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Photoluminescence Properties of Thermally Stable Highly Crystalline CdS Nanoparticles
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Thermally stable and highly crystalline CdS nanoparticles were obtained via chemical bath method. 
The optical properties of CdS nanocrystals were characterized by ultraviolet-vis and photoluminescence 
spectroscopy. Improvement in the photoluminescence properties of the synthesized CdS nanocrystals 
was observed. This improvement is believed to be due to highly crystalline CdS nanoparticles which 
may reduce the local surface-trap states. The CdS nanoparticles were characterized by x-ray powder 
diffraction (XRD), thermo gravimetric analysis (TGA/DTA) and transmission electron microscopy 
(TEM).
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1. Introduction
CdS is a II-VI semiconductor with a direct band-gap 

of about 2.4 eV. It has a wide range of applications 
including phosphors and photovoltaic cells. The potential 
application of CdS film deposited by chemical bath involves 
photovoltaics and most of uses of nanocrystals, e.g. in 
photonics or recently in quantum computing1.

Over the past few years, various new routes have 
been developed to synthesize CdS nanostructures 
including template assisted synthesis2, colloidal micelle3, 
solvothermal method4, a method based on nitrilotriacetic 
acid (N(CH

2
COOH)

3
) as complex5 of Cd, carboxyl, and 

amine terminated PAMAM dendrimers stabilizing agents6. 
All of the above mentioned methods include various 
complexing and stabilizing agents.

Research efforts7 devoted to chemical bath deposition 
(CBD) of CdS thin films are motivated by the need for 
improvement of window layers in the solar cells based on 
CdTe and Cu(In,Ga)Se

2
. In particular, CBD is widely used 

for achieving good-quality CdS8-10. In recent years, a larger 
number of techniques have been developed to permit the 
control of synthesis of CdS nanocrystals, as well as the size, 
morphology, thermal stability and luminescence properties; 
however, success is limited.

In the present study we investigate thermally stable 
highly crystalline CdS nanoparticles synthesized by 
chemical bath with improved photoluminescence properties. 
The obtained CdS nanocrystals were characterized by 
XRD, TGA/DTA, TEM, UV-Vis and photoluminescence 
spectroscopy.

2. Experimental Procedure
CdSO

4
 and thiourea were used as Cd and S ions source 

respectively, and ammonia was used as a complexing 
agent for Cd ions. All the used chemicals were used of AR 
grade without further purification purchased from Aldrich 
chemicals. The synthetic method for CdS nanoparticles 
used in this work was based on a previously reported 
procedure11. The CdSO

4
 (0.16 M) solution was first added to 

NH
3
 (7.5 M) solution under stirring followed by addition of 

thiourea (0.6 M) solution. The bath temperature and pH was 
maintained at about 65 °C and 10 respectively, with constant 
stirring. Precipitated yellow solid product was centrifuged 
and dried in the oven at 65 °C overnight. The particles 
were then annealed in the furnace at different temperatures 
to examine the thermal stability. The chemical reactions 
involved in the formation of CdS are described below.

CdSO
4
 + nNH

3
 → [Cd(NH

3
)

n
]2+ + SO

4
2– (1)

[Cd(NH
3
)

n
]2+ → Cd2+ + nNH

3
 (2)

SC(NH
2
)

2
 + 2OH– → S2– + CN

2
H

2
 + 2H

2
O (3)

Cd2+ + S2– → CdS (4)

The crystal phase analysis of the synthesized nanoparticles 
was determined by an x-ray powder diffractometer (XRD, 
Cu Kα radiation) (Phillips) with a Bragg angle ranging from 
20 to 60°. TGA/DTA was recorded to study the thermal 
stability and phase transformation of the prepared CdS 
nanoparticles. Transmission Electron Microscopy (TEM) 
(JEOL, 100CX) and Selected Area Electron Diffraction 
(SAED) patterns were obtained to examine the particle size, 
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morphology and diffraction patterns of the crystalline CdS 
nanoparticles. The optical absorption of CdS nanoparticles 
was examined by a perkin-Elmer lamda20 UV/Visible 
spectrometer. The photoluminescence spectrum was 
achieved on a PTI fluorescence spectrometer.

