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Mn-CeO
2
 submicrorods have been obtained from anomalous CeO

2
 particles though a novel 

composite-hydroxide-salt-mediated (CHSM) approach. This method is based on a reaction between 
a metallic salt and a metallic oxide in a solution of composite-hydroxide-salt eutectic at ~225 °C and 
normal atmosphere without using an organic dispersant or capping agent. The magnetic measurement 
of the Mn-CeO

2
 submicrorods exhibits an enhanced ferromagnetic property at room temperature with 

a remanence magnetization (M
r
) of 1.4 × 10–3 emu.g–1 and coercivity (H

c
) of 75 Oe. The UV-visible 

spectra reveal that the absorption peak of the CeO
2
 shifts from ultraviolet region to visible light region 

after being doped with Mn ions. The room temperature ferromagnetic properties and light absorption 
of the Mn-CeO

2
 submicrorods would have wide applications in spintroics and photocatalysis field.
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1.	 Introduction
Ceria (CeO

2
) is an ionic and insulating oxide with the 

cubic fluorite structure (CaF
2
). It has been widely used in fuel 

cells1,2, treatment of industrial wastewater3-5. In addition, they 
have been used as polishing media in optics6, as components 
for H

2
 production7 and as efficient catalysts8. More recently, 

ceria doped with metal ions has exhibited novel properties 
in many aspects. Xia et al.9 have prepared Mn-doped CeO

2
 

nanorods by facile composite‑hydroxide‑mediated (CHM) 
approach. They suggested that Mn-doped CeO

2
 nanorods 

would have potential applications in photocatalysis and 
building of photovoltaic devices. R.S. de Biashi  et  al.10 
have investigated electron spin resonance spectra of Cu2+ in 
diluted solid solutions of Cu in CeO

2
. The results suggest 

that the solid solution of Cu in CeO
2
 exhibits clustering 

effects. Copper-doped CeO
2
 is used as a catalyst, especially 

for the reduction of SO
2
 by CO11-13. G. Qi et al.14-15 have 

reported the application of Mn-CeO
2
 in the low-temperature 

selective catalytic reduction (SCR) of NO
x
. Corma et al.16 

found that CeO
2
 nanoparticles as well as rare-earth-doped 

ceria did not need photosensitization to have photovoltaic 
activity in the visible region. Wen et al.17 have found that 
the absorption coefficient of Fe-CeO

2
 in a frequency range 

of 0.2-1.8 THz was less than 0.35 cm–1. The result indicates 
that Fe-CeO

2
 may be a potential candidate as THz optical 

materials. Chen et al.18 have investigated the synthesis and 
room‑temperature ferromagnetism of CeO

2
 nanocrystals 

with nonmagnetic Ca2+ doping (Ca-CeO
2
). Zhang et  al.19 

have synthesized Ba-doped CeO
2
 nanowires and found 

that their humidity sensitivity was greatly enhanced 
in comparison with pure CeO

2
 particles. Additionally, 

Gd-, Sm-, Y-, Tb- and Fe-doped CeO
2
 have been studied 

extensively20-24.
In the current research, we report a novel approach 

for the synthesis of Mn-CeO
2 
submicrorods. The method 

is based on a reaction between a metallic salt and a 
metallic oxide in a solution of molten mixed potassium 
nitrate and potassium hydroxide eutectic at ~225 °C and 
normal atmosphere without using an organic dispersant or 
capping agent. Although the melting points (T

m
) of both 

pure potassium hydroxide and potassium nitrate are over 
300 °C, T

m
 = 404 °C for KOH and T

m
 = 337 °C for KNO

3
, 

the eutectic point at KOH/KNO
3
 = 63.8:36.2 is only about 

225 °C. During the reaction process, hydroxides work not 
only as the solvent but also as the reactant for reducing the 
reaction temperature. The advantage of this methodology 
is the easy recycle of by-products, owing to applying the 
salt nitrate and hydroxide of the same metal. Additionally, 
this methodology provides a one-step, convenient, low-cost, 
nontoxic, and mass-production route for the synthesis of 
nanostructures of functional oxide materials.

The as-synthesized submicrorods were characterized 
by X-ray diffraction (XRD), scanning electron microscopy 
(SEM), transmission electron microscopy (TEM). The 
magnetic properties of the Mn-CeO

2
 submicrorods were 

investigated. Photoabsorption of Mn-CeO
2 

submicrorods 
and pure CeO

2
 particles were comparatively studied via 

UV-visible diffuse reflectance spectra.
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2.	 Experimental
Mn-CeO

2
 submicrorods were synthesized by the 

composite-hydroxide-salt-mediated (CHSM) method 
without using any capping agent. All reactants were of 
analytical grade. The synthesis steps are as follows: (1) a 
total of 20 g of KOH and KNO

3
 was mixed at a ratio of 

63.8:36.2 and placed in a 25 mL Teflon vessel. (2) A 
mixture of 1 mmol CeO

2
 and 1 mmol Mn(NO

3
)

2
·6H

2
O each 

was used as the raw material for reaction, and was placed 
on the top of the hydroxide and salt nitrate in the vessel. 
(3) The Teflon vessel was put into a furnace preheated to 
235 °C. (4) After the hydroxide and salt nitrate were totally 
molten (30 minutes later), the molten reactants were mixed 
uniformly by shaking the covered vessel. (5) 24 hours later, 
the vessel was taken out and cooled to room temperature 
naturally. The product was collected by centrifugation and 
through washing with deionized water and ethanol.

