taken for any ternary system. Intrinsic behavior has been
probed in a few ternary systems24,41,42, using classical single
marker couples. The simulation could be used in an itera-
tive approach that would seek a set of the six diffusivity
functions that would give consistent predictions of the ob-
served anecdotal Kirkendall marker shifts. Such a program
would require a significant level of effort and has not been
undertaken. In concert with tracer data that exists in Cu-Ni-
Zn, the results of this exercise would provide a basis for the
first test of the application of the Darken-Manning formal-
ism to a ternary system.

Simulation of the Kinetic Formalism for Intrinsic
Diffusion

The simulation of the kinetic formalism for intrinsic dif-
fusion follows the procedure described above for the
phenomenological intrinsic formalism. The only difference
is the use of a finite difference form for the flux equation
(33) to compute the flows at the boundaries of each volume
element. Direct application of this equation using an ex-
perimentally derived data base is not yet possible because
the content of the biased term is unknown. In view of this
difficulty the simulation may be used in two ways:

1. The pattern of behavior of the unbiased term in the
flux equation may be explored experimentally by com-
bining intrinsic and tracer diffusion data to gain in-
sight into the nature of the influences that operate to
produce this bias.

2. A simplified version, neglecting the biased term, may
be applied to the description of patterns of behavior
in ternary systems.

These two applications are described briefly below.
A tracer diffusion experiment is a limiting case in which

the fluxes of the components approach zero. Since the bi-
ased effects arise from the directed flow of the components,
the biased effects decrease as the fluxes of the atoms de-
crease. Thus, in the limiting case of a tracer experiment the
flux of tracer may be described by the unbiased term:

(36)

A central hypothesis in the development is that the jump
frequencies depend only on composition and temperature,
and not on the magnitudes of the flows in the system. Since
the tracer experiment is a limiting case of a diffusion ex-
periment as the driving forces and fluxes approach zero,
the jump frequency in that limiting case at a given compo-
sition must be the same as that under larger driving forces.
It is concluded that in the system with any set of magnitudes
for the driving forces

Γ
k
 = Γ

k
* (37)

That is, the jump frequencies in the kinetic formalism
are the tracer jump frequencies. Equation (33) may be writ-
ten

(38)

 It has been shown that the total intrinsic flux, J
k
, can be

evaluated without simplifying assumptions from the intrin-
sic diffusivities, or, more directly from the experimental
evaluation of the interdiffusion fluxes and lattice velocity
distribution. The unbiased term may be evaluated in the
simulation from tracer measurements of the jump frequen-
cies. The biased term may then be evaluated from this ex-
perimental information by subtracting the unbiased term
from the total flux. Thus with the input of the tracer and
intrinsic diffusion coefficients, the behavior of the biased
contribution to the flux, J

k
B, can be explored in the system.

Since the other factors in the expression for J
k
B are known,

this permits a direct focus on the experimental determina-
tion of the content of the biased factor, α

k+
.

Total, biased and unbiased components of the intrinsic
flux for a couple in the Cu-Zn system, computed by imple-
menting the simulation to process the data base informa-
tion, are shown in Fig. 11. It is clear that the biased compo-
nent of the flux cannot be neglected in describing the
behavior of the system: J

k
B is a significant fraction of J

k

throughout the diffusion zone. It is further interesting that
the signs of the biased factors for the two components, α

1+

and α
2+

, are opposite in this case, Fig. 12. This observation
implies that the bias cannot be explained simply as an ef-
fect due to the directed total flow of atoms or the corre-
sponding vacancy flow. Other factors, still to be identified,
appear to be involved.

The decomposition of the intrinsic flux into a biased
and unbiased component provided by the kinetic formal-
ism has the potential to provide a new level of insight into
the physical influences involved in diffusion in multi-
component systems. These effects are just beginning to be
explored.

In contrast with this rigorous analysis it must be noted
that some success has been attained in describing patterns
of diffusion behavior in ternary systems by using a simpli-
fied version of the kinetic flux equation in which the biased
term is neglected. Figure 13 demonstrates that this is a bad
assumption in the rigorous treatment of even binary sys-
tems if the jump frequencies are computed from tracer data.
It is apparent from Fig. 13b that the predicted Kirkendall
shifts are significantly higher than the experimental ones. If
the requirement that the input jump frequencies are the tracer
jump frequencies, is relaxed so that the input jump frequency
surfaces over the Gibbs triangle are allowed to be modeled
unconstrained by tracer information, then models have been
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devised that provide a reasonable explanation of most of
the experimental observables in some ternary systems.

