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A Semi-Analytical Model for Deflection Analysis of Laminated Plates
with the Newton-Kantorovich-Quadrature Method
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A semi-analytical approach for analysis of laminated plates with general boundary conditions
under a general distribution of loads is developed. The non-linear equations are solved by the Newton-
Kantorovich-Quadrature (NKQ) method which is a combination of well-known Newton-Kantorovich
method and the Quadrature method. This method attempts to solve a sequence of linear integral
equations. The convergence of the proposed method is compared with other semi-analytical methods.
The validation of the method is explored through various numerical examples and the results compared
with finite element method (FEM) and experimental tests. Good agreement between the NKQ model,
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FEM and experimental results are shown to validate the model.
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1. Introduction

In the last half century, the use of composite materials
has grown rapidly. These materials are ideal for structural
applications that require high strength and low weight. They
have good fatigue characteristics and are resistant to corrosion'.

Understanding the mechanical behaviour of composite
plates is essential for efficient and reliable design and for
the safe use of structural elements. The complex behaviour
of laminated plate structures normally need a non-linear
model to describe them. Moreover, anisotropic and coupled
material behaviour add more non-linearity to analysis. In
general, there is no closed-form exact solution for the non-
linear problem of composite plates for large deformations
with arbitrary boundary conditions. The non-linear analysis
of laminated plates has been the subject of many research
projects. Also, various semi-analytical and numerical
methods for the description and response of laminated
plates have been developed. A comprehensive summary
of the solutions for the geometrically non-linear analysis
of isotropic and composite laminated plates was recently
given by Khandan et al.. The common analytical non-
linear theories for laminated composites such as classical
laminated plate theory®® and first shear deformation plate
theory®!" generally use the Rayleigh-Ritz method'? or the
Galerkin method"*'5. The accuracy of these analytical
models depends on the trial functions which they choose
and they have to satisfy at least the kinematic boundary
conditions. For certain boundary conditions and out-of-
plane loadings these methods are so complicated and time
consuming'®. There are also some numerical methods to
analyse laminated plates for the large deflection including
the finite strip method'”'®; the differential quadrature
technique'’; the method of lines®; Finite Element Method
(FEM)?"32, Different meshless methods are also presented
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to solve the equations for laminated composite plates*. The
development of element-free or meshless methods and their
applications in the analysis of composite structures have
been reviewed by Liew et al.** recently.

Due to numerous computations and the number of
unknown variables, numerical methods are needed to
solve problem of laminated plates. However, the analytical
and semi-analytical non-linear methods are an essential
tool that provides perception to the physical non-linear
behaviour of the composite plate structure. Furthermore,
these methods normally present fast and reliable solutions
during the preliminary design phase. They also provide a
means of validating the numerical methods and enable the
development of new computational models. Therefore,
the development of the semi-analytical methods has been
growing rapidly'S.

The aim of this work is to achieve a semi-analytical
approach for the non-linear model of laminated plates with
arbitrary boundary conditions for general out-of-plane
loadings. A Newton-Kantorovich-Quadrature (NKQ)
method was proposed recently, by Saberi-Najafi and
Heidari®, for solving nonlinear integral equations in the
Urysohn form. This method is expanded and used in this
paper to present a semi-analytical model for laminated
composite plates. Different extended Kantorovich methods
(EKM) have been used by researchers to analyse the
free-edge strength of composite laminates®, the bending
of thick laminated plates®’, buckling of symmetrically
laminated composite plates®® and laminated rectangular
plates under general out-of-plane loading'®. The multi-term
extended Kantorovich method assumes a solution of the
two-dimensional problem in the form of a sum of products
of functions in one direction and functions in the other
direction. As a result, the problem is reduced to a set of non-
linear ordinary differential equations in the second direction.
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The solution of the resulting one-dimensional problem is
then used as the assumed functions and the problem is
solved again for the first direction. These iterations are
repeated until convergence is completed. Unlike most of the
other semi-analytical methods the accuracy of the solution
is independent of the initial chosen functions. This initial
function, even if it does not satisfy any of the boundary
conditions*“°, does not affect the accuracy of the solution.
The EKM was applied by Soong*' to the large deflection
analysis of thin rectangular isotropic plates subjected to
uniform loading. Some solutions***! used only one-term
for expansion yielding of isotropic plates. However, it is
showed that one term formulation is not enough to predict
the behaviour of anisotropic plates*. In this study, the NKQ
is used to overcome these shortcomings and the model for
out-of-plane loading as well. The accuracy and convergence
of the method has been investigated through a comparison
with other semi-analytical solutions and with finite element
analysis (FEA) using a number of numerical examples in
order to validate the model'°.