X-ray diffraction measurement (XRD, D8-Advance, 
Germany) with the use of Cu Kα radiation (λ = 1.5418 Å) 
in the 2θ range from 20° to 70° were used to investigate 
the crystal phase. The morphology and the size of the 
synthesized samples were characterized by a field emission 
scanning electron microscopy (SEM, S-4800, Japan) and 
at 120 kV by a transmission electron microscopy (TEM, 
JEM‑100CXII, Japan). Energy-dispersive spectroscopy 
(EDS) was employed to determine the final actual Mn 
concentration in the composites. The selected-area diffraction 
(SAED) pattern was taken on the TEM. Ultraviolet-visible 
(UV-vis) diffuse reflectance spectra were obtained for the 
dry-pressed disk samples by using a Shimadzu UV-2550 
recording spectrophotometer, which was equipped with 
an integrating sphere, and BaSO

4
 was used as a reference. 

The magnetic measurement was obtained on a Micromag 
Model 2900 Alternating Gradient Magnetometer (AGM). 
The magnetic hysteresis loop was observed in the range of 
–10 kOe < H < 10 kOe at temperature of 293 K.

3.	 Results and Discussion
Figure 1 shows the XRD patterns of the source material 

CeO
2
 and the Mn-CeO

2
 sample synthesized at 235 °C for 

24 hours. All the peaks are assigned by using the JCPDS 
file (no. 34-0394) which is a pure cubic phase (Fm3m). 
Comparing the curves of the pure CeO

2
 with that of the 

Mn‑CeO
2
 submicrorods, there are no additional diffraction 

peaks, indicating that Mn ions might have entered into 
the CeO

2
 lattices and there are no secondary phases or 

precipitates in the Mn-CeO
2
 sample. Additionally, we also 

find that diffraction peaks of the Mn-CeO
2
 submicrorods 

slightly shift to larger Bragg angles. One possible 
explanation might be that the incorporation of Mn2+ or 
Mn3+ into the lattice results in the decrease of the lattice 
parameters as the ionic radius of Mn2+ (0.066 nm) and Mn3+ 
(0.062 nm) are smaller than that of Ce4+ (0.097 nm)9.

Figure  2a,  c shows the SEM images of the source 
material CeO

2 
and the Mn-CeO

2 
submicrorods, respectively. 

The anomalous particles morphology of the source material 
CeO

2
 can be seen with the diameter ranging from 2-8 μm. 

When doped with Mn ions, the particles convert gradually 

into submicrorods with lengths of 2-3 μm, as shown in 
Figure 2b. For Mn-CeO

2 
submicrorods, the crystal face is 

clean and sharp, and no amorphous layer is present, because 
no organic reagent of capping material was introduced 
during the synthesis process. The interesting morphological 
conversion of the CeO

2 
from anomalous particles into 

single-crystal submicrorods might be explained by a 
dissolution-recrystallization mechanism25. The crystal 
growth experiences first the CeO

2
 and Mn(NO

3
)

2
 dissolving 

in the molten composite alkali and salt of the same metal 
solvent, and then CeO

2
 recrystallizing while some Mn ions 

dope in, and finally crystal growth into the submicrorod 
morphology. The selected area electron diffraction (SAED) 
pattern of the corresponding edge of the submicrorod in 
Figure 2b demonstrates its single-crystalline structure. The 
growth direction of the submicrorods is [110]. The EDS 
indicates the existence of Ce, Mn and O in the submicrorods 
(Figure 2d). In addition, EDS measurement shows that the 
ratio of the elements in the product is Mn/Ce/O = 1:1:4, 
demonstrating the controllability in chemical composition.

The XPS measurements provided further information 
for the evaluation of the purity and surface composition 
of the Mn doped CeO

2
 sample. The XPS survey spectrum 

in Figure  3a demonstrates no peaks of other elements 
than C, Mn, Ce and O in the sample. Figure 3b-d shows 
the high-resolution XPS spectra of Ce 3d, Mn 2p and 
O 1s, respectively. Figure  3b illustrates Ce 3d XPS 
spectra measured for the Mn doped CeO

2
 samples. The 

six components observed in the spectrum (882.7, 889.1, 
898.6, 900.9, 907.9 and 916.7 eV) could be assigned 
unambiguously to Ce4+ species by comparison with data 
reported in the literature26. The two peaks of the Mn region 
at 640.8 eV and 652.7 eV are assigned to Mn 2p

3/2
 and Mn 

2p
1/2

, demonstrating the existence of Mn2+[27]. The O 1s peak 
centered at 529.3 eV belongs to the O2– in Ce-O bond9.