It is unlikely that full information about the pattern of
tracer diffusion coefficients will be explored in ternary sys-
tems other than Cu-Ni-Zn. This model approach sacrifices
the rigor of the full kinetic equation for a practical version
that can be made to work. If the biased term is neglected,
equation (33) becomes

(39)

Given a set of functions describing the composition de-
pendence of the jump frequencies, Γk(Xk), the simulation
may be used to compute intrinsic fluxes as a function of
position for any assumed initial couple. The experimental

observables, i.e., composition distributions, composition
paths and Kirkendall shifts, may be evaluated from this in-
formation and compared with observed patterns.

These jump frequency functions may be developed on
the basis of an informed trial-and-error iteration by com-
paring patterns of composition paths with those obtained
for a collection of such models44. Alternatively, jump fre-
quency functions may be obtained by inverting equation
(39) and integrating the result:

(40)

Figure 11. Total, biased and unbiased components of the intrinsic
flux for a diffusion couple in the Cu-Zn system32. a) Cu; b) Zn.

Figure 12. a) Composition profiles for the Cu-Zn system and b)
bias factors obtained from the biased flux shown in Fig. 11.
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The integrand is the intrinsic flux of component k deter-
mined experimentally from a distributed marker experiment.
The second term on the left side of this equation is the value
of the C

k
Γ

k
 product at the left end of the couple. If C

k-
 is

chosen to be zero, or if Γ
k-

 has been determined previously,
Γ

k
 can be determine as a function of composition for the set

of compositions that exist in the couple.
Figure 14 compares the pattern of composition paths de-

rived from applying the simulation (a) with that observed
experimentally (b) for the Fe-Ni-Co system using the simple
jump frequency model give in (c). All of the simulated com-
position paths have the same shape as the experimentally
observed ones. In most cases the computed compositions
are within a few atomic per cent of the experimental ones.

Figure 15 shows a more challenging test of this approach
applied to the Cu-Ni-Zn system. In this case the jump fre-
quency model, suggested by the pattern observed for tracer
diffusion, has a very strong dependence upon composition.
Further, the jump frequencies of the three components at a
given composition are very different, maintaining a ratio of
about Zn:Cu:Ni = 9:3:1. The composition paths have large
amplitudes. Nonetheless the modeled paths all have the
correct qualitative shape, though there are significant quan-
titative differences for couples with selected diffusion vec-
tors on the Gibbs triangle. Further, Fig. 16 shows that the
pattern of Kirkendall shifts is in general predicted reason-
ably well by the model through the simulation with the ex-
ception of those couples that also showed differences in the
composition paths (Fig. 15a). Further improvement might
be achieved through additional iterations of the modeled
jump frequency surfaces.

This approach can also be applied to devise a model to
explain the behavior observed in the Fe-C-Si. This text book
example for “uphill diffusion”, due to Darken,47 examines

Figure 13. a) Concentration profile; b) Kirkendall shifts using the
tracer jump frequencies33 as inputs to the unbiased version of the
jump frequency simulation.

Figure 14. Comparison: a) simulated; b) experimental composi-
tion paths in the Fe-Co-Ni system43,44; c) The jump frequency model
employed for this simulation44.
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the composition profile produced in a couple that places an
Fe - 0.441% C alloy against a ternary Fe - 0.478 C - 3.8% Si
alloy. Although the carbon content is essentially the same
on both sides of the couple it is found that carbon atoms
significantly redistribute during diffusion, producing the
profile shown in Fig. 17 (solid circles). Carbon flows out of
the silicon rich side, where its concentration is reduced, and
into the silicon free side where its concentration increases.
Thus there is a range of composition for which the carbon
atoms flow from low carbon content to high, up its concen-
tration gradient. This observation was explained on the ba-
sis of the effect of silicon additions on the chemical poten-
tial of carbon in this system. The activity of carbon increases
with silicon content. Thus the flow of carbon from the high
silicon side of this ternary couple to the low silicon side is a
flow down the chemical potential gradient of carbon, con-
sistent with the mobility form of the phenomenological equa-
tions.

This behavior can also be reproduced by constructing a
jump frequency model in which the jump frequency of car-
bon atoms increases with silicon content, and applying equa-
tion (39). Figure 17 shows the composition profile produced
by this approach. This more physical explanation of the
observation immediately invites additional question such
as, “Why does the presence of silicon increase the jump
frequency of carbon atoms?”

This modeling approach results in a workable descrip-
tion of the experimentally observed pattern of intrinsic dif-Figure 15. a) Comparison of experimental and simulated compo-

sition paths in th Cu-Ni-Zn system44-46; b) The jump frequency
model employed for this simulation44,46.

Figure 16. Comparison between the experimental and predicted
Kirkendall shifts using the jump frequency model shown in Fig. 15
for various diffusion couples in the Cu-Ni-Zn system44,45.

