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In hot working process, the prediction of material constitutive relationship can improve the 
optimization design process. Recently, the artificial neural network models are considered as a 
powerful tool to describe the elevated temperature deformation behavior of materials. Based on the 
experimental data from the isothermal compressions of 42CrMo high strength steel, an artificial neural 
network (ANN) was trained with standard back-propagation learning algorithm to predict the elevated 
temperature deformation behavior of 42CrMo steel. The inputs of the ANN model are strain, strain rate 
and temperature, whereas flow stress is the output. According to the predicted and experimental results, 
it indicates that the developed ANN model shows a good capacity of modeling complex hot deformation 
behavior and can accurately tracks the experimental data in a wide temperature range and strain rate 
range. In addition, the predicted data outside of experimental conditions were obtained, indicating 
good prediction potentiality of the developed ANN model. The q - s curves outside of experimental 
conditions indicate that the predicted strain-stress curves exhibit a typical dynamic recrystallization 
softening characteristic of high temperature deformation behavior. Through the coupling of the ANN 
model and finite element model, the hot compression simulations at the temperature of 1273 K and 
strain rates of 0.01~10 s–1 were conducted. The results show that the predicted constitutive data outside 
the experimental conditions successfully improved the prediction accuracy of forming load during 
the FEM simulation.

Keywords: artificial neural network, 42CrMo high strength steel, dynamic recrystallization, 
prediction potentiality, FEM simulation

1.	 Introduction
42CrMo (American grade: AISI 4140) is one of the 

representative medium carbon and low alloy steels. Due to 
its good balance of strength, toughness and wear resistance, 
42CrMo high strength steel is widely used for many 
general purpose parts including automotive crankshaft, 
rams, spindles etc. The understanding of metals and alloys 
flow behavior at hot deformation condition has a great 
importance for designers of hot metal forming processes 
(hot rolling, forging and extrusion). It is well known that the 
hot deformation behavior is sensitively dependent on many 
factors such as strain, strain rate, temperature, etc. It is a 
difficult task to understand their effects due to their complex 
nature1. The flow stress of 42CrMo steel shows a complex 
nonlinear intrinsic relationship with strain, strain rate and 
temperature, meanwhile the strain-softening behavior 
articulates dynamic recrystallization (DRX) mechanism, 
which controls microstructure and mechanical properties2. 
The occurrence of DRX brings about grain refinement 
and deformation resistance reduction, due to which the 
evaluation of the rate and progress of DRX in terms of 
deformation conditions is important3,4.

In the past, many investigations have been carried out 
to describe the plastic flow properties of metals and alloys. 

A number of constitutive models have been proposed to 
describe hot deformation behavior. Generally, these models 
are mainly divided into three categories: phenomenological5,6, 
physical-based constitutive model7,8 and artificial neural 
network model9. The phenomenological models consist 
of some mathematical functions which lack of physical 
background. Comparing with the phenomenological models, 
the physical-based constitutive models take into account the 
thermal deformation mechanism of materials. The above 
two models can be determined by the regression analysis 
method. Generally, the hot deformation behavior of metals 
is described by the phenomenological or physical-based 
constitutive model. However, the accuracy of the flow stress 
predicted by the regression method is lower due to the fact 
that the stress-strain behavior is highly nonlinear. Recently, 
artificial neural network (ANN) has been applied for solving 
highly nonlinear problems10-13. The main advantage of ANN 
model is that it needs not any well-defined mathematical 
model but a collection of input and output samples for 
training. The ANN model provides a novel way to learn the 
nonlinear relationship between input and output samples14,15.

