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1. Introduction
The understanding and modeling of dendritic growth has 

remained a central theme of solidification research for many 
years. Understanding the solidification process is of great 
importance because the resulting microstructures determine 
the properties of the material. Although there have been 
significant developments in understanding dendritic structures 
in the past decades, our knowledge of the dendritic growth 
is based on experiments and idealized theoretical models. 
On the other hand, phase-field models are known to be very 
powerful in describing non-equilibrium dendritic evolution. 
They are very efficient because, in the numerical treatment 
based on them, all the governing equations are written for 
the whole domain without distinguishing the interface from 
the solid and liquid phases. Furthermore, direct tracking 
of the interface position is not needed during numerical 
simulation of the solidification process. The phase-field 
models were developed mainly for studying solidification 
of pure materials1, being then extended to the solidification 
of binary2, ternary3, and quaternary in Salvino et al.4 alloys.

Recently, Xu et al.5 used phase-field models focused on 
pure materials. Their paper presented a detailed numerical 
method and algorithm for solving two-dimensional (2-D) 
phase-field model. Comparison between the fully-coupled 
and sequential techniques showed that CPU time of the 
second approach is approximate 10% greater than that of 
the first one. However, the sequential method is chosen 
for computations in order to reduce storage requirements 
as much as possible. The authors found that the numerical 
results capture well the complex physics of the solidification 
problem. Consistent with physical reality, the computed 
critical radius indicates existence of a critical value for a 
nucleus to grow in the phase field simulation. Moreover, 
the critical radius decreases linearly with increasing Stefan 
number, which means that, if the Stefan number is large 
enough, solidification always takes place, no matter what 
the initial conditions are. In addition, they studied dendrite 
shapes at different degrees of supercooling; the results are 
in agreement with the experimental results.

Moelans et al.6 published a paper presenting an 
introduction to phase-field models and an overview of 
their possibilities. Amongst those, as listed by the authors, 
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was the simulation of solidification processes, precipitate 
growth and, more recently, an application to solid-state phase 
transformations like the austenite-to-ferrite transformation 
in steels, dislocation dynamics, as well as crack nucleation 
and propagation. Achievements are expanding rapidly, due 
to improved modeling and implementation techniques and 
growing computer capacity.

From a somewhat more theoretical standpoint, it should 
be noted that the interface morphology of the solidification 
front calculated by phase-field models reproduces the known 
patterns of a dendrite structure. The state of the domain is 
represented by the distribution of a single variable known as 
the order parameter, ϕ, or phase-field variable. In this study, 
the solid state is represented by ϕ = +1, while, in the liquid 
region, ϕ = 0. The region in which ϕ changes progressively 
from +1 to 0 is defined as the solid/liquid interface. In spite of 
phase-field models being suitable for simulating solidification 
processes, as mentioned by Moelans et al.6, they suffer from 
low computational efficiency. For example, for computation 
of a dendrite with side-branches, the computational domain 
should be discretized into one million points. Thus, the 
computational stability condition in an explicit finite scheme 
can be guaranteed only with a very small time step. Xu et al.5 
show a sequential method to reduce required storage during 
the calculations of the solidification process. In this study, 
on the other hand, we present a numerical technique for the 
improvement of computational efficiency for computation of 
dendritic evolution in solidification processes for both pure 
material (Ni) and binary alloy (Fe-C). In both cases presented 
in this article, at the start of the solidification process, there 
is a solid nucleus placed in the very small computational 
domain. The goal of this technique is for the computational 
domain to grow around the dendrite and fixed the grid spacing, 
while solidification advances into the liquid. The transient 
response of the phase equation is controlled by the product 
M.ε2. This parameter acts in the phase-field model similarly 
to the thermal diffusivity (D) in the energy transport equation. 
Since the thermal diffusivity is much larger than the product 
M.ε2, in pure metal system, for example twenty eight times 
difference in pure material system, the effect of heat transfer 
first occurs in the pure metal system. This way, the growth 
around the dendrite is controlled according with the thermal 
diffusivity (D) in liquid region. For numerical simulation of the 
dendritic evolution of binary alloy (Fe-C), the idea is similar 
to the pure metal (Ni). In other words, the solute diffusivity 
in liquid region (DL) is larger than said product M-ε(θ)2, so 
the growth of the domain around the dendrite is controlled 
via solute diffusivity in liquid. The numerical technique for 
both cases pure metal (Ni) and alloy (Fe-C) enables us to 
reduce the run time in simulation of dendritic evolution during 
solidification process.

