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A novel mesoporous Mn – organophosphate was synthesized for the first time. It is characterized by several 
physicochemical techniques. Small angle X-ray diffraction analysis shows the first peak in 2.5o with 39 Ao pore 
width. Elemental analysis shows that the composition is [(C

12
H

23
N)

3
PO]40Mn. Scanning electron microscopic 

picture shows the flag morphology with 1-15 µm particle size. Thermogravimetry/Differentaial thermal analysis 
shows almost 80% exothermic weight loss. Nitrogen adsorption isotherm shows type III with 300 m2/g BET surface 
area. Fourier transform Infrared spectroscopic analysis shows that the framework vibrations are comparable to 
other well known silica mesoporous materials. Electron spin resonance spectroscopic analysis shows the absence 
of hyperfine splitting indicates the presence of Mn3+ species. Ultraviolet – visible spectroscopic analysis shows 
that most of the Mn is in tetrahedral co-ordination beside small square pyramidal species. A plausible synthesis 
mechanism also proposed.
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1. Introduction

Mesoporous materials are popular due to their high surface area 
and unique morphology1-10. The known variety of mesoporous materi-
als are few, namely MCM-41, MCM-48 and SBA-15. The main draw 
back in these materials synthesis is their prolonged crystallization, low 
yield and high cost of reagents. There are several efforts were made 
in this direction to solve these problems. Recently, organophosphates 
were synthesized and reported11-13 to have properties similar to zeo-
lites. Compared to zeolites, they are prepared in short time, low cost 
and high yield. However mesoporous organophosphate molecular 
sieves are not reported so far. Beside pure organophosphate molecular 
sieves are not suitable for redox type catalyzed reactions. To prepare 
redox catalyst, a metal oxide has to be either supported or incorporated 
inside the structure. As the supported metal oxides is leachable to 
liquid phase oxidation reactions. It is necessary to prepare metal in-
corporated molecular sieves. There are several metal incorporated14-38 
molecular sieves are reported in literature. But there is less studies 
on Mn containing molecular sieves12. In the present study, we have 
synthesized Mn – containing mesoporous organophosphate for the 
first time and it is characterized in detail.

2. Experimental

In a typical procedure to synthesis mesoporous Mn-organophos-
phate, the manganese acetate (P/Mn = 40, Aldrich, USA) was dis-
solved in othophosphoric acid (85%, s.d.fine, India). To this mixture, 
1:4 molar ratio of Dodecylamine (98%, Aldrich, U.S.A) was added 
and stirred well. A pink solid was resulted. The ground solid was 
dried at 80 °C for 12 h. The resulting solid was subjected to following 
physicochemical characterizations.

The above samples were analyzed for qualitative phase 
identification by small angle X-ray powder diffraction 
(Rigaku, Model D/MAX III VC, Japan, Ni filtered Cu-Kα radia-

tion, λ = 1.5404 Å). The morphology of the organophosphate was 
investigated using a scanning electron microscope (JEOL®, JSM 
5200). Transmission electron micrographs (TEM) of the samples 
were scanned on a JEOL JSM-2000EX electron microscope oper-
ated at 200 kV. Simultaneous Thermogravimetry/Differential thermal 
analysis of the crystalline phases was performed on an automatic 
derivatograph (Setaram TG-DTA 92). The adsorption and desorption 
measurements were carried out using an Autosorb – 1 instrument. The 
Fourier transform infrared spectroscopy was recorded in the diffuse 
reflectance mode using a 300:1 ratio sample in KBr (Nicolet 60SXB). 
Electron spin resonance spectra of the as-synthesized Mn - orga-
nophosphate was obtained using Bruker ER 200D spectrometer. 
The spectra were recorded at room temperature as well as at liquid 
nitrogen temperature. The spectra were recorded (with a mid range 
of 4000 G) in the scan range of 0 to 8000 gauss and magnetic field 
strength was 9.74 GHz. The Ultraviolet - visible diffuse reflectance 
spectra were recorded using a Pye Unichem (SP-8-100) spectrometer 
in the 200-800 nm regions.

3. Results and Discussion

The X-ray diffraction pattern of the Mn – organophosphate 
(Figure  1) shows the peaks at 2.6 (54%), 3.8 (46%), 5.3 (29%), 
7.7 (100%) and 8.0 (71%). The appearance of peaks at low angle 
region in equal distance shows that the Mn-organophosphate is 
mesoporous lamellar type. The X-ray diffraction pattern is sta-
ble  up to 200  °C. From the interplanar distance (d) analysis, the 
pore openings are calculated as 3.9 nm (39 Ao.)[39]. Elemental 
analysis shows that the Mn  - organophosphate has composition, 
[(CH

3
-(CH

2
)

11
NH)

3
PO]40 Mn.

Scanning electron micrograph of mesoporous Mn - organophos-
phate (Figure 2a) shows that the particle size is not uniform (1‑15 µm), 
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however the shape is almost similar (flag shape). It is not soluble 
in aqueous or non-aqueous media. Presence of manganese plays a 
major role in it. Transmission electron micrograph of mesoporous 
Mn – organophosphate (Figure 2b) shows a regular fringe. The well 
define fringe also shows its crystallinity.