It is accepted that the artificial neural network (ANN) 
is basically a data-driven black-box model capable of 
describing nonlinear processes like hot deformation, etc. 
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In this study, a feed-forward neural network unlike the 
regression method has been adopted to understand, memorise 
and generalize the highly nonlinear hot deformation 
behavior characteristics. The necessary work to develop an 
ANN model is selecting suitable training samples and test 
samples, and then adopting the optimal configuration of the 
ANN model structure16,17. The experimental data are divided 
into two datasets as following: a training dataset to train 
ANN model and a testing dataset to evaluate the capability of 
the well-trained ANN model18,19. The significant advantage 
of ANN is that it can approximate the target output as closely 
as possible. Sabokpa et  al. have established the artificial 
neural network to predict the high temperature flow behavior 
of an AZ81 magnesium alloy20. Haghdadi  et  al. have 
established the network with one hidden layer consisting of 
20 neurons which was found to be a robust tool to describe 
and predict the high temperature flow behavior of A356 
aluminum alloy21. Lin  et  al. have established the ANN 
model with conventional back propagation to predict the 
elevated temperature flow behavior of 42CrMo steel22. The 
conventional back propagation was created by generalizing 
the Widrow–Hoff learning rule to multiple-layer networks 
and nonlinear differentiable transfer functions. The 
conventional back propagation learning algorithm 
uses the gradient descent algorithm to reduce the error 
between output and target. However, the drawbacks of the 
conventional back propagation learning algorithm are slower 
convergence or lower generalization ability. In the paper, 
the ANN model was trained with the ‘trainbr’ optimization 
algorithm to improve network generalization ability. During 
network training process, the ‘trainbr’ function takes the 
methods of Levenberg-Marquardt optimization method 
and Bayesian regularization method to realize the neural 
network optimization. The results reveal that the network 
model with optimization algorithm can accurately tracks the 
experimental data in a wide temperature range and strain 
rate range, and it is an effective tool to predict the complex 
nonlinear deformation behaviors by self-training to be 
adaptable to the material characteristics23-25.

Moreover, in hot working process of metallic materials, 
the accurate constitutive model becomes critical for the 
correct finite element model of numerical simulation and 
the correct optimization of deformation processes6,11,12. In 
the study, the BP-ANN model with two hidden layers was 
developed to describe the hot deformation behavior of 
42CrMo steel. As a result, higher accuracy was obtained 
comparing with the model constructed by Lin  et  al22. 
Furthermore, the developed BP-ANN model gave a 
wider range of description of flow stress curves outside 
of experimental conditions26,27. The predicted constitutive 
data outside of experimental conditions were used to 
determine the deformation load and successfully improve 
the prediction accuracy in FEM simulation.

2.	 Materials and Experimental Procedure
The chemical composition (wt.%) of as-extruded 

42CrMo high-strength steel used in this study is as follows: 
C-0.450, Si-0.280, Cr-0.960, Mn-0.630, Mo-0.190, 
P-0.016, Cu-0.014, S-0.012, and the rest Fe. The original 

microstructure of 42CrMo high-strength steel is shown 
in Figure 1. It is found that the average grain size of the 
as–received billet is 53.1µm. The following experimental 
procedures are according to ASTM Standard: E209-00. 
The extruded rod with diameter 10mm was homogenized 
under temperature 1123 K for twelve hours. Then the rod 
was scalped to height 12mm with grooves on both sides 
filled with machine oil mingled with graphite powder as 
lubricant to reduce friction between the anvils and specimen, 
and seventeen such cylindrical specimens were prepared.

A computer-controlled, servo-hydraulic Gleeble-1500 
machine was used for compression testing. The specimens 
were resistance heated to the deformation temperature at 
a heating rate of 30 K/s and held at that temperature for 
180 s by thermo-coupled-feedback-controlled AC current. 
One specimen was considered as the as-received specimen, 
which was not heated and compressed for the observation of 
original microstructure. Sixteen specimens were compressed 
with a height reduction of 60% at four different temperatures 
of 1123 K, 1198 K, 1273 K, 1348 K and four different strain 
rates of 0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1. After each compression, 
the deformed specimens were rapidly quenched with water 
to retain the recrystallized microstructures. Then all the 
samples were sectioned perpendicular to the longitudinal 
compression axis for metallographic examination. The 
sections were polished and etched in an abluent solution 
of saturated picric acid. The optical microstructures in the 
center region of the section plane were examined.

During the compression process, the variations of stress 
and strain were monitored continuously by a personal 
computer equipped with an automatic data acquisition 
system. The true stress and true strain were derived from the 
measurement of nominal stress-strain relationship according 
to the following formula: σ

T
 = σ

N
(1+ε

N
), ε

T
 = ln(1+ε

N
), where 

σ
T
 is the true stress, σ

N
 is the nominal stress, ε

T
 is the true 

strain and ε
N
 is the nominal strain1,2. The true compressive 

stress-strain curves of as-extruded 42CrMo high-strength 
steel deformed at four temperatures and four strain rates 
are shown as Figure 2a~d, which in turn would be used to 
compute the ANN model.