2. Phase-field Modeling
2.1. Phase-field modeling for pure materials

The phase-field model is based on the simultaneous 
solution of energy and phase equations for pure materials. 
Phase-field modeling assumes the growth of seeds in the 
liquid phase. According to this hypothesis, there are three 
regions to be considered: the solid nucleus, the liquid phase 

and the solid/liquid interface. The state of the entire domain 
is represented by the distribution of a single variable known 
as the order parameter,ϕ, or phase-field variable. The region 
in which ϕ changes from 1 to 0 is defined as the solid/liquid 
interface. The time evolution equation of the phase-field ϕ is 
described by1:

 (1)

where M is defined as the solid/liquid interface mobility, the 
angle θ is given by the orientation of a vector perpendicular 
to the solid/liquid interface, e.g., ∇ϕ. ΔH is the latent heat and 
Tm the melting temperature. The function g’(ϕ) that multiplies 
w determines the distribution of the excess free-energy at 
the interface. h(ϕ) is a function that satisfies the condition 
h’(0) = h’(1) = 0. As in reference Moelans et al.6, we chose

 (2)

 (3)

The method most widely used to include anisotropy for a 
two-dimensional calculation is to assume that ε in Equation 
1 depends on θ, the orientation of the normal to the interface 
with respect to the x-axis:

 (4)

where δε is the anisotropy constant. The value of j controls 
the number of preferential directions of the material’s 
anisotropy, equaling 0 for the isotropic cases, 4 for anisotropy 
of 4 directions, and so on. The constant θo is the interface 
orientation with respect to the maximum anisotropy, while ε 
and w are parameters associated with the interfacial energy (σ) 
and interface thickness (λ), as proposed by Boettinger et al.7:

 (5)

 (6)

For the interface mobility, we follow references 
Ferreira et al.1 and Boettinger et al.7:

 (7)

where μ is the linear interface kinetic coefficient. The 
phase-field model particularized for a pure material, 
subjected to a nonuniform thermal field, includes an energy 
transport equation:

 (8)

In Equation 8, D is the thermal diffusivity, as previously 
indicated in Equation 1 ΔH is the latent heat, considered 
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positive for solidification, ρ is the material´s density, assumed 
to be the same both solid and liquid phase, and Cp is the 
specific heat.

2.2. Phase-field modeling for binary alloy
The phase-field equation for simulates the solidification 

process for binary alloy is described by2:

 (9)

The evolution of the solid nucleus with time (∂ϕ⁄∂t) is 
assumed to be proportional to the variation of the free-energy 
functional with respect to the order parameter, ϕ. The terms 
of the phase equation are derived from this free-energy 
functional, which must decrease during any solidification 
process, as indicated in the article by Salvino et al.4. The 
last product on the right-hand side translates the driving 
force behind the solidification process. Here, R is the gas 
constant and Vm, the molar volume. The arguments to the 
natural logarithms, and , are, respectively, the equilibrium 
concentrations of carbon in the solid and liquid region. Their 
respective ordinary concentrations in the liquid and solid 
regions are denoted, by the pairs CL and CS.

As proposed by Ode et al.2, concentrations of carbon in 
both regions is calculated with the solute transport equation, 
numbered (10),

 (10)

In this equation, D(ϕ) is the carbon diffusivity in the 
solid and liquid regions. The model used here takes into 
account solute diffusivity in the liquid and interface regions.

The model parameters ε and w for binary alloys are 
calculated in the same way as proposed by Boettinger et al.7, 
Equations 5 and 6. From Salvino et al.4, the phase-equation 
mobility for binary alloys, M, is computed as

  (11)

where the  is obtained from

 (12)

In Equations 11 and 12, L and S stand for liquid and 
solid, respectively.