2. Governing Equations

2.1. General composite equations

The state of stress at a point in a general continuum can
be represented by nine stress components G, (ij=1,2,3)
acting on the sides of an elemental cube with sides parallel
to the axes of a reference coordinate system (Figure 1).

In the most general case the stress and strain components
are related by the generalised Hook’s law as follows':

Glj = Cljkle ki

4,k 1=123) ey

where Cijkl is the stiffness components*. Thus in general, it
would require 81 elastic constants to characterize a material
fully. However, by considering the symmetry of the stress
and strain tensors and the energy relations, it is proven that
the stiffness matrices are symmetric. Thus the state of stress
(strain) at a point can be described by six components of
stress (strain), and the stress-strain equations are expressed
in terms of 21 independent stiffness constants*.

1

Figure 1. State of stress at a point in a general continuum*.
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2.1.1. In-plane stress

The classical laminate theory is used to analyze the
mechanical behaviour of the composite laminate. It is
assumed that plane stress components are taken as zero.
The in-plane stress components are related to the strain
components as:

O xx O O O || €
Oy | = %2 922 926 €y (2)
Ty |, (96 Qa6 Dos || Vs

where k is the lamina number, Q_ are the off-axis
stiffness components, which can be explained in terms of
principal stiffness components, Q,, which are defined in
Khandan et al." and Daniel and Ishai**.

Stress resultants, or forces per unit length of the cross
section, are obtained as:

NXX y GXX GXX

_2 _aym
N, _j,% G, [dz=230 m1y| 0, (3)
ny Txy Txy ©

Here m is the number of distinct laminae, n, is the
number of plies in the kth lamina. Here, lamina is meant
to be a group of plies with the same orientation angle.
Substituting the stress—strain relation given by Equation 2
into Equation 31:

N A A A || €

XX XX

Ny |=| Az Ay Aog || €y 4)

N, Ajg Ay Ags || €

Xy Xy

where A, components of extensional stiffness matrix, are
given by:

Ay =257 mito (Oy), )

Principal stress components can be obtained using the
following transformation®:

o cos? 6, sin’ Ch 2c0s0, sin6, .

- Y 2 s
o, [=|  sin“6, cos“@;  —2cos8;sinb | o, |(6)
T2 —cos0; sinB; cosB; sin0, cos? kasin2 0, " Ty

2.1.2. Out-of-plane stress

In the classical laminate theory, it is assumed that
straight lines normal to the middle surface remain straight
and normal to that surface after deformation. These
assumptions are not valid in the case of thicker laminates
and laminates with low stiffness central plies undergoing
significant transverse shear deformations. In the following,
referred to as first-order shear deformation laminate plate
theory, the assumption of normality of straight lines is
removed. On the other hand straight lines normal to the
middle surface remain straight but not normal to that surface
after deformation'?. Q. can be found in Khandan et al." and
Daniel and Ishai**:
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where the components of this section stiffness matrix are
given by:

B.

At

(4, D,.j)=jf/,§ 0y (12,2%)d= (i,j=1,23)
2

B (C))
Eij:j,%/Q&"Bkikjdz (i,j=12and o,p=i+4,j+4)
/2

The out-of-plane boundary conditions include three
cases: simply supported (S), clamped (C), and free (F)
edges. The four possible in-plane restraints along the plate
edges are shown in Figure 2, and they are denoted by a
subscript indexS.

