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1. Introduction
Ferritic stainless steel is one of the most important 

engineering materials due to its low cost and easy mechanical 
forming. It is an ideal material for a wide range of products, 
such as kitchenware, interconnections and architectural 
applications. However, this material shows poor performance 
in corrosion resistance when compared with austenitic 
stainless steels. A possible solution to enhance its corrosion 
resistance is the application of protective films1-4.

Amorphous carbon coatings have been used in surface 
treatments due to their high corrosion resistance in several 
corrosive environments, as well as due to the fact that they 
are electric conductors5,6.

Traditional methods for carbon films deposition include 
physical or chemical vapor phase processes, such as Physical 
Vapor Deposition (PVD) or Chemical Vapor Deposition (CVD) 
and their variants4,7-10. On the other hand, the deposition 
of amorphous carbon films by electrodeposition can be 
considered an alternative process. This technique does not 
use vacuum and high temperatures. Besides, more complex 
shapes can be produced with the film11,12.

In 1992, Namba obtained carbon films by electrodeposition 
using ethanol as the electrolyte13. Following this discovery, 
Suzuki also made carbon films by electrolysis using a 
water‑ethylene glycol solution12,14. A year later, Wang 
performed the experiment with methanol15.

The chemical group methyl is better than ethyl because 
it provokes a faster growth of the film. Another important 
parameter is the dipole moment: the higher the dipole moment 

is, the easier it is to obtain C-C sp³ bonds. These bonds are 
favorable to make diamond like-carbon (DLC) films. Nowadays, 
the typical electrolytes used in the electrodeposition of 
carbon films are acetonitrile (CH3CN), DMF (HCON(CH3)2), 
nitromethane (CH3NO2), methanol (CH3OH), nitroethanol 
(CH3CH2OH) and ethanol (CH3CH2OH)12,16.

In the present study, the objective is to obtain a carbon 
layer on AISI 430 stainless steel to improve the corrosion and 
hardness proprieties of this material using the electrodeposition 
technique with N,N-dimethylformamide (DMF) and organic 
dopant addition as the electrolyte. In this context, the 
substrate was pretreated by anodization aiming to optimize 
the film anchoring.

2. Material and Methods
Ferritic stainless steel (AISI 430) disks with a diameter of 

15 mm and a thickness of 0.95 mm were used as substrates. 
The chemical composition of the substrates is: %C: 0.104, 
%Cr:  16.08, %Mn: 0.455, %P: 0.0124, %S: <0.001 and 
%Si: 0.33. The samples were sanded on SiC abrasive paper 
(# 400–1200) and then mechanically polished using 1 µm 
alumina. In order to optimize the film anchoring on the 
substrate, the surface was pretreated by anodization with 
150 V between the electrodes (platinum wire as cathode and 
AISI 430 stainless steel sample as anode) for 10 minutes, 
at room temperature. An acid electrolyte was used, which 
is currently in patent process.

The carbon films were obtained on an AISI 430 stainless 
steel sample (with and without anodizing treatment), with 
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the application of a cathodic potential of 1200 V between 
the electrodes for 24 hours. A graphite plate was used as 
an anode, which was placed at 7 mm from the cathode. An 
N,N-dimethylformamide (DMF) with organic dopant was 
used as an electrolyte. The electrodeposition temperature 
was kept constant at 20 °C with the use of a thermostatic 
bath with external water circulation.

Atomic force microscopy (AFM - Shimadzu SPM-9500J3, 
contact mode), scanning electron microscopy (SEM –Jeol 
6060, 20 kV) and optical interferometry Zygo (Zigo New 
View) were performed to observe the surface morphology of 
the samples. Raman Spectroscopy (Renishaw inVia Raman, 
laser 514 nm, laser in 10%, 5 accumulations) was used to 
obtain the microstructural characterization of the films.

The electrochemical characterization was performed 
using potentiodynamic polarization curves (Omnimetra 
Instrumentos PG-3901 potentiostat), and the open circuit 
potential (OCP) was monitored during one hour. For the 
electrochemical measurements, a saturated calomel electrode 
(SCE) was used as a reference, a platinum wire was used as 
a counter-electrode, and a 1 M ethanol: 0.5 M sulfuric acid 
solution was used as an electrolyte.