3. Numerical Simulation
To simulate growth of an asymmetrical dendrite of pure 

materials and binary alloys, it is necessary to introduce a noise 
term in the right-hand side of the phase-field equations. A usual 
expression for this noise, as indicated by Ferreira et al.1, is

 (13)

where r is a random number between −1 and +1. The 
″a″ parameter is the noise amplitude. Maximum noise 
corresponds to ϕ = 0.5, at the center of the interface, whereas 
at ϕ = 0 (liquid region) and ϕ= +1 (solid region) there occurs 
no noise. That is to say, noise is generated at the interface.

Equations 1, 8, 9 and 10 were solved by an explicit 
finite-difference method, with a mesh sufficiently refined 
to describe details of the dendrites. Performing the 
computations with a numerical grid of 200×200 points 
with parameters determined in the previous section and the 
physical properties of nickel, it was not feasible to obtain a 
dendrite with developed secondary arms, due to the small 
computation domain. Dendrites with fully developed 
side branches necessitate a computational domain with 
several million points. However, computation with such 
a large computational domain is restricted not only by the 
computational efficiency, but also by memory size. In the 
present study, we develop a numerical technique in order 
to improve efficiency. The idea was originally proposed for 
simulating the dendrite growth from an undercooled pure 
melt and has been extended to solidification of binary alloy. 
In pure metal case (Ni), the thermal diffusivity, in Equation 
8, is much larger than the product M-ε (θ )2, in Equation 
1, for example about twenty eight times difference in pure 
material system. Therefore, first to occur is the effect of 
the heat transfer, then phase change during simulation of 
solidification process. A greater value of D (Equation 8, for 
pure materials) forces the thermal front to be always ahead of 
the solidification interface. Hence, there is always a thermal 
gradient ahead of the solidification front. In this study for 
solidification of pure materials, the thermal boundary layer 
is defined as a region with

 (14)

where T0 is a given initial undercooled temperature. If the 
condition T(I,J) > T0 + 1.1 at (I,J) in the square region is 
satisfied, the adaptive computational domain grows around 
the dendrite. Whenever the condition is satisfied, new 
temperature T(I,J) and phase ϕ(I,J) at the current time step 
are calculated from the explicit finite-difference method 
from the values in previous steps, while the computational 
domain grows one unit of points on the x-y directions. If 
the condition just stated is not satisfied, the computational 
domain does not grow. The new temperature T(I,J) and 
phase ϕ(I,J) are then calculated from the values in previous 
steps for a small-size domain. In the simulation of binary 
alloy (Fe-C) solidification, the idea is similar to the pure 
metal (Ni). In binary alloy case, the phase-field model 
is based on the phase and concentration equations. The 
phase equation includes the product M-ε (θ)2, and D(ϕ) is 
the carbon diffusivity in the concentration equation. The 
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solute diffusivity in liquid phase (DL) (Equation 10) is 
larger than the product M-ε (θ)2 (Equation 9), about eleven 
times is the difference between them. Hence, first to occur 
is the concentration change, then the phase change during 
simulation of solidification in binary alloy system. In other 
words, during solidification, the solutes are rejected into 
the liquid phase, which then becomes rich in solute just 
ahead of the interface. The ahead of the interface there is a 
thickness of the diffusion boundary layer in the liquid due 
the high mobility of solute in said region. As mobility solute 
is greater as compared to that front solidification, it forces 
the gradient concentration in liquid to be always ahead of 
the solidification interface. In the solidification of binary 
alloys, the diffusion boundary layer is defined as

 (15)

where C0 is a given initial concentration. If the condition is 
satisfied C(I,J) > C0 + 1×10–3, the adaptive domain grows 

around the binary alloy dendrite; otherwise, it does not grow. 
The block diagram in Figure 1 shows the flow of information 
in the numerical program for both pure materials (Figure 1a) 
and binary alloy (Figure 1b).

The calculations were performed on an Intel 2 Quad 
processor, with 1.38GB RAM. In this study, in the initial stage 
of solidification the computational domain used to calculate 
dendrite evolution is rather small, about 200 × 200 points. 
Both phase-field models presented in this article, one with 
an adaptive computation domain and one with a computation 
domain of fixed size, were constructed with the same grid 
spacing (dx = dy = 2 × 10−8m). The difference is in the number 
of nodes of the computational domain. In the first model, the 
computational domain is very small in the initial steps of the 
computation; consequently the computational efficiency is 
improved and the memory size requirement is reduced. In 
the second model with a computation domain of fixed size, in 
the initial steps of the computation the computational domain 

Figure 1. The phase-field model with adaptive computational domain. (a) pure metal and (b) binary alloy.
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is very large, thereby reducing computational efficiency and 
the memory size requirement is increased.

