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Reconstruction of random heterogeneous media has been an increasingly popular theme in 
materials science, as such media is primarily found in nature and manufactured materials. An ideal 
reconstruction includes every microstructural feature of the reference image and allows simulations 
of physical quantities that agree with experimental data. In this work, three 2D reconstructions and 
three 3D reconstructions are produced. All six are based on a single planar section. Its stereological 
and metallographic features are compared to those of the reference. 2D and 3D reconstructions from 
single planar sections were carried out with simulated annealing and a sampling method. The first 
reconstruction used the co-occurrence correlation function (CCF) and orthogonal sampling. The 
second employed the two-point correlation function ( 2S ) and the lattice point algorithm (LPA) as the 
sampling method. Finally, the third reconstruction used the 2S  together with the two-point cluster 
function ( 2C ) and the LPA as the sampling method. One of two sampling techniques (orthogonal and 
LPA) were used. The reconstructions that were done using 2S  and 2C  and LPA sampling provided the 
best results both in 2D and 3D cases, combining realistic morphology and good compatibility with 
the reference stereological measures.

Keywords: Optimization, Simulated annealing, Heterogeneous media reconstruction, 
Microstructure, Characterization.

1. Introduction
It is well-known that microstructure is a crucial issue in 

materials science. That is so because, to a considerable extent, 
macroscopic material properties, such as elasticity, yield 
strength, tensile strength, thermal and electrical conductivity, 
and fracture toughness, depend on the microstructure1-4. 
Therefore, microstructural characterization and modeling 
are of particular interest.

Traditionally, one observes the microstructure on a 
planar section, whereas one typically seeks to determine 
three-dimensional microstructural quantities. A branch of 
mathematics, stereology, gives sound relationships between 
measures carried out on a planar section and certain three-
dimensional features, such as volume fraction and interfacial 
area per unit of volume5. When full 3D reconstruction is 
required, a helpful technique is serial sectioning6-10, which 
measures consecutive planar sections with an approximately 
constant spacing. Earlier works used “manual” calculation6,7, 
but later works greatly benefitted from computational 
reconstruction methods using the planar sections as input. 
Nonetheless, it would be highly desirable if one could 
reconstruct the 3D microstructure from measurements on 
a single planar section. We investigate this possibility and 
its limitations in the present paper.

The microstructure can be identified as a “random set,” 
“random heterogeneous material,” or “random media”11,12. 
By random media, one means a geometric interpretation 
in a scale far greater than the molecular scale but much 
smaller than the size of the specimen. The generation of 
realizations, either 2D or 3D, of “random media” is a problem 
of considerable current interest in materials science and 
engineering and various areas of knowledge.

Specifically, in metallurgy and materials science, 
macroscopic properties such as elastic modulus, elasticity, 
yield, tensile strength, fracture toughness, and electrical 
and thermal conductivity are microstructure-dependent. 
For example, specific properties such as the elastic modulus 
are less sensitive to the defects in a single crystal. Still, the 
apparent elastic modulus may depend on the microstructure 
when two microstructural components with distinct elastic 
moduli are present1-4. Therefore, the reconstruction of a random 
media must be sufficiently accurate to be the starting point of 
computer simulations to obtain the properties listed above.

Early reconstruction papers13,14 used autocorrelation, 
probability density, and Gauss filters to obtain a binary 
matrix. Oolitic calcarium and Fontainebleau arenite, chosen 
for their simple microstructure, are the first reconstructed 
random media. These methods presume isotropy and can 
only use the most straightforward correlation functions. *e-mail: andrealves@metalmat.ufrj.br
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Their extension to multiphase systems and anisotropic 
systems is complicated.

Rintoul and Torquato15 provided a better reconstruction 
methodology based on simulated annealing (SA). Those 
authors reported promising results for systems with low 
aggregation of pixels. However, Rintoul and Torquato 
concluded that even when there is good agreement between 
the reference correlation function and the correlation function 
obtained from the reconstructed microstructure, this does 
not necessarily imply that the reconstruction is faithful to 
the reference. Consequently, it is paramount to understand 
which correlation function is more satisfactory for each class 
of random media one wishes to reconstruct.

Torquato and Yeong16 extended previous work to 
heterogeneous random media in a seminal paper. According 
to Torquato and Yeong, the main advantages of their new 
formulation are: (a) easy implementation, (b) the possibility 
of using diverse correlation functions, and (c) adaptability 
to multiphase and anisotropic systems. Their algorithm is 
briefly described in the Methodology section below. Yeong-
Torquato’s method’s main characteristic is its flexibility. 
Torquato’s work and Chen et al.17 represent a class of 
reconstruction methods that employ optimization.