3. Results and Discussion
Figure 1 shows the XRD patterns of the CdS nanoparticles 

oven dried at 65 °C and annealed at various temperatures. 
The XRD of the oven dried particles shows all the planar 
reflections (111), (220) and (311) corresponding to the cubic 
crystal structure of CdS which was in good agreement with 
the reported reference (JCPDS No. 10-0454). The peak (111) 
of the cubic structure CdS is similar to the (002) peak of the 
hexagonal structure CdS. However, the other peaks of the 
hexagonal CdS do not appear. Thus, it is more likely that 
the structure is predominantly cubic, similarly to the other 
report12-15. No other impurities could be detected indicating 
the high quality of the sample. The XRDs of samples at 100, 
200 and 300 °C show the same pattern as the oven dried 
particles. In addition, thermal annealing effect is shown in 
the narrowing of the dominant peaks, indicating an increase 
of the nanocrystals’ size, which clearly indicates that the 
crystalline particles are thermally stable up to 300 °C. 
However the XRD of 400 °C shows impurity peaks along 
with the cubic CdS phase. Therefore the collapse of the 
cubic crystalline structure or the generation of impurity 
phases begin at about 400 °C; A resultant observation that is 
supported by TGA/DTA data. Figure 2 shows the TGA/DTA 
of the as prepared CdS nanoparticles. Weight loss at about 
200 °C corresponds to the adsorbed water on the surface of 
nanocrystals. The broad exotherm that starts at about 400 °C 
is supporting evidence for the collapse of cubic crystal 
structure of CdS and evolution of various impurity phases. 
The TGA/DTA result was in good agreement with the XRD.

Figure 3a, b shows the overall TEM image of the 
prepared oven dried CdS particles. The typical morphology 
of the CdS is small spheres with an average diameter of 
about 10 nm; however, some irregularly shaped particles 
were also observed. The agglomeration of particles in 
TEM may have arisen from the small dimensions and high 
surface energy. The selected area diffraction (SAED) pattern 
shows the multicrystal structure of the CdS nanoparticles 
as shown in Figure 3c. The diffraction rings correspond to 
cubic CdS crystal structure. The presence of a very intense 
ring corresponding to d value of 3.36 Å confirms that the 
films are composed of highly crytalline CdS of cubic phase. 
Planer reflection of (111), (220) and (311) can be seen in the 
SAED pattern of the CdS nanocrystals which agreed well 
with the XRD pattern.

The powder CdS nanoparticles were dispersed into 
DI water using ultrasonic bath. Then the UV-Vis and 
photoluminescence spectra of the CdS colloidal solution 
were recorded. Figure 4 shows the photoluminescence 
spectra of the prepared CdS nanoparticles. The typical 
UV-Vis absorption spectra of the CdS; nanoparticle recorded 
at room temperature is shown in the inset of Figure 4. The 
absorption peak at 480 nm belongs to CdS, it can be also 
observed that there are tails of more intense absorption 
occurring at shorter wavelengths which are due to higher 

energy electronic transitions as observable in low band gap 
semiconductor nanoparticles13. It was found that the CdS 
nanoparticle colloidal solution exhibited a PL peak centered 
at 449.7 nm. Because of the high surface-to-volume ratio, the 
PL efficiency of nanocrystals can be dramatically reduced by 
localized surface-trap states16-19. The CdS nanocrystals in the 
present study reduce effectively the local surface-trap states 
because of the highly crystalline nature of nanoparticles 
and the uniform dispersion of CdS nanocrystals in DI 
water. Much effort has been spent to study luminescence 
properties of CdS nanocrystals. It has been reported20 two 
emission bands, one is the green emission 552 nm, and the 
other is the broad red emission at 744 nm. Also, it has been 
found21 there were two luminescence peaks at 680 nm and 
760 nm (IR), which were attributed to the formation of the 
sulfur vacancies (V

s
) and Cd–S composite vacancies (V

cd-s
), 

respectively. It has been reported22 that Q-CdS showed 
the band edge PL peak centered at 450 nm. Also, it has 
been reported23 that before and after modification of CdS 
nanocrystals capped by ethylene diamine shows a PL peak 
centered at 450 nm. In this paper, the CdS nanocrystals 

Figure 1. XRD of oven dried and annealed CdS nanocrystals at 
different temperature.

Figure 2. TG/DT analysis of the as prepared oven dried CdS 
nanocrystals.
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exhibit a PL peak centered at 449.2 nm. An increase in PL 
emission intensity many times higher than the reported 
results was observed. It is suggested that the emission peak 
at 449.7 nm is attributed to the transition from conduction 

band to valance band and the emission peak blue shifts due 
to the quantum confined effect.

4. Conclusions

Thermally stable highly crystalline CdS nanoparticles 
were synthesized by chemical bath method. We have 
demonstrated the thermal stability and phase transformation 
of the CdS nanocrystals with respect to annealing 
temperature. The improved photoluminescence properties of 
the prepared CdS nanocrystals may provide a useful system 
for studies of the chemical and physical properties of the 
surface-traps on semiconducting nanoparticles.
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Figure 3. a) Overall TEM image, b) image at high resolution and c) selected area diffraction pattern of as prepared CdS nanocrystals.

Figure 4. Photoluminiscence spectra of CdS nanocrystals. For 
the PL spectra 390 nm wavelength was used for the excitation. 
Inset: UV-Visible absorption spectra of the CdS nanoparticles at 
200-700 nm.
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