The phase, energy and concentration equations were 
solved in a computational domain divided into square grids 
of I × J, with a grid spacing of dx = dy not only for the 
thermal field, but also for calculation of the phase field and 
concentration. The thermal field T(I,J ), phase-field ϕ(I,J ) 
and concentration C(I,J) at each point in the grid (I,J) are 
known from the previous step, by the explicit finite-difference. 
For each point I,J in the grid, a real value ϕ(I,J), describes 
the phase state of the grid, is assigned ϕ(I,J) = 0 to indicate 
the grid in the liquid state and ϕ(I,J) = +1 for the solid state. 
The ensemble of all grid points with 0.001 < ϕ(I,J ) < 0.999 is 
taken to represents the interface region.

4. Results and Discussion
In order to test the computational efficiency of our 

numerical technique, we compared the computer run time 
for the calculation of dendritic growth in undercooled melts 
using a phase-field model with and without an adaptive 
computational domain. We analyzed the computational 
efficiency for both cases pure material (Ni) and binary 
alloy (Fe-C).

4.1. Phase-field simulation of dendritic 
solidification for pure material

The parameters and properties adopted in this study 
for pure materials (Ni) are summarized in Tables 1 and 2, 
respectively. The phase-field mobility (M) for pure metal 
is calculated by Equation 7.

To exhibit the similarities between the dendrites of 
nickel calculated in the present paper and those described 
in the literature, we introduce Figure 2. In that figure, both 
pictures display: a) the secondary arms; b) the secondary arm 
increase with distance behind the primary dendrite tip; c) the 
asymmetry of the side branch found in the secondary arms; 
and d) the secondary arms growth rigorously perpendicular 
to the primary arm.

Figure 3 shows temperature profiles and the phase-field 
variable across solid, interface and liquid regions. In this 
simulation, the solid/liquid interface advances into the liquid 
region. The transient response of phase-field equations is 
controlled by the product M-ε (θ)2, in Equation 1. This 
parameters act in the phase-field model similarly to the 
thermal diffusivity D in the thermal energy Equation 8. 
As Kim et al.8 pointed out, in the formation of a dendritic 
morphology in pure metals, it is important that the thermal 
diffusivity becomes greater than its similar term, M-ε (θ)2. 
This can be explained by analyzing Figure 3. The greater 
value of D forced the thermal front to be always ahead 
of the solidification interface. Hence, there was always a 
thermal gradient ahead of interface. In pure metal case (Ni), 
the thermal diffusivity (D), in Equation 8, is much larger 
than the product M-ε (θ)2, in Equation 1, for example about 
twenty eight times difference in pure material system. On 
the other words, first of all occur the temperature change, 
and then the liquid becomes solid region. Hence, the present 
paper is based in that approach, i.e., if the temperature 
change occurs, the adaptive computational domain grows 

Table 1. Model parameters (Ni).

Anisotropy constant, δε 0.025
Coefficient of phase-field gradient 
energy term, εo

2.01×10− 4 (J/m)1/2

Free energy factor, w 0.61×10 8 J/m3

Phase-field mobility, M 13.47m3/sec⋅J
Grid spacing, dx 2×10− 8 m
Grid spacing, dy 2×10− 8 m
Time step, Δt 1×10− 12 sec
Noise amplitude factor, a 0.025

Table 2. Material properties of Ni8.

Interface energy,σo 0.37 J/m2

Kinetic coefficient at interface, μ 2 m/s. K
Melting temperature, TM 1728 K
Latent heat, ΔH 2.35×10 9 J/m3

Thermal diffusivity, D 1.55×10 – 5 m2/s
Specific heat, CP 5.42×10 6 J/m3. K
Interface width, 2λo 8×10 – 8 m

Figure 2. (a) Present calculation and (b) dendrite found in the 
literature, Prates11.