Other methods include multipoint statistics18-20 that aim 
at decreasing computational costs. More recently, neural 
networks21-24 have been employed. However, neural network 
models may take a long time to train. Nonetheless, they have 
the advantage that these models can quickly generate new 
microstructure realizations after training.

Several researchers have attempted to improve Yeong-
Torquato’s method25-27. Feng et al.’s27 co-occurrence correlation 
function (CCF) described in the Background section below 
is one such attempt.

A critical point in microstructure reconstruction is 
determining the correlation function, for example, the 
two-point correlation function ( 2S ). A natural way of doing 
this is using the square or cubic lattice. For this reason, 
sampling in two orthogonal directions was initially employed. 
Torquato et al.28 suggested a new way of sampling random 
media. They proposed a “lattice point algorithm” (LPA). 
This formalism can be used to determine the two-point 
correlation function but can be extended for the two-point 
cluster correlation function ( 2C )29.

In the present work, we employ the Yeong and 
Torquato16 and the Feng et al.27 methods to reconstruct 2D and 
3D microstructures of nodular cast iron. Feng et al.27 method 
was chosen because it requires low computational resources 
compared to other methods. The reconstructions were 
carried out from a single reference 2D planar section of the 
nodular cast iron. Nodular cast iron is widely used in many 
applications, and its microstructure is relatively simple.

2. Background

2.1. Two-point correlation function

Let ( ) ( )jI r  be the indicator function of the j phase and r 
the position of a matrix pixel, 1r  and 2r  are the endpoints of r:

( ) ( )1 2, 1jI =r r , if 1r  and 2r  are within j phase, or 0 otherwise. (1)

The two-point correlation function is defined by the 
probability, ijp , of finding, 1r  and 2r  in phases i and j. 
Specifically, the two-point correlation function for phase 
j, ( ) ( )1 22 ,jS r r , is the probability of finding 1r  and 2r  within 
the same phase j:

( ) ( ) ( ) ( ) ( ) ( )1 2 1 22 ,   j j jS I I=r r r r  (2)

where the angular brackets are symbols for mean value.
There are four possible two-point correlation functions, 

namely, ( ) ( )1 21 ,iS r r , ( ) ( )1 22 ,jS r r , and ( ) ( ) ( ) ( )1 2 1 212 21, ,ij jiS S≡r r r r . 
Only one of these four is independent.

If the microstructure is statistically homogenous, the 
correlation function depends only on the relative positions 
of 1r  and 2r . Moreover, if the microstructure is statistically 
isotropic, then the correlation function depends only on the 
distance between 1r  and 2r :

( ) ( ) ( ) ( )1 22 2,j jS S r=r r  (3)

where 1 2r = −r r .
The relevant property of 2S  is that it is an even function. 

Therefore, for a square with   N x N  pixels (assuming periodic 
boundary conditions), one needs to calculate the function 
up to / 2r N=  pixels. Figure 1a illustrates which endpoints 
belong to the two-point correlation function.

2.2. Two-point cluster correlation function

Let ( ) ( )j
CI r  be the indicator function of the j phase and r 

the position of a matrix pixel, 1r  and 2r  are the endpoints of r:
( ) ( )1 2, 1j
CI =r r , if 1r  and 2r  are within j phase AND 1r  and 2r  

are within the same cluster, or 0 otherwise. (4)

The two-point cluster correlation function of j phase 
can be defined as:

( ) ( ) ( ) ( ) ( ) ( )1 2 1 22 ,   j j j
C CC I I=r r r r  (5)

For homogenous and isotropic microstructures:

( ) ( ) ( ) ( )1 22 2,j jC C r=r r  (6)

Figure 1b illustrates which endpoints belong to the two-
point cluster correlation function.

2.3. Lineal path function

Let ( ) ( )1 2,j
LI r r  be the indicator function of the j phase and 

r the position of a matrix pixel, 1r  and 2r  are the endpoints of r:

( ) ( )1 2, 1j
LI =r r , if 1 2−r r  is fully contained within the same 

phase and cluster, or 0 otherwise. (7)

The two-point lineal path correlation function of j phase 
can be defined as:

( ) ( ) ( ) ( ) ( ) ( )1 2 1 22 ,   j j j
L LL I I=r r r r  (8)



32D and 3D Microstructural Reconstruction of Nodular Cast Iron

For homogenous and isotropic microstructures:

( ) ( ) ( ) ( )1 22 2,j jL L r=r r  (9)

Figure 1c illustrates which endpoints belong to the two-
point lineal path correlation function.