The wear tests were performed on a ball-on-plate 
tribometer at room temperature and a humidity level of 37%. 
The wear test was performed with a reciprocal linear motion 
of a 4.76 mm diameter alumina ball, using a constant force 
of 0.1 N, a frequency of 1 Hz and a track length of 1.5mm. 
The linear speed was 3 mm/s and the average Hertzian 
contact stress was 270.13 MPa.

The scratch test was conducted in a CSM scratch tester, 
using a Berkocich indenter, a linear force of 3 mN to 500 mN, 
a pre and post load of 3 mN. The scratch appearance and 
the critical loads were evaluated by optical microscopy.

3. Results and Discussion
3.1. Morphology study

The preparation of the substrate allowed a relatively 
regular surface, free of imperfections, as shown on the 
SEM image (Figure 1) and on the AFM image (Figure 2). 

Figure 1. Surface images obtained by SEM of ferritic stainless steel 
(AISI 430) substrate, after it was mechanically polished.

Figure 2. Morphology obtained by AFM of ferritic stainless steel 
(AISI 430) substrate, after it was mechanically polished. The image 
on the left shows the top view and the image on the right shows the 
3D view of roughness.

The low surface roughness was measured, Ra (21.8 nm) and 
Rz (221.1 nm), as shown in Table 1.

Figure 3 and Figure 4 (image of SEM and AFM) show 
the anodized surface. This surface acts as an anchorage for 
the carbon films. By doing so, as expected, the anodized 
surface presented a high roughness, Ra (199.0 nm) and 
Rz (3592.3 nm), as shown in Table 1, in comparison to the 
surface before the anodizing process, which is indicated by 
the consequent increase on the surface area.

The electrodeposited samples (Figure 5 and Figure 6) 
showed a lower roughness than the anodized surface, 
Ra (72.3 nm) and Rz (3290.34 nm), as shown in Table 1. 
These results indicate that the carbon film grew faster on 
the valleys than on the peaks, leveling the surface.

Table 1. Comparative table of roughness between the studied 
systems by optical interferometry.

Ra [nm] Rz [nm]
Substrate 21.8 ± 3.5 221.1 ± 38.1
Anodizing 199.0 ± 14.7 3592.3 ± 452.9

Carbon Film 72.3 ± 25.6 3290.3 ± 778.7
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two bands: the G band relates to sp2 bonding, centered around 
1500–1700 cm−1 and the D band relates to a bond-angle 
disorder in the sp2 caused by the presence of sp3 bonding, 
H or N, centered around 1200–1450 cm−1.

The Raman analysis for the obtained carbon film 
showed two bands centered around 1382.6 ± 1.8 cm−1 and 

Figure 3. Surface images obtained by SEM of the anodized surface.

Figure 4. Morphology obtained by AFM of the anodized surface. 
The image on the left shows the top view and the image on the right 
shows the 3D view of roughness.

Figure 5. Surface images obtained by SEM of the carbon film on 
the anodized surface.

Figure 6. Morphology obtained by AFM of the carbon film on the 
anodized surface. The image on the left shows the top view and the 
image on the right shows the 3D view of roughness.

3.2. Raman studies

The diamond spectrum has a peak at 1332 cm−1 and 
the graphite spectrum shows a peak at 1580 cm−1[17,18]. In 
the amorphous carbon films, there are two peaks around 
1345–1355 cm−1 and 1570–1590 cm−1[18,19], which originated 
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1569.0 ± 1.1 cm−1 (Figure 7). This suggests that the structure 
of these films was composed by mixed sp2, sp3 carbon, 
H and N. In other words, all of the mentioned results are 
characteristics of amorphous carbon film materials17,20.

The measured intensity ratio ID/IG of the carbon film 
was 0.68 ± 0.002. This result is the same as the results 
reported on literature, as per Table 2. The Raman spectrum 
showed a positive slope of baseline that demonstrates the 
film has a certain degree of hydrogenation.

3.3. Corrosion behavior

The carbon film offers a significant improvement in 
corrosion resistance, in a 1 M ethanol and 0.5 M sulfuric 
acid solution, when compared to an anodized system and 
even more when compared to a substrate without surface 
treatment (Figure 8). There was a displacement of the open 
circuit potential to more noble values, namely: substrate 
(–512 mV), anodized (36 mV) and carbon film (163 mV).