2.2. Basic NKQ equations

The nonlinear integral equation in the Urysohn form
is defined as®:

y(X) =fx) + [, K(xtyt)dt  a<x<b 10)
If Q = (a, x), it is named a nonlinear Volterra integral
equation and if Q = (g, b), it is named the nonlinear Fredholm

integral equation. To approximate the right-hand integral

—_
[\

Figure 2. Boundary conditions'®.
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in Equation 10, the usual quadrature methods similar to
the ones used to approximate the linear integral equations
that lead to the following nonlinear systems for Fredholm
and Volterra equations are used, respectively. For further
information on quadrature methods in this respect, see
references 35, 43-49.

y(x,-):f(xi)Jr iOWjK(xi’xj’y(xj)) i=0,1,2,...,n
=

11

(x0)=1(x0)

y(xi):f(xi)+ iowin(xi,xj,y(xj)) i=0,1,2,....,n
=

(12)

where w,s and ws are weights of the integration formula.

In the Newton-Kantorovich method, an initial solution
for y(x) is considered. The following iteration method is
used to solve the following sequence of linear integral
equations instead of a nonlinear integral equation. For
further information on the Newton-Kantorovich method, see
Saberi-Nadjafi and Heidari*, Appell et al.** and Polyanin
and Manzhirov®'.

i (2) =1 (%) + 0y (x)
01 (x) =4 (x)+]q K;/ (x’tv)/k—l (t))q)k—l (1)dt
g1 (x)=f(x)-y 1 (x)+]g K (x’ 5LV (t))dt

13)

where K'y (x, t,y) :% K (x, t,y) .

In NKQ method which is used in this paper,
Equations 11-13 are combined by Saberi-Najafi and
Heidari® to solve the nonlinear integral equations.

3. Application of NKQ

As it is mentioned the general form of the nonlinear
Volterra integral equations of the Urysohn form is:

y(x) =fx) + [ K(xty)dt  a<x<b (14)

By considering the Equations 11-13 and by integrating
,.,(x) with y (x) —y,_,(x):
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i (x0)=/(x0)

y(xl-):f(xi)+ iOW[jK(x[’xj’yk—l (xj))+ (15)
i

i wl-/.K(xl-,xj,ykfl (x/.))[yk (xj)—y,Fl (xjﬂ i=1,2,..,n

j—0

Consider:
f(xg) i=0
(F(kfl)). 1 = f(xl.)+ i Win(xi’xj’yk—l (xj))fi w,-jK'y (16)
i+ j-0 Jj-0

(s (3 s (1) 1 =120m

W;‘jKjv (xi,xj,y,ﬁl (xj)) i=1,2,...n
(A(/H)) =1 j=01i 17

i+l j+l .
0 otherwise

o)., =y, ) i=0,12,..n (18)

This equation can be solved by considering an initial
solution y (x) and constructing the Y@, A®, F and also
using the following repetition sequence (for further details
see Saberi-Nadjafi and Heidari*):

(I - A“D)y® = koD k=121 (19)

On the other hand, by considering an initial solution
Y, (Y),would be y (x)) and by using Equation 16 and 17
F® A© are obtained respectively. Then by solving the
system (I — A®)Y®» = FO_ Y g obtained. By repeating
this procedure and next using Equation 19, the values of
YO, Y@ YO Y™ are calculated for m N m is a constant
value which can be increased for higher n. Depending on
n an approximate solution for Equation 10 is presented.

g , 1w, Y
ox 2\ ox
Ny Ay Ay A v 1(aw ) By Byy By
Ny 1 =| A1z Ayy Agg E)T?Jri(aiyo) +| Biz By By
A Ay A B, By B
Ny, 16 <26 “66 duy vy _ dwy Iy 16 226 266
dy oOx ox dy
[ 2
dug 1wy
ox 2\ ox
M, By By, Bys 2 Dyy Dyy Dyg
vy . 1 ow,
M, 0 =| By By Byg §+5 g +| Dy Dy Dag
B, B,; B D,. D,. D,
M, 16 D26 Des duy vy dwy Iy 16 D6 Des
dy dx oOx 9y
aw,
— 4
{Q}’}zK [A44 A45:| dy &
O, L 4as Ass | |owg