2.4. Co-occurrence correlation function
Feng et al.’s27 co-occurrence correlation function can 

be defined as the probability, ijp , of finding 1r  and 2r  in 
phases i  and j:

( ) ( ) ( )
( ) ( )

11 12
1 2

21 22
CCF ,

p r p r
x x

p r p r
 

=  
  

 (10)

For a homogeneous and isotropic microstructure 1 2r = −x x  
and one has a ( )CCF r .

Thus ( )CCF r  utilizes the four two-point correlation 
functions even though only one is independent. Results 
from Feng et al.27 suggest that, among other advantages, 

( )CCF r  represents connectivity information better than using 
a single function.

3. Methodology
The reconstructions are based on experimental results 

from Freitas30 on nodular cast iron. One of Freitas’s 
micrographs from a planar section is our reference micrograph. 
The micrograph was binarized. A matrix of 300×300 square 
grid represented the micrograph for the 2D reconstruction. 
A matrix of 122×122 square grid represented the binarized 
image for 3D reconstruction.

For the reconstruction, one considers that the nodular 
cast iron is a two-phase isotropic microstructure. A function, 

( )0f r , is determined for the reference matrix, for example, 
the two-point correlation function. A matrix with random 
black and white cells is the starting point. Black represents 
the second phase, and white represents the “parent-matrix” 
phase. The volume fraction of the second phase in the 
reference micrograph is equal to the volume fraction of the 
second phase, black cells, in the matrix. The same function 
is applied to the starting matrix that evolves from its starting 
point to the reference matrix. At a certain time-step, k, this 

evolution of the function k
Sf  is calculated. A quantity E that 

may be considered the energy is determined by:

2
0

k
k S

r

E f f = −  ∑  (11)

For our matrix to evolve towards the reference matrix, 
thus minimizing E, one interchanges two randomly selected 
cells of distinct phases. Of course, this interchange does 
not change the volume fraction. After the interchange is 
conducted, the energy 1kE +  is determined. The difference in 
energy between these two steps is 1k kE E E+∆ = − .

The Metropolis algorithm is used to accept the interchange 
or not:

( ) 1p E∆ = , if 0E∆ ≤  (12)

( ) exp Ep E
T
∆ 

∆ = − 
 

, if 0E∆ >  (13)

where T  is a “Monte Carlo temperature.”
The objective of the reconstruction is that k

Sf  reaches 
a value such that the energy is as close as possible to zero. 
Specific details of this method applied to the present case 
can be found in Ferreira31.

The simulated annealing was carried out here for the 
three functions defined in the Background section: the 
two-point correlation function ( 2S ); a combination of the 

2S  and the two-point cluster correlation function ( 2C ); and 
the co-occurrence correlation function (CCF).

Two different sampling methods were used. The orthogonal 
sampling method and periodic boundary conditions were 
employed for the CCF27. For the 2S  and for the combination 
of 2 2S C+  the lattice point algorithm (LPA)28 was used. When 
LPA was employed, one did not use periodic boundary 
conditions. We cropped the reconstructed matrix border by 
5% to minimize border effects. Full details of the methodology 
can be found in Ferreira31.

4. Generation of 2D Microstructures from 
the Experimental Determination on a 
Single Plane
Figure 2 shows the microstructures generated by the 2D 

reconstructions from an experimental micrograph of nodular 

Figure 1. Examples of correlation functions. (a) Two-point correlation function of one phase. (b) Two-point cluster correlation function 
of one phase. (c) Two-point lineal path correlation function of one phase.
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cast iron. In what follows, qualitative observations resulting 
from a visual inspection are presented.

Using the CCF method, the reconstructed microstructure 
reproduces well the smaller nodules of the reference 
microstructure, shown in Figure 2a. The spatial distribution 
of the nodules also looks good. By contrast, the nodule’s 
morphology in Figure 2b differs from those in Figure 2a. 
Figure 2b depicts elongated instead of equiaxed nodules. 
This behavior suggests that CCF performs well regarding the 
spatial distribution of nodules. Nonetheless, CCF falls short 
as far as connectivity/morphology information is concerned.

Figure 2c presents the reconstruction done by the 2S  
method using the LPA sampling. It is apparent in Figure 2c that 
LPA sampling results in a rounded morphology of the nodules 
much better than the CCF method. Nevertheless, one can see 
some elongated nodules analogous to those of CCF, Figure 2b. 