Figure 17. Simulation (solid line) of Darken’s47 experiment dem-
onstrating uphill diffusion of carbon in γ iron at 1050 °C using a
jump frequency model for carbon that is a function of the silicon
concentration, Γ

C
 = (16X

Si
 + 1) 8 × 109, Γ

Fe
 = Γ

Si
 = 106 sec-1. The

open circles represent concentrations from Darken’s experiment.
The simulated concentration profile was obtained by multiplying
the normalized concentration profile (512 iterations) with the square
root of the annealing time (13 days).
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fusion in a ternary system on the basis of a formalism that
has physical meaning. The data base is a set of jump fre-
quency values and their composition and temperature de-
pendence. The operation of the governing equation (39) is
easy to visualize. The approach can be extended easily to
quaternary and higher order systems.

The trouble is, in order to invoke this approach it is nec-
essary to ignore the results of the more rigorous analysis
that recognizes that the jump frequencies are those obtained
from tracer experiments, and that a significant component
of the intrinsic flux derives from a physical bias in the jump
directions of the components with respect to the flow direc-
tion. Implementation of the formalism without assumptions
provides a new opportunity to explore the patterns of
behavior of the biased contribution to the intrinsic flux and
perhaps gain a new level of insight into the influences that
are important in the diffusion process. Implementation of
the formalism with empirically derived jump frequency
models provides a practical avenue for predicting diffusion
behavior in multicomponent systems.

7. Discussion
There exists a substantial and systematic data base for

predicting diffusion in binary systems, but most useful al-
loys have more than two components. The data base for
interdiffusion coefficients in ternary systems is very lim-
ited, and is practically nonexistent for systems with more
then three components. This is mostly because the invest-
ment in experimental effort required to obtain these num-
bers is prohibitive, but partly because the values of the
diffusivities in the data base don’t make physical sense. The
disconnect in the theory relating atom jump frequencies to
interdiffusion coefficients means that there is no physical
context for interpreting the values of the diffusivities. This
lack of physical perspective in the interdiffusion data base
in turn means that it is not possible to use these results to
answer even rudimentary questions about the motions of
the atoms, such as:

“Which components move fast in this system?
Which are slow? What are their relative rates of mo-
tion? What are their absolute rates? How do these at-
tributes change with composition in the system? What
physical characteristics of the component are impor-
tant in determining this behavior? What properties of
the surrounding solution are important?”

Answers to questions like these could provide explana-
tions of the observed diffusion behavior that might form
the basis for interpolations and extrapolations within a sys-
tem, and predictions of behavior in systems that have not
been experimentally examined. These answers cannot be
derived from interdiffusion information.

Use of distributed marker couples to obtain intrinsic
fluxes and diffusivities does provide a path to this kind of
information. However, preparation of samples with distrib-
uted markers, and their analysis, adds to an already pro-
hibitive experimental effort. This technique has yet to be
applied to a single ternary system. It seems unlikely that it
will be adopted in the systematic study of multicomponent
systems. The importance of intrinsic diffusion information
in developing a physical understanding of diffusion in com-
plex systems has not been widely appreciated. Because this
approach provides independent information about the mo-
tions of the elements in the system it has the potential to
provide the kind of insight, and eventually physical per-
spective, that can come from answers to the questions posed
in the last paragraph.

Tracer diffusion information provides the most direct
access to answers to the kinds of questions posed above.
About a dozen tracer experiments are required to provide
data on the composition dependence of D

1
* and D

2
* in a

binary system at a single temperature. This number esca-
lates very rapidly with the number of components in the
system. For example, to survey the three D

k
* values for a

ternary system over the Gibbs triangle, assuming the com-
positions chosen are 20 atomic per cent apart, requires 63
experiments. For a four component system sampling every
20% would require 224 diffusion coefficients. It is clear
that the systematic survey of tracer diffusion behavior is
not a practical route to a data base for multicomponent dif-
fusion.

First principle calculations of atom jump frequencies
are beginning to appear in the literature, but results are lim-
ited by the accuracy of the description of the atomic bond-
ing models. This may be the wave of the future for develop-
ing diffusion data bases, but that future is very remote at
this writing.

The kinetic flux equation, based as it is on jump fre-
quencies of the components, has the potential for yielding
answers to the questions posed early in this discussion. In
its rigorous form, with both the biased and unbiased terms
incorporated, this approach requires tracer data as input. Its
systematic application to multicomponent systems thus re-
quires the same prohibitive level of experimental effort in-
herent in tracer studies. Assessment of the biased term may
provide new insight into influences that operate in flowing
systems, but that potential is unknown at this writing.

