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A semi-analytical approach for analysis of laminated plates with general boundary conditions 
under a general distribution of loads is developed. The non-linear equations are solved by the Newton-
Kantorovich-Quadrature (NKQ) method which is a combination of well-known Newton-Kantorovich 
method and the Quadrature method. This method attempts to solve a sequence of linear integral 
equations. The convergence of the proposed method is compared with other semi-analytical methods. 
The validation of the method is explored through various numerical examples and the results compared 
with finite element method (FEM) and experimental tests. Good agreement between the NKQ model, 
FEM and experimental results are shown to validate the model.
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1. Introduction
In the last half century, the use of composite materials 

has grown rapidly. These materials are ideal for structural 
applications that require high strength and low weight. They 
have good fatigue characteristics and are resistant to corrosion1.

Understanding the mechanical behaviour of composite 
plates is essential for efficient and reliable design and for 
the safe use of structural elements. The complex behaviour 
of laminated plate structures normally need a non-linear 
model to describe them. Moreover, anisotropic and coupled 
material behaviour add more non-linearity to analysis. In 
general, there is no closed-form exact solution for the non-
linear problem of composite plates for large deformations 
with arbitrary boundary conditions. The non-linear analysis 
of laminated plates has been the subject of many research 
projects. Also, various semi-analytical and numerical 
methods for the description and response of laminated 
plates have been developed. A comprehensive summary 
of the solutions for the geometrically non-linear analysis 
of isotropic and composite laminated plates was recently 
given by Khandan et al.2. The common analytical non-
linear theories for laminated composites such as classical 
laminated plate theory3-9 and first shear deformation plate 
theory9-11 generally use the Rayleigh-Ritz method12 or the 
Galerkin method13-15. The accuracy of these analytical 
models depends on the trial functions which they choose 
and they have to satisfy at least the kinematic boundary 
conditions. For certain boundary conditions and out-of-
plane loadings these methods are so complicated and time 
consuming16. There are also some numerical methods to 
analyse laminated plates for the large deflection including 
the finite strip method17,18; the differential quadrature 
technique19; the method of lines20; Finite Element Method 
(FEM)21-32. Different meshless methods are also presented 

to solve the equations for laminated composite plates33. The 
development of element-free or meshless methods and their 
applications in the analysis of composite structures have 
been reviewed by Liew et al.34 recently.

Due to numerous computations and the number of 
unknown variables, numerical methods are needed to 
solve problem of laminated plates. However, the analytical 
and semi-analytical non-linear methods are an essential 
tool that provides perception to the physical non-linear 
behaviour of the composite plate structure. Furthermore, 
these methods normally present fast and reliable solutions 
during the preliminary design phase. They also provide a 
means of validating the numerical methods and enable the 
development of new computational models. Therefore, 
the development of the semi-analytical methods has been 
growing rapidly16.

The aim of this work is to achieve a semi-analytical 
approach for the non-linear model of laminated plates with 
arbitrary boundary conditions for general out-of-plane 
loadings. A Newton-Kantorovich-Quadrature (NKQ) 
method was proposed recently, by Saberi-Najafi and 
Heidari35, for solving nonlinear integral equations in the 
Urysohn form. This method is expanded and used in this 
paper to present a semi-analytical model for laminated 
composite plates. Different extended Kantorovich methods 
(EKM) have been used by researchers to analyse the 
free-edge strength of composite laminates36, the bending 
of thick laminated plates37, buckling of symmetrically 
laminated composite plates38 and laminated rectangular 
plates under general out-of-plane loading16. The multi-term 
extended Kantorovich method assumes a solution of the 
two-dimensional problem in the form of a sum of products 
of functions in one direction and functions in the other 
direction. As a result, the problem is reduced to a set of non-
linear ordinary differential equations in the second direction. 
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The solution of the resulting one-dimensional problem is 
then used as the assumed functions and the problem is 
solved again for the first direction. These iterations are 
repeated until convergence is completed. Unlike most of the 
other semi-analytical methods the accuracy of the solution 
is independent of the initial chosen functions. This initial 
function, even if it does not satisfy any of the boundary 
conditions39,40, does not affect the accuracy of the solution. 
The EKM was applied by Soong41 to the large deflection 
analysis of thin rectangular isotropic plates subjected to 
uniform loading. Some solutions40,41 used only one-term 
for expansion yielding of isotropic plates. However, it is 
showed that one term formulation is not enough to predict 
the behaviour of anisotropic plates40. In this study, the NKQ 
is used to overcome these shortcomings and the model for 
out-of-plane loading as well. The accuracy and convergence 
of the method has been investigated through a comparison 
with other semi-analytical solutions and with finite element 
analysis (FEA) using a number of numerical examples in 
order to validate the model16.