7+¢x

ox
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Noticeably, by increasing m, the solution tends to be more
accurate with respect to n. However it is shown that to achieve

(20)

ey

(22)

(23)

(24)

good results it is not necessary to increase m significantly.
The general basic equations for laminated composite
plate are’:
oN 2 2
My | Ny +1, Iy +1 90:
x ar? o’
ON,, ON. 2 o’
- =+ =2 +10ﬂ+ 1 % =0
x oy ar? or?
20, 90 9w,
[Txx'f'aiyy *N(HO,VO,WO)*q+1072()=O
(M M), g 0., Puy _,
ox Oy T Tl
_ aMJJr% +O,+1 @H 9%y -0
ox  dy YRR T
where:

d ow, ow,
N(uo,vo,wo):g( O4N 0)
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And Equations 7-9 are simplified to’:
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ox

(25)

(20)

27

(28)
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where where 0y (i,j=1,2,..6) are the transformed plane-stress

stiffness coefficients.

( A;.B;.D; ) // (1’ ., 22) dz ij=1,2,..6 (30) By adopting the variation principle of virtual work and
applying the NKQ the Equations 31-35 are derived:
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2
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i 008 sz"[ o ot Oy
where the secondary variables of the formulation are: research. In the first example, a four layer glass/epoxy
laminate [0°, 90°] with ply properties™ is studied:
N,=Nn +N n
36) E, =43.5 Gpa, E,=E, = 11.5 Gpa, v12=v13=‘27,
Nx = Nt\’nx + vanv (39)
v,=4 G,=G,=345Gpa G, =4.12Gpa
M, =Mn +Mn, The plate is a square with 0.5 m length and 0.01 m
(37)  thickness. A trigonometric function is chosen for initial
M=Mn +Mn guess (,(x) = sin (wx/D)). It is shown in Figure 3 that it is
‘ o converged after five iterations. Aghdam and Falahatgar®’
used an Extended Kantorovich method EKM for analysing
awo awy. . . . . .
=[O0, +N,, P v, | the thick composite plate. By choosing a trigonometric
4 (38) function as an initial guess, the model converges after
(Q aWo Iy ) . 4 iterations.
y ox ooy ) In Table 1 the number of iterations, which are needed for

Equations 31-35 can be estimated by considering
them as Urysohn form and an initial solution y (x) and
consequently the Y@, A® F© and also repeating the
sequences for Equation 19.

4. Verification Study

In order to verify the NKQ method a number of
numerical examples are solved and compared with previous

convergence, for three different initial functions are shown.
As it is mentioned earlier the initial guess does not have to
satisfy the boundary conditions, so any initial function can
be selected. Furthermore, as it is shown in Table 1 that the
NKQ method is relatively quick and does not significantly
depend on the initial value. The main advantage of this
method, compared to EKM, is that it can be used for more
complicated cases such as out-of-plane loading and different
boundary conditions.
In the next study the material properties are:
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E =215Gpa E,=E,=23.6Gpa, v,=v,=.17,

12

V3 =

28 G,=G,=54Gpa G, =2.1Gpa

The plate is a square and each length is 0.25 m, the
thickness is 0.006 m and the lay ups are [0°, 90°, 0°] . In
Table 2 the relative error between the NKQ method and
FEM for different numbers of iterations are shown for a
plate clamped on one side (C) and free (F) on the other three

1.0

0.9

Plates with the Newton-Kantorovich-Quadrature Method

sides (CFFF). This example was then repeated for SSSS
and CCCC boundary conditions and the results are shown
in Tables 3, 4 respectively.

In Table 5, the dimensionless deflection at the centre
of plate is compared between FEM, multi-term extended
Kantorovich method (MTEKM) and NKQ method under
different levels of load (patch out-of-plane load)'®. As shown,
the NKQ results generally show a reasonable agreement
with FEM. Semi-analytical models (MTEKM and NKQ)

Inltlal guess

1% iteration
""" 2" jteration
mmem 3t jteration
—=—=—"4" jteration

== 5" jteration

—~
z e
= e
» o
<
=
=<
z
>
T T
0.3 0.4

x/L

Figure 3. Convergence of NKQ method.