Figure 3. Temperature and phase-field variable profiles across solid, 
interface and liquid regions.
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around the dendrite; otherwise, the computational domain 
size is kept constant.

In order to test the computational efficiency of our 
numerical technique, we compared the computer run time 
for calculation of dendritic growth in undercooled melts 
using a phase-field model with and without an adaptive 
computational domain. Figure 4 shows the dendrite growth 
obtained by the phase-field model with the adaptive 
computational domain for different solidification times 
and domain sizes.

Figures 4a-d shows the development of the adaptive 
computational domain for dendritic growth. In Figure 4a, 
the dendrite started to grow from a nucleus added at the 
center of the computational domain with 85×85 points, 
solidification time being equal to 4.47×10−9sec, insufficient 
for growth of primary and secondary arms. In Figure 4b, the 
numerical grid (205×205) is larger than that of Figure 4a 
(85×85), due to the dendrite tip advancing into supercooled 
liquid during the solidification process. In Figure 4b, one 
observes only primary arms, with no side branching, for 
a solidification time of 3.62×10−8sec. In Figure 4c, the 
time for solidification (9.35×10−8sec) is sufficient for the 
growth of secondary arms. Finally, in Figure 4d, the time 
for solidification is 1.50×10−7sec and the numerical grid 
comprises 605×605 points. Here, it is possible to observe 
well-developed secondary arms away from the dendrite tip, 
while small side branches compete with each other shortly 
behind the dendrite tip. The asymmetry in the side branches 
is evinced in Figures 4c, d. This follows from the thermal 
field distribution. Again, side branching prefers the direction 

of latent heat release. In all of Figure 4, computational 
convergence is optimized through adoption of a small 
computational domain around the dendrite.

Figure 5 shows variation of computer run time (in seconds) 
as a function of primary dendrite length (in units of domain 
size). There, the open and solid circles are for the adaptive 
computational domain and a computational domain of 
fixed size, respectively. One can see that, with the adaptive 
computational domain, the run time required to reach a 
given primary dendrite growth is about a tenth of that with 
the computational domain of fixed size. Computational 
efficiency is guaranteed by using an adaptive computational 
domain for phase field and thermal calculation, in pure metal 
system. Because the computational domain is small at the 
beginning of the calculations, convergence is optimized.

Using the phase-field model with an adaptive 
computational domain for simulation of the solidification 
process, the calculation of dendritic growth is carried 
through with a computational domain sufficiently small 
for the phase field and thermal calculations. Increasing 
the primary dendrite length, one finds that the run-time 
versus primary-dendrite-length plot will tend to exhibit 
an exponential-like behavior.

4.2. Phase-field simulation of dendritic 
solidification for binary alloy

Table 3 presents the physical properties of the binary 
alloy used in the computations that follow. The parameters 
used in the phase-field model obtained of physical properties 
of the material were derived from Equations 5, 6, and 11. 

Figure 4. Development of the adaptive computational domain for dendritic growth. The numerical grids and solidification times are: (a) 85×85 
points, 4.47×10 − 9 sec; (b) 205×205 points, 3.62×10 − 8 sec; (c) 405×405 points, 9.35×10 − 8 sec; and (d) 605×605 points, 1.50×10 − 7 sec.
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Table 4 presents these parameters. The phase-field mobility 
(M) for binary alloy (Fe-C) é calculated by Equations 
11 and 12. The boundary condition adopted for the phase-
field model (ϕ) in this work is a zero-flux condition.

The Figure 6 shows the dendritic morphology obtained 
by both the phase-field model with adaptive computational 
domain (Figure 6a) and fixed domain (Figure 6b); one 
can see excellent agreement between the two cases. 
Figure 6 depicts the simulation of a Fe-C alloy calculated 
with a regular grid. In this simulation, a dendrite is presented 
with secondary arms. The secondary arms increase with the 
distance behind the primary dendrite tip. This was observed 
in experiments on dendritic growth in undercooled melts. 
The asymmetry in the side branches of the primary arms 

observed in both Figure 6a-b is due to a noise source added 
to the phase-field equation.

