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Welding input parameters play a very significant role in determining the quality of a weld joint. 
The quality of the joint can be defined in terms of mechanical properties, distortion and weld-bead 
geometry. Generally, all welding processes are employed with the aim of obtaining a welded joint with 
the desired characteristics. The purpose of this study is to propose a method to decide near optimal 
settings for the welding process parameters in friction welding of (AISI 904L) super austenitic stainless 
steel by using non conventional techniques and genetic algorithm (GA). Grey relational analysis and 
the desirability approach were applied to optimize the input parameters by considering multiple output 
variables simultaneously. An optimization method based on genetic algorithm was then applied to 
resolve the mathematical model and to select the optimum welding parameters. The main objective 
of this work is to determine the friction welding process parameters to maximize the fatigue life 
and minimize the width of the partial deformation zone (left & right) and welding time. This study 
describes how to obtain near optimal welding conditions over a wide search space by conducting 
relatively a smaller number of experiments. The optimized values obtained through these evolutionary 
computational techniques were also compared with experimental results. ANOVA analysis was carried 
out to identify the significant factors affecting fatigue strength, welding time and partially deformed 
zone and to validate the optimized parameters.

Keywords: genetic algorithm, grey relational analysis, desirability approach, fatigue life, partially 
deformed zone (PDZ)

1.	 Introduction
Friction welding has great potentials in the field of 

aerospace and in other industrial applications specially in 
the production of steering shaft, tulip shaft, aluminum guide 
roller, track roller gear coupling body, flange gear and engine 
valve in automobile industry. In friction welding process, 
heat is generated by conversion of mechanical energy 
into thermal energy at the interfaces of the components 
during rotation under pressure without any energy from 
environment1-3. In continuous-drive method, one of the 
components is rotated at a constant speed (s), while the 
other is pushed toward the rotated part by a sliding action 
under a predetermined pressure – friction pressure. Friction 
pressure is applied for a certain friction time. Then, the 
drive is released and the rotary component is quickly 
stopped while the axial pressure is being increased to a 
higher predetermined upset pressure for a predetermined 
upset time4. This study concerns with the continuous-drive 
friction welding of (AISI 904L) super austenitic stainless 
steel. Super austenitic stainless steel is the preferred material 
for high corrosion resistance applications. This steel bridges 

the gap between relatively costlier austenitic stainless steel 
and expensive nickel base super alloys. The microstructure 
of super austenitic stainless steel (SASS) consists of a fully 
austenitic structure in the solution-quenched condition. 
To obtain good quality joint it is important to set up the 
proper welding process parameters. The welding process 
is a multi-input and multi-output process in which joints 
are closely associated with welding parameters. Therefore, 
identifying the suitable  combinations of process input 
parameters to produce the desired output require many 
experiments making this process time consuming and 
costly. Therefore many studies had been carried out by 
various researchers on the process parameter optimization 
by using different conventional and non-conventional 
optimization techniques. Sathiya  et  al.5 investigated the 
effect of the laser welding input parameters (beam power, 
travel speed and focal position) based on three responses 
i.e. tensile strength, bead width and depth of penetration. 
The Taguchi approach was used as a statistical design of 
experiment (DOE) technique for optimizing the selected 
welding parameters. Grey relational analysis and the *e-mail: naveensait@yahoo.co.in
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desirability approach were employed to optimize the 
input parameters by considering multiple output variables 
simultaneously. Optimization of laser welding by these 
two methods found suitable and successful for determining 
welding parameters. Confirmation experiments were also 
conducted for both of the analyses to validate the optimized 
parameters. Benyounis et al.6 applied design of experiment 
(DOE), evolutionary algorithms and computational network 
techniques to develop a mathematical relationship between 
the welding process input parameters and the output 
variables of the weld joint in order to determine the welding 
input parameters that lead to the desired weld quality. These 
techniques revealed good results for finding out the optimal 
welding conditions. The study by Sathiya et al.7 exposed 
an overall idea of the optimization of friction welding 
parameters using different techniques. Correia  et  al.8 
proposed a method to decide near-optimal settings of a 
GMAW welding process. Near-best values of three control 
variables (welding voltage, wire feed rate and welding speed) 
based on four quality responses (deposition efficiency, bead 
width, depth of penetration and reinforcement), inside a 
previous delimited experimental region were chosen. The 
search for the near-optimal setting was carried out step by 
step, using genetic algorithm. The proposed GA manages 
to locate near optimum conditions, with a relatively small 
number of experiments. Vidyut Dey  et  al.9 developed a 
model to minimize the weldment area, after satisfying the 
condition of maximum bead penetration. Bead-on-plate 
weld runs were performed at an electron beam welding 
setup. Experiments were carried out as per central composite 
design and regression analysis was done to determine input–
output relationships of the process. A binary-coded Genetic 
Algorithm with a penalty term was used to solve the said 
problem. The Genetic Algorithm was able to reach near 
the globally optimal solution. Paventhan et al.10 developed 
an empirical relationship to predict the tensile strength of 
friction welded AISI 1040 grade medium carbon steel and 
AISI 304 austenitic stainless steel, incorporating the process 
parameters such as friction pressure, forging pressure, 
friction time and forging time, which have great influence 
on strength of the joints. Response surface methodology was 
applied to optimize the friction welding process parameters 
to attain maximum tensile strength of the joint. There have 
been many studies related to modeling and optimization 
of different welding processes and other manufacturing 
processes. Some of these studies 7,11,12 considered only a 
single output as the response, and mathematical model was 
developed which can accurately predict the output for a 
particular combination of input parameters. This modeling 
was done either based on response surface methodology 
or intelligent methods like artificial neural network. Even 
though some researchers13,14  have considered multi objective 
problems, they have followed a conventional approach in 
which the mathematical models were developed for each 
objective separately, and these models were combined into 
a single model. Abdullah et al.15  have discussed the different 
approaches in multi objective optimization using genetic 
algorithm (GA).