Figure 1. Original microstructure of 42CrMo steel.
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3.	 Experimental Results
The true compressive stress-strain curves obtained from 

the hot compression tests of 42CrMo steel are depicted in 
Figure 2. The flow stress as well as the shape of the flow 
curves is sensitively dependent on temperature and strain rate. 
From the stress-strain curves, three types of curve variation 
tendency can be generalized. Firstly, the exceptional case 
that the flow stress increases monotonically from beginning 
to end with significant dynamic work-hardening (WH) 
(1123 K & 0.1 s–1). The flow stress at temperature of 1123K 
and strain rate of 0.1 s–1 increases monotonically from 
beginning to end, which is a special case responding with 
significant dynamic work-hardening (WH). Such is due to 
the fact that dislocation multiplication with deformation 
increasing. Meanwhile, at lower temperature, the flow 
stress increasing which is attributed to the fact that lower 
mobilities at boundaries and sliding of dislocation is much 
difficult; Secondly, the flow stress gradually increases to a 
peak (initial working hardening) and then decreases slowly 
to a steady state indicating DRX softening (1123~1348 K 
& 0.01 s–1, 1198~1348 K & 0.1 s–1, 1273~1348 K & 1 s–1); 
Thirdly, the flow stress curves have no apparent peak stress 
with the softening mechanism dynamic recovery (DRV) 

characterizing (1123~1198 K & 1 s–1, 1123~1348 K & 
10 s–1). Therefore, the analysis of true compressive stress-
strain curves reveals that the hot deformation behavior of 
42CrMo steel is very complex and highly nonlinear with 
various metallurgical phenomena like work hardening, 
dynamic recovery and dynamic recrystallization.

4.	 Development of the ANN Model for 
42CrMo Steel

4.1.	 Artificial neural model

Artificial neural network (ANN) is a relatively new 
artificial intelligence technique that emulates the behavior 
of biological neural systems in digital software or hardware. 
The ANN model consists of an interconnected group of 
processing elements which are called artificial neurons. 
Some neurons receiving input signals were called the input 
layer; while other neurons generating output signals were 
called the output layer. Besides, rest of the neurons as the 
hidden layers to mimic the complex nonlinear relationships 
between input signals and output signals. In this study, a 
multilayer neural network based feed-forward network with 
back-propagation (BP) algorithm has been adopted, since 

Figure 2. True stress-strain curves of 42CrMo high-strength steel obtained by Gleeble-1500 under the different deformation temperatures 
with strain rates (a) 0.01 s–1, (b) 0.1 s–1, (c) 1 s–1, (d) 10 s–1.
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the multilayer neural network is a quite efficient tool to 
understand, memorise and generalize the highly nonlinear 
characteristics. A typical ANN model consists of an input 
layer, one or more hidden layers and one output layer. 
The ANN model can learn from examples and recognize 
patterns in a series of input and output data using the back-
propagation learning algorithm. BP algorithm learns the 
constitutive relationships between the selected inputs and 
outputs, and it adjusts the weights and biases to minimize 
the target error by utilizing gradient descent during training 
procedure. Hence, a feed forward network trained with the 
back propagation algorithm was developed, as shown in 
Figure 3.

In the ANN model, the input variables are deformation 
temperature (T), strain rate ( ε ) and strain (ε), while the 
output variable is flow stress (s). The experimental data 
(total of 720 experimental data points) obtained from the 
compression test were used to train and test the model. All 
the data were divided into two sets: 82% data points were 
selected as training dataset for training the ANN model and 
the remaining 18% data points (as shown in Table 1) were 
used as testing dataset for evaluating the performance of the 
ANN model. As can be seen, the input strain was varies from 
0.02 to 0.9 (interval 0.02), the temperature was varies from 
1123 K to1348 K and the strain rate was varies from 0.01 
to 10 s–1. The output flow stress was varies from 3.86 Mpa 
to 237.53 Mpa. Therefore, the input and output data were 
measured in different units, before training, all the data need 
to be normalized into the dimensionless units to remove the 
arbitrary effect of similarity between the different data28,29. 
The temperature, strain and flow stress were normalized 
within the range from 0 to 0.25 using the relation given by 
Equation 1, the strain rate was normalized within the range 
from 0.05 to 0.3 using the relation given by Equation 2.
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where x
n
 is the normalized value of x, x is the experimental 

data, x
max

 and x
min

 are the maximum and minimum value of 
x respectively.