Table 1. Number of iteration for convergence of NKQ and EKM.

Initial Number of iteration in order Number of iteration in order to
guess to converge for NKQ converge for EKM”!
Trigonometric function
. 5 4
Vo) = sin(x)
Polynomial functl;)n 4 NA
Vo) =T+x+x
Exponential function 4 NA
V) = e(x)
Table 2. Relative error for CFFF boundary condition.
Number of iterations 1 2 3 4 5 6 7 8 9 10
Relative error (%) for u 29.4 8.3 34 1.9 1.1 0.6 0.3 0.1 0.0 0.0
Relative error (%) for v 34.5 9.2 5.1 2.1 1.2 0.8 0.3 0.1 0.0 0.0
Relative error (%) for w 53.4 11.3 5.4 2.1 1.2 0.8 0.4 0.2 0.0 0.0
Table 3. Relative error for SSSS boundary condition.
Number of iterations 1 2 3 4 5 6 7 8 9 10
Relative error (%) for u 25.4 9.1 39 1.9 1.2 0.7 0.4 0.1 0.0 0.0
Relative error (%) for v 47.2 11.0 5.6 2.5 1.5 1.0 0.5 0.2 0.1 0.0
Relative error (%) for w 76.6 21.2 7.0 2.9 1.5 0.9 0.5 0.2 0.1 0.1
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Table 4. Relative error for CCCC boundary condition.
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Number of iterations 1 2 4 5 6 7 8 9 10
Relative error (%) for u 92.2 30.4 14.1 8.3 5.3 3.2 1.8 1.0 0.4 0.1
Relative error (%) for v 63.8 19.2 9.2 5.1 3.7 1.9 0.9 0.4 0.1 0.0
Relative error (%) for w 77.1 24.5 11.1 6.6 4.9 22 1.3 0.7 0.3 0.1
Table 5. Dimensionless W/h for CFCC square laminated plate under different loads.
Q MTEKM (W)[16] NKQ (W) ABAQUS 9% MTEKM Error[16] %NKQ Error
2488 746 741 763 2.23 2.88
4975 1.092 1.090 1.115 2.05 2.24
7463 1.328 1.325 1.335 2.02 1.50
9950 1.512 1.559 1.541 1.81 1.16
12438 1.667 1.667 1.695 1.66 1.66
14925 1.800 1.802 1.827 1.54 1.36
17413 1.919 1.913 1.947 1.43 1.74
19900 2.027 2.025 2.053 1.33 1.36
36.5 The results are shown for an experiment, FEM and NKQ
method in Figure 4. Carbon fibre is used for all laminated
36.0 p experimental tests and the size of plate is 500*500 (mm).
355 / The experimental test results which are shown in Figure 4
s are the average results of six identical plates under the
g 350 7 constant load.
E &
ug 34.5 .
A / 5. Conclusion
340 / The constitutive equations of the laminated composite
33.5 > plates are non-linear. The semi-analytical non-linear
1 methods are an essential tool that provides perception
33.0 0 100 200 300 400 500 600 to the physical non-linear behavigur of the_compos.ite
. plate structure, present fast and reliable solutions during
Plate width the preliminary design phase and also provide a means
o Experiments —— FEM - NKQ of validations the numerical methods and enable the

Figure 4. Deformation at free edge of anisotropic laminated plate.

illustrate less than 3% error. The structure is a square plate
with CFCC boundary conditions. The angle-ply laminated
plate has four symmetric layers [45, —45].

In the next example a square laminated plate with a
length of 0.5 m under uniform loading is considered. The
plate is clamped at one side and the deformation at the
other edge is measured. Because of the different lay-ups
(anisotropic) and out-of-plane loading there is an induced
twist at the free edge of the plate. The aim of this example is
to find out if the NKQ model can estimate this induced twist.
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