This result suggests that, like the CCF method, the 2S  method 
cannot preserve connectivity/morphology information well.

Figure 2d presents the microstructure reconstructed using 
a combination of 2S  and 2C . Joint use of 2S  and 2C  results 
in a microstructure that closely approaches the reference 
microstructure, Figure 2a. The nodules have sizes and shapes 
similar to the experimental result. Few elongated nodules 
are present. All in all, the 2S − 2C  method conveys a result 
better than the CCF and 2S  methods. The area per unit of 
volume, VS , or equivalently, the mean intercept length are 
virtually the same, see Table 1.

Table 1 presents a quantitative summary of the above 
results. The volume fraction, VV , is about the same for all 
three methods. It should be the same as it is kept constant 
in all three methods. The small difference is due to the 5% 
crop carried out in 2 S  and 2S − 2C  methods.

Table 1. 2D reconstruction from a single experimental section: comparison of stereological measurements.

Measure Reference
Reconstructions

CCF 2S 2 2S C−

VV 0.098 0.10 0.11 0.10

( )2m−µAN 0.0011 0.0019 0.0012 0.0012

2 3( m / m )µ µVS 0.048 0.050 0.050 0.048

( )mλ µ 8.2 7.9 8.5 8.3

( ) mµF 10.4 6.8 10.8 10.1

Figure 2. 2D reconstruction from a single experimental section, microstructures cut to final size 270×270 pixels. (a) Experimental-reference. 
(b) reconstruction using CCF. (c) reconstruction using 2S . (d) hybrid reconstruction using 2 2S C− .
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The number of nodules per unit of area, AN , and Feret 
diameter, F, using the 2S  and 2S − 2C  methods are close 
to those of the experimental microstructure. In contrast, 

AN  and F  obtained in the microstructure generated by the 
CCF method differ from the experimental microstructure. 
This confirms the result in Figure 2, which suggests that the 
CCF method gives the worst reconstruction. It is fair to say 
that the CCF method has the advantage of being much less 
computer-intensive than the 2S  and 2 2S C−  methods besides 
it employs a worse sampling method, orthogonal sampling.

5. 3D Reconstruction of the Microstructure 
from a Single Experimental Section
Figure 3 shows the microstructures generated by 3D 

reconstructions from an experimental micrograph of nodular 
cast iron. Qualitative observations resulting from the visual 
inspection are presented in what follows. Figures 3b-3d are 
2D sections of the 3D reconstructions. Those 2D sections 
are like those obtained by optical microscopy. They are 
compared with the reference microstructure in Figure 3a.

A comparison of the CCF reconstruction, Figure 3b, 
with the reference, Figure 3a, demonstrates that the CCF 
method cannot yield a nodule morphology resembling the 
experimental equiaxed nodule morphology. CCF nodules 
are not rounded, as is a typical graphite nodule. By contrast, 
the spatial distribution of the nodules looks reasonable. 
The reconstruction with the 2S  method results in a better 
morphology. An even better morphology can be obtained using 
the 2 2S C−  method. Likewise, Figure 2 and Figure 3 suggest 
that the 2 2S C−  method is the best of the three methods 
employed here. As mentioned above, the method utilizing 

2C  considerably improves the connectivity representation. 
The inclusion of 2C  causes a better reconstruction of the 
nodule’s shape. Only an occasional elongated nodule is 
present compared to the CCF and 2S  methods.

Table 2 displays a quantitative summary comparing the three 
reconstruction methods. All three reconstruction methods gave 
comparable values. In other words, the planar section of the 
3D reconstructions resulted in similar stereological quantities. 
In contrast to the reconstruction of the 2D sections shown above, 
Table 2 shows that the stereological measurements on the 2D 
sections of 3D reconstructions did not reflect the discrepancy 
observed in Figure 3 among the reconstruction methods.

Figure 4 displays a 3D opaque view of the reconstructions. 
Figures 4a-c exhibit a similar trend. Thus, the visually best 
reconstruction is obtained by 2 2S C−  method. The following 
best is the method using 2S  followed by the CCF method, 
which presented the worst result of the three methods.

The trend observed in Figure 4 becomes clearer using 3D 
views of the reconstructions. Figures 5a-c show transparent 
views of the reconstructions. The transparent views reinforce 
that the reconstruction is worse with CCF improves with 

2S  and becomes much better with the 2 2S C−  method. 
The reconstruction is inferior to the CCF method. The shape 
of the nodules is far from the approximately spherical shape 
of the graphite nodules. The shape improves somewhat, but 
it still is not satisfactory with the 2S  method. Finally, the 

2 2S C−  method results in a significant improvement.