In order to show the applicability of the phase-field 
model with adaptive computational domain, the influence 
of dendrite tip radius on the growth velocity is showed. 
The relationships between growth velocity and dendrite 
tip radius for a Fe-C alloy are shown in Figure 7. Data 
calculated by an analytical model, proposed by Stenanescu9, 
were plotted alongside for comparison. We can see that 
phase-field-based results lie above those obtained with 
analytical model proposed by Stefanescu.9 This may happen 
due to the evolution of the solid phase with time (Equation 
9) is assumed to be dependent of the source term. This, in 
turn, depends of both concentrations in the solid and liquid 
region and temperature. The Stefanescu’s model, on the 
other hand, takes into account tip radius and concentrations 
in the liquid region. One can see in Figure 7 that increasing 
the radius of dendrite tip influences the reduction of the 
dendritic growth velocity. The numerical results for the 
tip velocity are consistent with experimental conclusion, 
Altundas and Caginalp10, and compatible with the literature9, 

11 that tip velocity will decrease for larger radii.
Figure 8 exhibits the results of the carbon concentrations; 

we compare the results of a one-dimensional phase-field 
calculation with the predictions by Scheil’s equation and 
by the Clyne-Kurz equation. The initial temperature of 
the computational domain is 1780K. For the calculations 
of carbon concentration, we assumed an isothermal 

Table 3. Physical properties of the binary alloy analyzed.4

Property C Fe
Initial concentration, C0 6.93.×.10.−.3 mol % —
Partition coefficient, KE 0.17171 —
Slope of liquids line, ME 1772.77 K/mol —
Diffusivity in liquid phase, DL 2.0.×.10.−.8 m2/s —
Diffusivity in solid phase, DS 6.0.×.10.−.9 m2/s —
Molar volume, VM — 7.7.×.10.−.6 m3/mol
Melting temperature, TM — 1811 K
Interface energy, σ — 0.204 J/m2

Table 4. Computational parameters.

Anisotropy constant, δε 0.05
Coefficient of phase-field gradient energy 
term, ε0

1.05.×.10.−.4  
(J/m) 1/2

Free energy factor, w 6. 73.×.107 J/m3

Phase-field mobility, M 0.166 m3/s.J
Time step, Δt 1.0.×.10.−.8 s
Grid spacing, dx 2.0.×.10.−.8 m
Grid spacing, dy 2.0.×.10.−.8 m
Noise amplitude factor, a 0.025

Figure 5. Variation of computer run time as a function of primary 
dendrite length, in units of points.

Figure 6. Comparison of dendritic morphology between phase-field 
model with adaptive computational domain (a) and fixed domain (b).
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solidification process. In the calculations, no anisotropy was 
imposed. The calculated carbon profile agrees better with 
the Clyne-Kurz equation than with Scheil’s equation, when 
the solid fraction is above 0.5, as shown in Figures 8. This 
is because the Clyne-Kurz model assumed back-diffusion. 
In contrast, Scheil’s analytical model neglected diffusion 
in the solid phase altogether, but assumed complete mixing 
of the solute in the liquid phase. CS is the concentration in 
the solid at the solid/liquid interface and C0 is the initial 
concentration of solute. We can see that phase-field-based 
results lie above those obtained with Scheil’s equation; the 
little difference in the early stage of solidification is due to 
the effect of the initial transient because of small diffusivity 
in the solid. These results show that the phase-field model 
is capable of computing the same solid concentration in 
the solid/liquid interface as estimated by Clyne-Kurz’s 
equation. On the other hand, neither Scheil’s nor the Clyne-
Kurz equation is able to predict the composition profile 
in the solid. The phase-field model can simulate not only 
concentration in the solid but also a concentration profile 
in the liquid during solidification.

Plots in Figure 9 correspond to 4×10–7 sec of solidification 
time. The right-hand vertical axis gives the carbon concentration; 
the left-hand one, that of phase-field variable. When ϕ = +1, 
we are in the solid region, whereas ϕ = 0 is the liquid. The 
interface lies between ϕ = +1 and 0. Therefore, one can 
see that the solid region is poor in carbon. This is because, 
during solidification, the solutes are rejected into the liquid 
phase, which then becomes rich in solute just ahead of the 
interface. As we move farther to the right, hence away from 
the interface, concentration decreases exponentially, towards 
their initial values in the liquid. Such tendency seems to 
be in agreement with the consideration that the Gibbs free 
energy is more negative in the solid phase. Still with respect 
to Figure 9, one can observe the carbon diffuse layer to be 
larger than that of phase, due to the greater diffusivity of 
concentration equation compared to that of phase. Whenever 
the changes for carbon concentration happen in liquid phase, 
in front of solid/liquid interface, the adaptive computational 
domain will grows around the dendrite.