As stated above, the optimal configuration of the 
ANN model structure should be adopted ensuring a high 
training accuracy. Architecture selection requires choosing 

an appropriate transfer function, training function and an 
appropriate neuron number for each hidden layer26,27. In the 
present model, two hidden layers are adopted, the transfer 
function is determined as ‘tan sigmoid’ for each hidden layer, 
‘pure linear’ for output layer30. In order to improve network 
generalization ability, the ANN model was optimized by 
the training function with neural network optimization 
algorithms. ‘Trainbr’ is a network training function that 
updates the weight and bias values according to Levenberg-
Marquardt optimization. It minimizes a combination of 
squared errors and weights, and then determines the correct 
combination so as to produce a network that generalizes 
well. The process is called Bayesian regularization method. 
The method involves modifying the performance function 
by adding a term that consists of the mean of the sum of 
squares of the network weights and biases (msereg), which 
was shown in Equation 3. Using this performance function 
causes the network to have smaller weights and biases, 
and it forces the network response to be smoother and less 
likely to overfit.
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Where g is the performance ratio, t
i
 is the target value, 

a
i
 is the output value, n

1
 is the number of training sample, 

n
2
 is the number of network weights.

The neuron number for each hidden layer is often settled 
by a trail-and-error procedure according to the experience 
of designers. If the neuron number of each hidden layer in 
the ANN model is too much, the neural network would be 
complex and too more neurons may slow the convergence 
rates or overfit the data. Otherwise, the trained network may 
not learn the process sufficiently. The value of mean square 
error (MSE) obtained from Equation 4 is used to check the 
ability of the trained network.

( )2

1

1 N
i i

i
MSE E P

N =
= -∑ 	 (4)

Where E is the sample of experimental value, P is the 
sample of predicted value by ANN model, N is the number 
of strain-stress samples.

As a series of ANN models with different neuron 
number had been trained well, the MSE values which show 
the influence of neuron number for each hidden layer on 
the network performance were calculated. As shown in 
Figure 4, the mean square error (MSE) is relatively constant 
with the increasing of neuron number; it indicates that the 
algorithm has converged. It can be seen that the MSE value 
decreases to the minimum value when the neuron number 
was increased to eight in each hidden layer, respectively. It 
indicates that the ANN model with eight neurons in each 
hidden layer provides the best performance.

4.2.	 The evaluation of the ANN model

The ANN model for predicting the flow stress of 
42CrMo steel was developed by the unified training datasets 
corresponding to true strains of 0.02~0.9, temperatures 
of 1123 K, 1198 K, 1273 K, 1348 K, and strain rates of 
0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1 respectively. Table 1 shows Figure 3. Schematic illustration of the neural network architecture.
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the experimental and predicted flow stress along with the 
associated absolute error and relative percentage error for 
the testing data. The absolute error is the deviation between 
the predicted and experimental values which expressed by 
Equation  5. The relative percentage error is introduced 
which expressed by Equation 6. Relative percentage error 
is used to compare different measurements because, being 
a percent, it compare each error in terms of 100.

� = i iAbsolute err  Eor P- 	 (5)

� ( )% = 100% i i

i
R E Pelative r

E
erro -

× 	 (6)

where E is the sample of experimental value, P is the sample 
of predicted value by one model, N is the number of strain-
stress samples.