6. Discussion
The CCF method is closely related to the two-point 

correlation functions of the microstructure27. According to 

Figure 3. 2D sections of 3D reconstructions from a single experimental section. (a) Experimental-reference. (b) reconstruction using 
CCF. (c) reconstruction using 2S . (d) hybrid reconstruction using 2 2S C− .
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Feng et al.27, the CCF method gives better reconstruction 
results than a method that uses the 2S  function only, as 
done here. Nonetheless, the results obtained here appear to 
indicate otherwise. The results from the CCF used here do 
not contradict Feng et al.’s27 statement. This is because the 
sampling method used for CCF and 2S  methods were different. 
As described in the Methodology section, for CCF, one used 
orthogonal sampling, whereas for 2S  the LPA was used. This 
algorithm compensated a likely worse reconstruction when 
one uses the 2S  function only.

Still, a better sampling algorithm was not enough to 
cause a satisfactory result using solely the 2S  function. 
Further microstructural information is required. For this 
reason, we added the 2C  function to the 2S  function to 
get the 2 2S C−  method. The inclusion of the 2C  function 
improved connectivity information, and the overall 
results were better than those obtained by the CCF and 
the 2S  methods.

Figure 6 supports this reasoning for the 2D reconstructions. 
Figure 6 depicts the lineal path correlation function of the 

Table 2. 3D reconstruction from a single experimental section: comparison of stereological measurements.

Measure Reference
Reconstructions

CCF 2S 2 2S C−

VV 0.10 0.10 0.10 0.10

( )2m−µAN 0.0012 0.0012 0.0011 0.0012

2 3( m / m )µ µVS 0.042 0.044 0.043 0.044

( )mλ µ 9.3 9.3 9.3 9.1

( ) mµF 10.0 10.5 10.5 10.0

Figure 4. 3D opaque views of the reconstructions. (a) reconstruction using CCF. (b) reconstruction using S2. (c) hybrid reconstruction 
using 2 2S C− .

Figure 5. 3D transparent views of the reconstructions. (a) reconstruction using CCF. (b) reconstruction using 2S . (c) hybrid reconstruction 
using 2 2S C− .



72D and 3D Microstructural Reconstruction of Nodular Cast Iron

reconstructions by the three methods. This graph distinctly 
shows that the 2 2 S C−  method gives the best results.

For the 3D reconstructions, Figure 7 corroborates 2 2S C−  
method better representation of connectivity. In Figure 7, 
likewise in Figure 6, the connectivity, the 2L  function 
approaches that of the reference as the method changes from 
CCF, 2S  to the 2 2 S C−  method.

Nevertheless, Figure 7 demonstrates that the 2 2  S C−
method does possess a ( )2L r  that is closer to the reference 

( )2L r  than the other methods but remains some distance 
from the reference ( )2L r .

Therefore, our results suggest that even if the 2 2  S C−    
method produced a reasonable reconstruction, the combination 
of 2S  and 2C  is unable to thoroughly represent all microstructural 
information from the nodular cast iron reference micrograph.

7. Conclusions
The Yeong-Torquato16 method applied to a nodular cast 

iron’s 2D and 3D microstructural reconstruction showed 
promising results. The quality of results varies according 
to the correlation functions and sampling method used in 
each case.

Stereological measurements typical of 2D reconstructions 
using 2S  and 2 2S C−  were compatible with the experimental-
reference microstructure.

The 3D reconstructions using CCF, 2S  and 2 2S C−  
presented interesting results. The best reconstruction 
was obtained by 2 2S C−  method, followed by the 2S  
method, and the CCF method, which presented the 
worst result of the three methods. The same trend was 
obtained in the 2D reconstructions. However, our results 

suggest that although the methods produced a reasonable 
reconstruction, they could still not reproduce the complete 
microstructural information from the nodular cast iron 
reference micrograph. Despite that, even with some degree 
of uncertainty, they may be helpful to the researcher to 
get information and inferences from just one experimental 
planar section, with a relatively easy implementation and 
low computational cost.

Our results also demonstrate that the reconstruction 
technique proposed by Yeong and Torquato16 shows a wide 
possibility of use in metallurgical and materials engineering. 
Using this method associated with other techniques may bring 
even better results in the future as new correlation functions 
and sampling techniques can be developed.
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