2. Governing Equations

2.1. General composite equations

The state of stress at a point in a general continuum can 
be represented by nine stress components σ

ij 
(i,j = 1, 2, 3) 

acting on the sides of an elemental cube with sides parallel 
to the axes of a reference coordinate system (Figure 1).

In the most general case the stress and strain components 
are related by the generalised Hook’s law as follows1:

σ
ij
 = C

ijkl
∈

kl
    (i, j, k, l = 1,2,3) (1)

where C
ijkl

 is the stiffness components42. Thus in general, it 
would require 81 elastic constants to characterize a material 
fully. However, by considering the symmetry of the stress 
and strain tensors and the energy relations, it is proven that 
the stiffness matrices are symmetric. Thus the state of stress 
(strain) at a point can be described by six components of 
stress (strain), and the stress-strain equations are expressed 
in terms of 21 independent stiffness constants42.

2.1.1. In-plane stress

The classical laminate theory is used to analyze the 
mechanical behaviour of the composite laminate. It is 
assumed that plane stress components are taken as zero. 
The in-plane stress components are related to the strain 
components as:

    σ ∈
    
σ = ∈    

    τ γ       

11 12 16

12 22 26

16 26 66

xx xx

yy yy

xy xyk

Q Q Q
Q Q Q
Q Q Q

 

(2)

where k is the lamina number, Q 
ij
 are the off-axis 

stiffness components, which can be explained in terms of 
principal stiffness components, Q

ij
, which are defined in 

Khandan et al.1 and Daniel and Ishai42.
Stress resultants, or forces per unit length of the cross 

section, are obtained as:

2
01– 2

2
xx xx xxh m
yy yy k yykh

xy xy xy k

N
N dz n t

N
=

     σ σ
     

= σ = σ     
     

τ τ          

∑∫

 

(3)

Here m is the number of distinct laminae, n
k
 is the 

number of plies in the kth lamina. Here, lamina is meant 
to be a group of plies with the same orientation angle. 
Substituting the stress–strain relation given by Equation 2 
into Equation 3[1]:

11 12 16

12 22 26

16 26 66

xx xx

yy yy

xy xy
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N A A A

A A AN

   ∈     = ∈         ∈         

(4)

where A
ij
, components of extensional stiffness matrix, are 

given by:

( )012 m
ij k ijk k

A n t Q== ∑
 

(5)

Principal stress components can be obtained using the 
following transformation29:

2 2
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2 2
22

2 212

cos sin 2cos sin

sin cos – 2cos sin

– cos sin cos sin cos – sin

k k k k xx

k k k k yy

xyk k k k k k k

   θ θ θ θ σσ        σ = θ θ θ θ σ       τ τ θ θ θ θ θ θ     
 
(6)