It is found that the absolute error obtained from ANN 
model varies from –3.69 to 3.67 (Mpa), whereas the relative 
percentage error is in the range from –5.72% to 4.45%. 
As shown in Figure 5a, the absolute errors are within ±4 
(Mpa), the maximum absolute error between the predicted 
and experimental values is 3.69 (Mpa). As shown in 
Figure 5b, the relative percentage errors are within ±6%, the 
maximum relative percentage error between the predicted 
and experimental values is 5.72%, which reveals the high 
accuracy of the developed ANN model. In addition, in 
order to evaluate the predictability of the ANN model, two 
evaluators, correlation coefficient (R) and average absolute 
relative error (AARE) are introduced, and it is expressed by 
Equation 7 and Equation 8, respectively. R is commonly 
used to represent the strength of linear relationship between 
experimental values and predicted values. AARE is very 
similar to the relative squared error in the sense that it is 
also relative to a simple predictor, which is just the average 
of the actual values. In this case, though, the error is just 
the total absolute error instead of the total squared error. 
Thus, the relative absolute error takes the total absolute 
error and normalizes it by dividing by the total number of 
strain-stress samples.
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where E is the sample of experimental value, P is the sample 
of predicted value by ANN model, E  and P  are the mean 
value of E and P respectively, N is the number of strain-
stress samples.

Table 1. The parameters of the ANN model.

ANN model Parameters

Input variables T, ε , e
Output variable s

Learning algorithm back-propagation

Training function Trainbr

Transfer function Tan sigmoid (hidden layer)

Pure linear (output layer)

Hidden neurons 8 (first layer)

8 (second layer)

Training goal 10–6

Figure 4. The influence of neuron number for each hidden layer 
on the network performance.

Figure 5. Distribution on (a) absolute error and (b) relative percentage error.
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Comparisons of the ANN predicted flow stress with 
the experimental flow stress during training and testing are 
shown in Figure 6a and b respectively. Table 2 shows the 
R-values and AARE-values of the ANN models constructed 
by Lin  et  al.22 and in this study respectively. It can be 
seen that the higher R-value and lower AARE-value were 
obtained from the ANN model constructed in this study. 
Observations indicate the developed ANN model for 
42CrMo steel has good prediction ability. After the ANN 
model is evaluated, the predicted flow stress from the ANN 
model and the corresponding experimental flow stress at 
different deformation temperatures and strain rates were 
compared. As shown in Figure  7, the constitutive data 
predicted by the ANN model are fit with the experimental 
results well not only at the hardening stage but also at 
softening stage (whatever it is DRX or DRV softening 
mechanism). Therefore, it can be concluded that the ANN 
model is an effective tool to predict the complex nonlinear 
high temperature deformation behavior of 42CrMo steel.

5.	 The Application of ANN Model in 
Isothermal Compression Deformation

5.1.	 Prediction potentiality of the ANN model

The developed ANN model is applied to simulate the 
deformation behavior of 42CrMo steel. For obtaining more 
constitutive information of 42CrMo steel, the developed 
ANN model was extended to predict the constitutive data 
at supposed temperatures of 1173K, 1248 K, 1298 K and 
strain rates of 0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1, which were not 
included in the compression tests. The constitutive data are 
shown in Figure 8a~d, in which each solid line represents 

the 3D response plot of experimental stresses to strain 
and temperature under a fixed strain rate, meanwhile each 
dash line composed of a rhombus matrix represents the 3D 
response plot of predicted stresses outside of experimental 
conditions. As expected, the obtained constitutive data from 
the ANN model show the same variation with temperature, 
strain rate and strain as experimental data. From the 
predicted stress-strain curves, it can be concluded that the 
work-hardening effect is pronounced at higher strain rate 
and lower temperature. For the higher temperature and 
lower strain rate, the stress-strain curves show transient 
flow softening behavior. Here, the experimental and the 
predicted stress-strain data (Figure 8a~d) was analyzed by 
fitting each curve with a polynomial expression and taking 
its derivative with respect to strain in order to obtain the 
work hardening rate. As shown in Figure 9a~d, the WH 
rate (q = ds/de) is the derivative of stress with respect to 
strain (e), which corresponds to the tangent at this value of 
strain. The q – s curves outside of experimental conditions, 
as well as the q – s curves under experimental conditions, 
gradually decrease to a lower slope and then drop towards 
q = 0 at peak stress, s

P
, from the inflection at critical stress, 

s
C
 indicating the occurrence of DRX.