Figure 4 shows the UV-visible diffuse reflectance spectra 
of the raw material CeO

2
 (Figure 4a) and the as‑synthesized 

Mn-CeO
2
 submicrorods (Figure 4b). From this figure, we 

observe that the absorption peak is in the visible light region 
centered at 414.5  nm after being doped with Mn ions. 
Xia et al.9 have reported that the absorption peak of CeO

2
 

and Mn-CeO
2
 submicrorods was in the ultraviolet region 

centered at 349.22 nm and the visible light region centered 
at 403.96 nm, respectively. Thurber et al.28 have reported 
the similar phenomenon of the Ni-doped CeO

2
. They found 

that the band gap changed from 3.80 to 3.23 eV when the 
CeO

2
 was doped with 4% Ni. Thurber et al. attributed this 

change to the extensive structural changes caused by the 
incorporation of interstitial Ni. Xia et  al. speculated that 
the peak shift was the result of the defects (such as oxygen 
vacancies) or the impurities caused from the incorporation 
of the Mn ions as the defects and impurities could result 
in the formation of sublevels within the band gap. In 
conclusion, the red-shift phenomenon has been observed in 
this experiment which could be attributed to electron-phonon 
coupling. In certain systems, electron‑phonon coupling 
could be strong enough to overcome the spatial confinement 
to determine the energy of excitons. It determines or 
modifies the effective mass of carriers and the style of 
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carrier scattering by the lattice, leading to a red-shift of 
the emission band29,30. In addition, we have also observed 
that the absorption range of the Mn-CeO

2
 submicrorods is 

wider than that of the pure CeO
2
 particles. This phenomenon 

suggests the energy absorption form the charge transition 

between multisublevels, and indirectly reveals the existence 
of both defects and impurities. The broad light absorption of 
the Mn-CeO

2
 submicrorods shows promise in photocatalytic 

or photovoltaic applications by harvesting solar energy, as 
demonstrated by the rare-earth-doped ceria in the dye-free 
solar cell16.

The magnetization hysteresis (M-H) loops of the 
Mn‑CeO

2
 submicrorods at 293 K have been measured, 

as shown in Figure 5. Room temperature ferromagnetism 
(weak magnetism) of the pure CeO

2
 particles has been 

observed31 in which the ferromagnetism was assumed 
to limited surface defects of the micron-sized particles. 
However, after the incorporation of Mn ions, the magnetism 
of the Mn-CeO

2
 submicrorods is greatly enhanced. The 

magnetization increases almost linearly under an applied 
magnetic field up to 1000 Oe. Saturated magnetization is not 
observed even under an applied magnetic field up to 10 kOe. 
From the hysteresis loop between –2000 and 2000 Oe, the 
remanence magnetization (M

r
) of 1.4 × 10–3 emu.g–1 and 

coercivity (H
c
) of 75 Oe was observed in Figure 4b. The 

magnetic properties of CeO
2
 doped with metal ions, such as 

Co, Ni, Ca ions25,32,33 have been suggested to originate from 
a combination of oxygen vacancies and metal ions doping.

Figure  2. SEM images of the source material CeO
2
 (a) and TEM images, electron diffraction pattern (inset of b) of the Mn-CeO

2
 

submicrorods sample synthesized at 235 °C for 24 hours (b).

Figure  1. XRD patterns of the source material CeO
2
 and the 

Mn-CeO
2
 submicrorods obtained at 235 °C for 24 hours.
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Figure 4. UV-visible diffuse reflectance spectrum of the CeO
2
 particles (a) and the Mn-CeO

2
 submicrorods (b).

Figure 3. XPS integral spectrum (a) and Ce 3d (b), Mn 2p (c) and O 1s (d) spectrum of Mn-doped CeO
2
 nanorods.
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Figure 5. Magnetization hysteresis loop for the obtained Mn-CeO
2
 submicrorods at temperature of 293 K.

4.	 Conclusions
Mn-CeO

2
 submicrorods are synthesized from the 

reaction of CeO
2
 with Mn(NO

3
)

2
·6H

2
O through the CHSM 

method, which provides a one-step, convenient, low-cost, 
nontoxic, and mass-production route. Owing to the defects 
and impurities, the absorption spectra of the CeO

2
 shows 

that the peak shifts from the ultraviolet region to the visible 
light region after being doped with Mn ions. The Mn-CeO

2
 

submicrorods exhibit an enhanced room temperature 
ferromagnetism originating from the defects and the doped 

Mn ions. The room temperature ferromagnetic properties 
and light absorption of the Mn-CeO

2
 submicrorods suggest 

potential applications in spintroics and photocatalysis field.
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