2.1.2. Dut-of-plane stress

In the classical laminate theory, it is assumed that 
straight lines normal to the middle surface remain straight 
and normal to that surface after deformation. These 
assumptions are not valid in the case of thicker laminates 
and laminates with low stiffness central plies undergoing 
significant transverse shear deformations. In the following, 
referred to as first-order shear deformation laminate plate 
theory, the assumption of normality of straight lines is 
removed. Dn the other hand straight lines normal to the 
middle surface remain straight but not normal to that surface 
after deformation1,9. Q

ij
 can be found in Khandan et al.1 and 

Daniel and Ishai42:Figure 1. State of stress at a point in a general continuum42.
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(8)

where the components of this section stiffness matrix are 
given by:

( ) ( ) ( )

( )

22
– 2

2
– 2

, , 1, , , 1,2,3

, 1,2 , 4, 4

h m
ij ij ij ijh

h m
ij i jh

A B D Q z z dz i j

E Q k k dz i j and i jαβ

= =

= = α β = + +

∫

∫
 

(9)

The out-of-plane boundary conditions include three 
cases: simply supported (S), clamped (C), and free (F) 
edges. The four possible in-plane restraints along the plate 
edges are shown in Figure 2, and they are denoted by a 
subscript index16.

2.2. Basic NKQ equations

The nonlinear integral equation in the Urysohn form 
is defined as35:

y(x) = f(x) + ∫Ω K(x,t,y(t))dt      a ≤ x ≤ b (10)

If Ω = (a, x), it is named a nonlinear Volterra integral 
equation and if Ω = (a, b), it is named the nonlinear Fredholm 
integral equation. To approximate the right-hand integral 

in Equation 10, the usual quadrature methods similar to 
the ones used to approximate the linear integral equations 
that lead to the following nonlinear systems for Fredholm 
and Volterra equations are used, respectively. For further 
information on quadrature methods in this respect, see 
references 35, 43-49.

( ) ( ) ( )( )
–0
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n

i i j i j j
j

y x f x w K x x y x i n= + =∑
 

(11)
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i
i i ij i j j

j

y x f x

y x f x w K x x y x i n

 =



= + =


∑
 

(12)

where w
ij
s and w

j
s are weights of the integration formula.

In the Newton-Kantorovich method, an initial solution 
for y(x) is considered. The following iteration method is 
used to solve the following sequence of linear integral 
equations instead of a nonlinear integral equation. For 
further information on the Newton-Kantorovich method, see 
Saberi-Nadjafi and Heidari35, Appell et al.50 and Polyanin 
and Manzhirov51.
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x f x y x K x t y t dt
Ω

Ω

 = + φ
φ = ε + ∫ φ


ε = + ∫  

(13)

where ( ) ( )' ', , , ,yK x t y K x t y
y

∂=
∂

.

In NKQ method which is used in this paper, 
Equations 11-13 are combined by Saberi-Najafi and 
Heidari35 to solve the nonlinear integral equations.

3. Application of NKQ

As it is mentioned the general form of the nonlinear 
Volterra integral equations of the Urysohn form is:

y(x) = f(x) + ∫
a

x

 K(x,t,y(t))dt      a ≤ x ≤ b (14)

By considering the Equations 11-13 and by integrating 
φ

k-1
(x) with y

k
(x) – y

k–1
(x):

Figure 2. Boundary conditions16.
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(Y(k))
i+1

 = y
k
 (x

i
)                i = 0,1,2,...,n (18)

This equation can be solved by considering an initial 
solution y

0
(x) and constructing the Y(0), A(0), F(0) and also 

using the following repetition sequence (for further details 
see Saberi-Nadjafi and Heidari35):

(I – A(k–1))Y(k) = F(k–1)                 k = 1,2,...,n (19)

Dn the other hand, by considering an initial solution 
y

0
(x), (Y(0))

i
would be y

0
(x

i
) and by using Equation 16 and 17 

F(0), A(0) are obtained respectively. Then by solving the 
system (I – A(0))Y(1) = F(0), Y(1) is obtained. By repeating 
this procedure and next using Equation 19, the values of 
Y(1), Y(2), Y(3), ...Y(m) are calculated for m  N  m is a constant 
value which can be increased for higher n. Depending on 
n an approximate solution for Equation 10 is presented. 