It can be seen that the predicted stress evolution with 
strain exhibits three types of curve variation tendency. 
Firstly, the exceptional case that the flow stress increases 
monotonically from beginning to end showing dynamic 
work-hardening (WH) (1173 K & 0.1 s–1); Secondly, the 
flow stress decreases gradually to a steady state indicating 
DRX softening (1173~1298 K & 0.01 s–1, 1248~1298 K 
& 0.1 s–1, 1173~1298 K & 1 s–1); Thirdly, the flow stress 
maintains a steady state flow with higher stress level with 
the softening mechanism DRV characterizing without 
significant softening and work-hardening (1173~1298  K 
& 10 s–1). It can be summarized that the typical form of 
flow curve with DRX softening, including a single peak 
followed by a steady state flow as a plateau, is more 
recognizable at high temperatures and low strain rates. It 
is found that the predicted stress-strain curves outside the 
experimental conditions articulate the similar relationships 
with experimental stress-strain curves. Therefore, it can 
conclude that the developed ANN model has good prediction 

Table  2. Comparison between the models constructed by 
Lin et al.22 and in this study.

Statistical index R AARE(%)

Training Testing Training Testing

Lin et al.22 0.994 0.993 4.38 4.56

In this study 0.9997 0.9997 1.5 0.99

Figure 6. Correlation between experimental and predicted flow stress for the (a) training and (b) test dataset.
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potentiality to predict the highly nonlinear deformation 
behavior.

5.2.	 Model application in isothermal 
compression deformation

In this section, the predicted constitutive data were 
used as the basic data in the finite element method (FEM) 
analysis software DEFORM-2D. To evaluate the accuracy 
of the constitutive data obtained by ANN model, the hot 
compression simulations at the deformation temperature 
of 1273 K and strain rate of 0.01~10 s–1, as a comparison, 
was performed. The meshed finite element model for initial 
billet is shown in Figure 10a. The dimensions of the initial 
billet are diameter 10mm and height 12mm. The deformed 
block with deformation degree of 60% (reduction in 
height) is shown in Figure 10b. According to the lubricated 
conditions that graphite lubricants were used to coat the top 
and bottom surfaces of specimen during compression test, 
the friction at the deformed block-tooling interfaces was 
assumed to be of shear type and friction factor was assumed 
to be 0.3. In order to approximate the actual condition of 
hot isothermal compression test, thermal radiation and heat 
exchange between billet, dies and surrounding atmosphere 
were ignored.

During the simulation, the billet was deformed at the 
constant strain rate of 0.01~10 s–1, the bottom die was set 
to be the fixed, the movement of the top die was set by 
displacement control mode according to the Equation 9:

� ( )0 1 exp( )L L t= - -ε 	 (9)

Where, L is the compression amount of workpiece, 
which also equates with the displacement of the top die, 
while L

0
 is the original height of workpiece. ε  is the expected 

constant strain rate in the heart of workpiece under the 
above displacement control mode. t is the corresponding 
compression time at the compression amount of L.

During isothermal compression tests, the load-stroke 
data of 42CrMo steel were recorded by the Gleeble-1500 
thermal-mechanical simulator. Therefore, the forming 
loads (1273 K & 0.01s–1~10s–1) which were acquired 
using the load-stroke data obtained from the isothermal 
compression tests were used as the experimental values. 
However, when the experimental material data (1123  K, 
1198 K, 1348 K & 0.01s–1~10s–1) were used as the 
constitutive data in the FEM simulation process, the 
forming load (1273 K & 0.01s–1~10s–1) obtained from the 
FEM simulation results were used as the validation values. 
While when the experimental material data (1123 K, 1198 

Figure 7. Comparison between the experimental and predicted flow stress from the ANN model at different strain rates and temperatures 
(a) 0.01 s–1, 1123~1348 K, (b) 0.1 s–1, 1123~1348 K, (c) 1 s–1, 1123~1348 K, (d) 10 s–1, 1123~1348 K.
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K, 1348 K & 0.01s–1~10s–1) and the ANN predicted data 
(1173 K, 1248 K, 1298 K & 0.01s–1~10s–1) were used as 
the constitutive data in the FEM simulation process, the 
forming load (1273 K & 0.01s–1~10s–1) obtained from the 
FEM simulation results were used as the predicted values. 
The experimental and simulation results were shown in 
Figure 11. Basically, the constitutive data which were used 
in the simulation are discontinuous, the simulation process 
was conducted through interpolation method. Therefore, 
when the ANN predicted constitutive data were applied in 
the FEM simulation, it is found that the predicted values 
can well track the upsetting experiment results on thermal 
physics simulator Gleeble-1500. As shown in Figure 12, 
the maximum forming load relative errors between the 
experimental results and the FEM simulation results are 
introduced which expressed by Equation 5, during which 
E is the sample of experimental value, P is the sample of 