In method similar done for the pure material, we test 
the computational efficiency of our numerical technique for 
binary alloy (Fe-C). So, were compared the computer run 
time for calculation of dendritic growth using a phase-field 
model with and without an adaptive computational domain.

Figures 10a-d shows the dendrite growth during the 
solidification process for binary alloy for different times 
and domain sizes.

In Figure 10a, a dendrite without secondary arms 
grows from center of the small computational domain with 
85 points; solidification time is 1.33×10–5 sec. In Figure 10b, 
the numerical grid with 205 points is larger than that of 
Figure 10a, due to the dendrite advancing into supercooled 
liquid. In Figure 10b, one observes only primary arms, with 
no side branching, the solidification time is 7.01×10–5 sec. 
In Figure 10c, the time for solidification is 2.06×10–4 sec 
insufficient for we observe secondary arms well developed. 
Finally, in Figure 10d, the time for solidification is 1.50×10−3sec 
and the numerical grid is 605 points. Here, it is possible to 

observe few developed secondary arms away from the dendrite 
tip during the solidification process. The asymmetry in the 
side branches is evinced in Figures 10d. In all of Figure 10, 
computational convergence is optimized through adoption 
of a small computational domain around the dendrite.

Figure 11 shows variation of computer run time 
(in seconds) as a function of primary dendrite length (in 

Figure 7. Growth velocity versus radius of dendrite tip.

Figure 8. Comparison of carbon concentration as evaluated: 
via the phase-field model; with Scheil’s equation; and with the 
Clyne-Kurz equation.

Figure 9. Carbon concentration by region: solid (ϕ= +1), liquid 
(ϕ= 0), and interface (0 <ϕ< +1).
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units of domain size) for binary alloy (Fe-C). The run time 
required to reach a given length for primary dendrite is about 
tenth of that with the computational domain of fixed size. The 
efficiency is guaranteed via adaptive computational domain 
for phase field and concentration calculation due to the small 
computational domain at the beginning of the calculations.

5. Conclusions
In spite of the proven ability of phase-field models for 

computation of the pattern evolution in solidification, they suffer 
from low computational efficiency. In the computation of a 
dendrite with side branches, the computational space should 
be discretized into a mesh with about two million cells. Such 
a high number leads to a considerable increase of the run time. 
In the present study, a phase-field model is introduced with an 
adaptive computational domain for efficient computational 
simulation of the dendritic growth in a system for both pure 
material (Ni) and binary alloy (Fe-C). The method, which is 
based on the difference in thermal diffusivity for pure material 
and solute diffusivity in binary alloy, enables us to reduce by 
about an order of magnitude the run time for simulation of 
the solidification via the phase-field model.

The phase and thermal fields were calculated adaptively 
only in the regions that satisfy the condition T(I,J) > T0 + 1.1, 
for simulation of solidification in pure material. The phase 
and concentration fields were calculated in the regions that 
satisfy the condition C(I, J) > C0 + 1×10 –3, for solidification 
of binary alloy. The computation showed that the dendrite 
with developed secondary and tertiary arms can be obtained 
on a personal computer with a much reduced run time. The 
calculated dendritic morphology displayed a microstructure 
quite similar to results found in literature and experiments.

Figure 10. Development of the adaptive computational domain for dendritic growth for binary alloy (Fe-C). The numerical grids and 
solidification times are: (a) 85 points, 1.33×10–5 sec; (b) 205 points, 7.01×10–5 sec; (c) 400 points, 2.06×10−4 sec; and (d) 605 points, 
1.50×10 − 3 sec.

Figure 11. Variation of computer run time as a function of primary 
dendrite length, in units of points, for binary alloy (Fe-C).
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