Noticeably, by increasing m, the solution tends to be more 
accurate with respect to n. However it is shown that to achieve 
good results it is not necessary to increase m significantly.

The general basic equations for laminated composite 
plate are9:
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where:
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And Equations 7-9 are simplified to9:
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where

( ) ( )22
– 2

, , 1, , , 1,2,...,6
h

ij ij ij ijhA B D Q z z dz i j= ∫ =
 

(30)

where ( ), 1,2,...6ijQ i j = are the transformed plane-stress 
stiffness coefficients.

By adopting the variation principle of virtual work and 
applying the NKQ the Equations 31-35 are derived:
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research. In the first example, a four layer glass/epoxy 
laminate [0°, 90°]

s
 with ply properties52 is studied:

E
1
 = 43.5 Gpa,   E

2
 = E

3
 = 11.5 Gpa,   v

12
 = v

13
 = .27,

v
23

 = .4     G
12

 = G
13

 = 3.45 Gpa     G
23

 = 4.12 Gpa 
(39)

The plate is a square with 0.5 m length and 0.01 m 
thickness. A trigonometric function is chosen for initial 
guess (y

0
(x) = sin (πx/l)). It is shown in Figure 3 that it is 

converged after five iterations. Aghdam and Falahatgar37 
used an Extended Kantorovich method EKM for analysing 
the thick composite plate. By choosing a trigonometric 
function as an initial guess, the model converges after 
4 iterations.

In Table 1 the number of iterations, which are needed for 
convergence, for three different initial functions are shown. 
As it is mentioned earlier the initial guess does not have to 
satisfy the boundary conditions, so any initial function can 
be selected. Furthermore, as it is shown in Table 1 that the 
NKQ method is relatively quick and does not significantly 
depend on the initial value. The main advantage of this 
method, compared to EKM, is that it can be used for more 
complicated cases such as out-of-plane loading and different 
boundary conditions.

In the next study the material properties are:

where the secondary variables of the formulation are:

N
n
 ≡ N

xx
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xy
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(38)

Equations 31-35 can be estimated by considering 
them as Urysohn form and an initial solution y

0
(x) and 

consequently the Y(0), A(0), F(0) and also repeating the 
sequences for Equation 19.

4. Verification Study
In order to verify the NKQ method a number of 

numerical examples are solved and compared with previous 
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Figure 3. Convergence of NKQ method.

Table 1. Number of iteration for convergence of NKQ and EKM.

Initial  
guess

Number of iteration in order  
to converge for NKQ

Number of iteration in order to  
converge for EKM[37]

Trigonometric function
y

0
(x) = sin(x) 

5 4

Polynomial function
y

0
(x) = 1 + x + x2 4 NA

Exponential function
y

0
(x) = e(x) 

4 NA

Table 2. Relative error for CFFF boundary condition.

Number of iterations 1 2 3 4 5 6 7 8 9 10

Relative error (%) for u 29.4 8.3 3.4 1.9 1.1 0.6 0.3 0.1 0.0 0.0

Relative error (%) for v 34.5 9.2 5.1 2.1 1.2 0.8 0.3 0.1 0.0 0.0

Relative error (%) for w 53.4 11.3 5.4 2.1 1.2 0.8 0.4 0.2 0.0 0.0

Table 3. Relative error for SSSS boundary condition.