validation values or the ANN predicted value respectively. 
The validation relative errors between the validation values 
and experimental values with the deformation degree 
of 60% are found to be –18.06%, –23.30%, –12.51%, 
–13.07% under the strain rates of 0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1 
respectively. While the predicted relative errors between 
the predicted values and experimental values with the 
deformation degree of 60% are found to be –4.82%, –3.92%, 
–8.48%, –7.95% under the strain rates of 0.01 s–1, 0.1 s–1, 
1 s–1, 10 s–1 respectively. The results show that the predicted 
data obtained by ANN model outside the experimental 
conditions successfully improved the prediction accuracy 
of the forming load in the FEM simulation. Therefore, it can 
concluded that the predicted data obtained by ANN model 
outside the experimental conditions are effective and helpful 
for FEM simulation.

Figure 8. The 3D plot of flow stress as function of strain and temperature at the strain rate of (a) 0.01 s–1, (b) 0.1 s–1, (c) 1 s–1, (d) 10 s–1.
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Figure 9. q = ds/de versus � plots under different deformation temperatures with strain rates (a) 0.01 s–1, (b) 0.1 s–1, (c) 1 s–1, (d) 10 s–1.

Figure 10. The finite element model: (a) initial billet (b) deformed block.
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5.3.	 Microstructural evolution

Optical microstructures of 42CrMo high-strength steel 
at a fix true strain of 0.9, a fix temperature of 1273 K and 
different strain rates were shown in Figure 13. It found that 
the initial equiaxed grains (as shown in Figure 1) with a 

large quantity of twin boundaries transform to recrystallized 
grains with wavy or corrugated grain boundaries. In fact, 
the dislocation density tends to accumulate as the strain 
rate increase thereby the flow stress increases and the DRX 
softening decreases correspondingly. Therefore, the forming 
load increases with the increase of strain rate due to the 
fact that the stress increase with the increase of strain rate, 
which in turn requires large forming load. Furthermore, in 
Figure 14, as deformation strain rate (in log scale) increases, 
the initial microstructure with average grain size of 53.1µm 
becomes more and more refined due to the fact that there is 
no enough time for DRX.

6.	 Conclusions
The constitutive relationship of 42CrMo steel was 

established using the ANN model, the optimal architecture 
of ANN model is 3-8-8-1, the inputs are deformation 
temperature, strain rate and strain, whereas flow stress is 
the output. The conclusions are as following:

(1)	 The R-value and AARE-value for the training data 
are found to be 0.9997 and 1.50% respectively, 
meanwhile, the R-value and AARE-value for the 
testing data are found to be 0.9997 and 0.99% 
respectively, indicating that the ANN model has 
higher predictability.

Figure 11. Comparisons among validation, ANN prediction and experimental values with deformation degree of 60% and strain rates 
(a) 0.01 s–1, (b) 0.1 s–1, (c) 1 s–1, (d) 10 s–1.

Figure 12. The maximum forming load relative errors between the 
validation values, ANN prediction values and experimental values 
with deformation degree of 60%.
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Figure 13. Optical microstructures of as-extruded 42CrMo high-strength steel at a fix true strain of 0.9, a fix temperature of 1273 K and 
different strain rates: (a) 0.01 s–1, (b) 0.1 s–1, (c) 1 s–1, (d) 10 s–1.

Figure 14. Average grain size of 42CrMo high-strength steel at a 
fix temperature of 1273 K and different strain rates.

(2)	 The predicted stress-strain curves outside the 
experimental conditions articulate the similar 
relationships with experimental stress-strain curves. 
Meanwhile, the q – s curves indicate that the 
predicted constitutive data exhibit a typical dynamic 
recrystallization softening characteristic of high 
temperature deformation behavior.

(3)	 The predicted constitutive data outside the 
experimental conditions successfully improved 
the prediction accuracy of forming load in the 
FEM simulation. It is found that the ANN model 
is an effective tool which was applied in the FEM 
simulation.
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