The Thermogravimetry/Differential thermal analysis of mes-
oporous Mn – organophosphate (Figure 3) losses the total weight 
exothermically at 25-750 °C (80%). Unlike pure organophosphate 
(Figure is not shown) the Mn containing organophosphate losses the 
total weight at lower temperature. It may be due to the metal catalyses 
the oxidative decomposition of organics.

The Nitrogen adsorption isotherms of Mn – organophosphate is 
of type III40 (Figure 4). The surface area is 300 m2/g and pore width 
is 40 Ao. These results were taken after the materials were activated at 
100 °C before measurement. If the material was activated at room tem-
perature, no adsorption was taken place. Normally molecular sieves 
are activated at 400 °C in vacuum to remove the volatile impurities. 
The X-ray diffraction pattern of mesoporous Mn-organophosphate 
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Figure 1. Low angle X-ray diffraction pattern of mesoporous Mn – organo-
phosphate  molecular sieve.

Figure 2. a) Scanning electron micrograph and b) Transmission electron 
micrograph of mesoporous Mn – organophosphate molecular sieve.

Figure 3. Thermogravimetry (a)/Differential thermal analysis (b) curves of 
mesoporous Mn – organophosphate molecular sieve.

Figure 4. Nitrogen adsorption isotherm curves of mesoporous Mn – organo-
phosphate molecular sieve.
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is reproducible even after its thermal treatment up to 200 °C. As we 
know, the X-ray diffraction reproducibility is essential for better 
nitrogen adsorption, so we have activated the sample under vacuum 
at 100 °C.

The Fourier transform infrared spectrum of as-synthesized 
mesoporous Mn – organophosphate shows (Figure  5) a similar 
spectrum to other mesoporous molecular sieves. However there are 
slight changes in intensities. There was peak observed for Mn-O-P 
vibrations at 960 cm–1 band. Electron spin resonance spectrum of 
mesoporous Mn- organophosphate shows (Figure 6) a single peak 
for Mn3+ oxidation state. It is noted that the Mn2+ is having six hy-
perfine splitting in ESR (I = 5/2)41. At liquid nitrogen temperature 
the peaks intensity is four times higher than the room temperature 
pattern. Further, even though the source manganese is in Mn2+ state, 
when react with acid it is getting oxidized to Mn3+. Besides for a 
stable  framework, Manganese should be in Mn3+. A week Mn2+ 
hyperfine splitting was also noticed.

Figure 7 shows the Ultraviolet - visible spectra of mesoporous 
Mn - organophosphate. There is a small peak at 300 nm is due to the 
presence of tetrahedrally co-ordinated Mn or P species41. Another 
peak at 415 nm is due to square pyramidal species. In Mn – or-
ganophosphate, only the tetrahedrally co-ordinated manganese is 
expected. However due to partial hydration, the square pyramidal 
species is appeared.

 Scheme 1 shows a plausible mechanism for mesoporous 
Mn-organophosphate synthesis. Orthophosphoric acid has three 
hydroxyl groups. This three hydroxyl can be easily reacting with 

three amine group. Being a Lewis acid, Mn is reacted with amine 
(Lewis base). The structural stoichiometry prevents manganese 
phosphate formation. The similarity of oxygen with nitrogen 
creates organophosphate structure similar to zeolites. The need 
for two hydrogen in organic amine supports this proposal. The 
organophosphate structure is neutral by presence of alternate P5+ 
and P3+ ions. The Mn3+ ions replace P3+ species to form stoichio-
metric structure.

4. Conclusions

A novel mesoporous Mn – organophosphate was synthesized for 
the first time. It is characterized by several physicochemical tech-
niques. Small angle X-ray diffraction analysis shows the first peak at 
2.5o for mesoporosity. Elemental analysis shows that the composition 
is [(C

12
H

23
N)

3
PO][40]Mn. Scanning electron microscopic picture shows 

the flag morphology with 1-15 µm particle size. Thermogravimetry/
Differentaial thermal analysis shows almost 80% exothermic weight 
loss. Nitrogen adsorption isotherm shows it is of type III with 
300 m2.g–1. surface area. Fourier transform Infrared spectroscopic 
analysis shows that the framework vibrations are comparable to other 
well known silica mesoporous materials. Electron spin resonance 
spectroscopic analysis shows the absence of hyperfine splitting indi-
cates the presence of Mn3+ species. Ultraviolet – visible spectroscopic 
analysis shows the most of Mn is in tetrahedral co-ordination beside 
small square pyramidal species. A plausible mechanism of the reac-
tion was also proposed.
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Figure 5. Fourier transform  infrared spectrum of mesoporous Mn – organo-
phosphate molecular sieve.

Figure 6. Electron spin resonance spectroscopic analysis of mesoporous Mn 
– organophosphate  molecular sieve.

Figure 7. Ultraviolet-visible spectroscopic analysis of mesoporous Mn – 
organophosphate molecular sieve.

Scheme 1.  A plausible mechanism for mesoporous Mn – organophosphate 
molecular sieve synthesis.
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