Furthermore, the anodized system and the carbon film 
present a considerable reduction in the corrosion current 

densities, reaching five orders of magnitude higher in 
relation to the substrate (Figure 9 and Table 3). In addition, 
the resistance of polarization of film increased four orders 
of magnitude higher in relation to the substrate. Moreover, 
the anodizing surface treatment and the film deposition 
improved de anodic current density, presenting lower 
values than the uncoated substrate.

This behavior could be associated to the barrier of 
the oxide film, which forms a physical obstacle amidst 
the substrate and the corrosive environment. At the same 
time, the carbon film confers a nobler trait and covers the 
imperfections and defects of the oxide layer.

3.4. Mechanical behavior

An initial period was observed (Figure 10) with the 
surfaces sliding freely, and with the coefficient of friction 
starting at lower values. However, at a subsequent moment 
of wear, the upper layer was abraded and the coefficient 
of friction was stabilized at higher values. The oscillation 
around this average value can be explained by the formation 

Figure 7. Raman spectral deconvolution of the carbon film and 
the fitting result.

Figure 8. Open circuit potential monitoring in a 1 M ethanol and 
0.5 M sulfuric acid solution.

Figure 9. Potentiodynamic polarization curves comparing substrate, 
anodized and electrodeposited films in a 1 M ethanol and 0.5 M 
sulfuric acid solution, E vs SCE.

Figure 10. Coefficient of friction in the ball-in-plate test comparing 
the substrate, the anodized film and the electrodeposited carbon film.
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of particles resulting from the contact between the bodies 
and its insertion in the interface of wear21.

Finally, it was noted that the coefficient of friction of 
the polished substrate was lower than the coefficient of the 
anodized film and the coefficient of the carbon film. This 
can be explained by the insertion of hard abraded particles 
for the rougher anodized layer.

The start of the coefficient of friction of the carbon 
film was lower than of the anodized one, which may be 
justified by the lubrication characteristic of the carbon film. 
The carbon film supported the normal load up to 0.72 m, 

Table 2. The intensity radio ID/IG for the obtained film in comparison with the results presented in the literature.

Technique ID/IG Ref
Films obtained by organic liquids on stainless steel (AISI 430) Electrodeposition 0.68 -
Hard carbon films PVD techniques 0.32 - 1.62 [8,19]
Films obtained using organic liquids or organic liquids in aqueous 
solutions

Electrodeposition 0.4 - 2.21 [16,20]

DLC films onto ITO from pure organic liquids Electrodeposition 2.1 [21]

Table 3. Electrochemical characteristics of the studied systems.

Substrate Anodized Carbon Film
Ecorr [mV] –498 –116 69.5

icorr [A/cm2] 1.63E-06 7.17E-11 8.99E-11
Rp [Ohm/cm2] 1.60E+04 3.64E+08 2.90E+08

Figure 11. SEM image of the substrate track (a) and of the carbon film track (b) after wear tests.

Figure 12. Scratch test image of the carbon film.

when the value of the coefficient of friction reached the 
anodized value, indicating that the film is quickly worn.

Figure 11 shows a reduction of wear tracks on the 
substrate when compared to the carbon film. This suggests 
that the carbon film and the anodized film absorbed the 
applied load, which resulted in a less pronounced wear.

The scratch test results show that the film had a plastic 
deformation in the beginning of the experiment (3 mN, red 
line in Figure 12) and it had only lateral material displacement 
in 10 mN (green line in Figure 12). However, the film was 
not delaminated until the end of the track. This indicates 
that the coating has adhered well to the substrate.



Corrosion and Wear Resistance of Carbon Films Obtained by Electrodeposition on Ferritic Stainless Steel2015; 18(2) 297

4. Conclusions

Before the anodizing process, the substrate had an evenly 
wrinkled surface. Afterwards, the treatment created a surface 
that favors the nucleation of the film. Furthermore, the film 
grew preferentially on anodized valleys, leveling the surface.

The Raman spectroscopy showed the presence of a 
hydrogenated amorphous carbon film.

The anodized and the carbon film improved the corrosion 
resistance of stainless steel, diminishing the corrosion, the 
anodic current densities, and producing a displacement of 

the corrosion potential to more noble values than the values 
of the substrate.

In regards to the wear study, this electrodeposited carbon 
film did not bear the stress for a very long time. However, 
in the scratch test, the coating showed a good adhesion on 
the substrate, and the delamination did not occur until the 
end of the track.
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