Number of iterations 1 2 3 4 5 6 7 8 9 10

Relative error (%) for u 25.4 9.1 3.9 1.9 1.2 0.7 0.4 0.1 0.0 0.0

Relative error (%) for v 47.2 11.0 5.6 2.5 1.5 1.0 0.5 0.2 0.1 0.0

Relative error (%) for w 76.6 21.2 7.0 2.9 1.5 0.9 0.5 0.2 0.1 0.1

E
1
 = 215Gpa    E

2
 = E

3
 = 23.6Gpa,    v

12
 = v

13
 = .17,

v
23

 = .28     G
12

 = G
13

 = 5.4Gpa    G
23

 = 2.1Gpa

The plate is a square and each length is 0.25 m, the 
thickness is 0.006 m and the lay ups are [0°, 90°, 0°]

s
 . In 

Table 2 the relative error between the NKQ method and 
FEM for different numbers of iterations are shown for a 
plate clamped on one side (C) and free (F) on the other three 

sides (CFFF). This example was then repeated for SSSS 
and CCCC boundary conditions and the results are shown 
in Tables 3, 4 respectively.

In Table 5, the dimensionless deflection at the centre 
of plate is compared between FEM, multi-term extended 
Kantorovich method (MTEKM) and NKQ method under 
different levels of load (patch out-of-plane load)16. As shown, 
the NKQ results generally show a reasonable agreement 
with FEM. Semi-analytical models (MTEKM and NKQ) 
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illustrate less than 3% error. The structure is a square plate 
with CFCC boundary conditions. The angle-ply laminated 
plate has four symmetric layers [45, –45].

In the next example a square laminated plate with a 
length of 0.5 m under uniform loading is considered. The 
plate is clamped at one side and the deformation at the 
other edge is measured. Because of the different lay-ups 
(anisotropic) and out-of-plane loading there is an induced 
twist at the free edge of the plate. The aim of this example is 
to find out if the NKQ model can estimate this induced twist. 

The results are shown for an experiment, FEM and NKQ 
method in Figure 4. Carbon fibre is used for all laminated 
experimental tests and the size of plate is 500*500 (mm). 
The experimental test results which are shown in Figure 4 
are the average results of six identical plates under the 
constant load.

5. Conclusion
The constitutive equations of the laminated composite 

plates are non-linear. The semi-analytical non-linear 
methods are an essential tool that provides perception 
to the physical non-linear behaviour of the composite 
plate structure, present fast and reliable solutions during 
the preliminary design phase and also provide a means 
of validations the numerical methods and enable the 
development of new computational models. In this paper 
a semi-analytical approach for the analysis of laminated 
plates with general boundary conditions and distribution 
of loads is proposed. The non-linear equations are solved 
by Newton-Kantorovich-Quadrature (NKQ) method. This 
method breaks down the laminate composite plate equations 
into a series of sequential equations and attempts to solve 
iterative linear integral equations. The convergence of the 
proposed method is compared with other semi-analytical 
methods (EKM and MTEKM). Various numerical examples 
with different boundary conditions and loadings are studied. 
Good agreement between the NKQ model, FEM and 
experimental results are shown to validate the model.

Table 5. Dimensionless W/h for CFCC square laminated plate under different loads.

Q MTEKM (W)[16] NKQ (W) ABAQUS %MTEKM Error[16] %NKQ Error

2488 .746 .741 .763 2.23 2.88

4975 1.092 1.090 1.115 2.05 2.24

7463 1.328 1.325 1.335 2.02 1.50

9950 1.512 1.559 1.541 1.81 1.16

12438 1.667 1.667 1.695 1.66 1.66

14925 1.800 1.802 1.827 1.54 1.36

17413 1.919 1.913 1.947 1.43 1.74

19900 2.027 2.025 2.053 1.33 1.36

Table 4. Relative error for CCCC boundary condition.

Number of iterations 1 2 3 4 5 6 7 8 9 10

Relative error (%) for u 92.2 30.4 14.1 8.3 5.3 3.2 1.8 1.0 0.4 0.1

Relative error (%) for v 63.8 19.2 9.2 5.1 3.7 1.9 0.9 0.4 0.1 0.0

Relative error (%) for w 77.1 24.5 11.1 6.6 4.9 2.2 1.3 0.7 0.3 0.1

Figure 4. Deformation at free edge of anisotropic laminated plate.
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