Use of the simplified jump frequency flux equation to
develop by iteration models of jump frequency functions
that satisfactorily reproduce the experimental observables
seems to emerge as the most practical approach to develop-
ing fundamental diffusion information for systems for which
the number of components is greater than 2. For ternary
systems best fit jump frequency functions for the three bi-
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nary systems provides the borders of the jump frequency
surface over the Gibbs triangle. Distributed marker couples
could be used to determine the intrinsic fluxes of all three
components for a few couples that span the Gibbs triangle.
Jump frequencies could then be computed along the com-
position paths for those couples by applying equation (40).
Optimized jump frequency surfaces could then be devel-
oped from this binary and ternary information. The simula-
tion could then be used to compare observables computed
from this model with experimental observables. The result
could then be tested with information for an additional cou-
ple or two to assess the predictions of the resulting model.

8. Summary
The experimental observables in a single phase

multicomponent diffusion couple experiments are tracer
penetration curves, marker displacement distributions and
concentration profiles. Phenomenological equations define
matrices of diffusivities, D

k
* for tracer diffusion, D

kj
o for

interdiffusion and D
kj
 for intrinsic diffusion, which may be

extracted by processing the experimental observables in sets
of couple experiments. These sets of diffusivity matrices
constitute the data base for the description of diffusion
behavior. With values for these properties for an alloy sys-
tem and the aid of an appropriate simulation one can pre-
dict the set of experimental observables for any diffusion
scenario in the alloy system, given its initial and boundary
conditions.

Procedures exist for the determination of intrinsic and
interdiffusion coefficients for two and three component sys-
tems. Values of these descriptors are inaccessible for sys-
tems with more than three components.

Attempts to infer the physical content of these descriptors
by relating intrinsic and interdiffusion coefficients to tracer
information were undertaken by Darken, Manning and oth-
ers. Tests of these relationships in a number of binary sys-
tems have demonstrated that the underlying hypothesis, i.e.,
that the tracer mobility and the intrinsic mobility are equal,
is inadequate to explain the observed differences between
tracer and intrinsic diffusivities. The predictions of this
theory have never been tested for ternary or higher order
systems. Indeed, they cannot be tested for systems with more
than three components because the diffusivity matrices are
inaccessible.

It is concluded that the physical content of the descriptors
of the phenomenological formalism remains unknown even
in binary systems. This approach has not provided a physi-
cal context for the diffusion data base from which a physi-
cal understanding or scientific explanation of patterns of
observed behavior in multicomponent diffusion can be
gleaned.

A version of the kinetic description of diffusion is pre-

sented which computes the intrinsic flux from the compo-
sition dependent jump frequencies of the components. The
development yields a biased and an unbiased contribution
to the intrinsic flux.

The biased term is determined by influences that pro-
duce a difference in the fraction of jumps of an atom of a
component in the plus and minus directions relative to the
local flux. The biased term can be evaluated experimentally
by combining tracer information and an oblique marker
plane diffusion couple experiment, which permits experi-
mental evaluation of the intrinsic flux of each component.
Applications to binary system information from the litera-
ture show that the biased term cannot be neglected. The
nature of the influences that produce this bias, and how these
influences operate, is not yet known.

The unbiased term can be computed from tracer diffu-
sion determinations of the composition dependence of the
jump frequencies.

Although the biased term is important and complex, it
has been found that reasonable descriptions of the experi-
mental observables can be obtained if the constraint that
the jump frequencies are determined from tracer data is re-
laxed and the biased term neglected. Models based upon
heuristically derived jump frequency functions have been
shown to yield semiquantitative descriptions of patterns of
composition paths and Kirkendall shifts in some ternary
systems.

Comparisons of the various formalism with their attend-
ant hypotheses is made possible through the application of
a flexible computer simulation of diffusion processes. This
tool uses any of the diffusivity data bases as input and, by
calculating the local flux at each position through a couple,
computes the corresponding experimental observables.

The trouble with diffusion is that after more than half a
century of experimental and theoretical investigation by
some of the best minds in the material science field the pre-
diction of the results of the operation of this crucial process
remains based upon the phenomenological formalism which
defines diffusivities that

• require significant experimental investment for their
evaluation;

• are experimentally inaccessible for systems with more
than three components;

• have unknown physical meaning.
Theoretical attempts to inject physical meaning into these

properties by connecting intrinsic and interdiffusion phenom-
ena to tracer diffusion behavior in the same system have been
shown to be inadequate. An alternative path to the physical
understanding of the diffusion process leads to a kinetically
based flux equation in which all of the parameters have a
known physical meaning except a biased factor. The trouble
in this case is: the content of the biased factor is unknown.
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