However, optimization of friction welding parameters by 
considering input variables i.e rotational speed (S), friction 

pressure (FP), upsetting pressure (UP), and burn of length 
(BOL) of 904 L Super Austenitic Stainless Steel (SASS) is 
not yet established. The main objective of this research work 
is to determine the near optimal welding process parameters 
using grey relational analysis, desirability analysis and 
genetic algorithm by considering multiple output parameters 
i.e. maximize the fatigue strength, minimize the welding 
time and partially deformed zone simultaneously.

2.	 Experimental Details

2.1.	 Friction welding

In the continuous drive friction welding process, one of 
the parts was held stationary while the other was rotated at 
a constant speed (n). The two parts were brought together 
under axial pressure (P

1
) for certain friction time (t

1
). Then 

the clutch was separated from the drive, and the rotary 
component was brought to stop within the braking time (t

2
) 

while the axial pressure on the stationary part was increased 
to a higher forging pressure (P

2
) for predetermined upset 

time (t
4
). Schematic diagram of the continuous drive friction 

welding weld cycle is presented in Figure 1.
Friction welding of specimens was carried out using a 

continuous drive friction welding machine (ETA, Bangalore) 
with a maximum 60 tonnes capacity. The welding machine 
used for the experiments is shown in Figure 2. The machine 
has an advantage of adjusting the burn-off length, unlike 
other friction welding machines where the burn-off length is 
an output parameter. The friction welding time was obtained 
as an output. The material used for the study was AISI904L 
super austenitic stainless steel. The chemical composition 
of the material is shown in Table 1.

In this study, the experiments were conducted based on 
Taguchi L-18 orthogonal array16 . The frictional power, burn 
off length, upset power and rotational speed were the input 
parameters with three levels each. The selected welding 
parameters and their levels are listed in Table 2. For each 
experimental test condition two trials were performed. The 
average of the two trials was considered as the output of 
a test condition, in order to ensure the repeatability of the 
test result. The welded specimens are shown in Figure 3.

The welding time was recorded from the machine for 
both the specimens and the average was taken. Using one out 
of the two sets of specimens, the macrograph was prepared. 
The weld profiles were prepared by machining process, and 
cut into a cross section of 10 x 10 mm and polished with 
suitable abrasive and diamond paste. Weld samples were 
etched with 10% oxalic acid, an electrolyte, to state and 
increase the contrast of the fusion zone with the base metal. 
The macrograph of etched samples are shown in Figure 4a-d.

The left partially deformed zone (L.PDZ) and right 
partially deformed zone (R.PDZ) were measured.

2.2.	 Fatigue test

The fatigue test experiments were carried out under 
uniaxial tensile loading condition using servo hydraulic 
fatigue testing machine (Make: INSTRON, UK; Model: 
8801) under constant amplitude loading (at room 
temperature). The fatigue test procedures were followed 
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poor, incomplete, and uncertain systems. This grey-based 
Taguchi technique has been widely used in different 
fields of engineering to solve multi-response optimization 
problems. In order to apply the grey-based Taguchi method 
for multi-response optimization, the following seven steps 
were followed:

Step 1: S/N ratio for the corresponding responses was 
calculated using the following formula:

(i) Larger-the-better:

10 2
1

1 1S / N ratio ( ) = –10 log
n

i ijn y=

 
η    

∑ 	 (1)

Where n=number of replications y
ij
=observed response 

value where i=1, 2, ....n; j=1, 2...k
This was applied for the problem where maximization 

of the quality characteristic of interest was sought. This was 
referred as the larger-the-better type problem.

(ii) Smaller - the – better:

2
10

1

1S / N ratio ( ) = –10 log
n

ij
i

y
n =

 
η   

∑ 	 (2)

This was termed as the smaller-the-better type problem 
where minimization of the characteristic was intended.

The S/N ratios for a given response like fatigue strength 
(larger-the-better) and welding time, partially deformed zone 
(left & right) (smaller-the-better) were calculated by using 
Equations 1 and 2, respectively. The computed S/N ratios 
for each quality characteristic are shown in Table 4

Step 2: Normalization is a transformation performed on 
a single data input to distribute the data evenly and scale it 
in to an acceptable range for further analysis. Therefore, the 
normalization of original sequence of these four responses 
was done. As fatigue life follows Larger  -  the  –  better 
criterion (LB) normalization was done by Equation “1”.

( ) ( ) ( )
( ) ( )

min
*

max mini
yi k yi k

y k
yi k yi k

−
=

− 	 (3)

Where y
i
*(k) is the normalized data, i.e. after grey 

relational generation, y
i
(k) is the kth response of the ith 

experiment, min y
i
(k) is the smallest value of y

i
(k) for the 

kth response, and max y
i
(k) is the largest value of y

i
(k) for 

the kth response.
Welding time and partially deformed zone (left & 

right) follows the smaller  -  the  –  better (SB) criterion. 

Figure 1. Friction welding weld cycle.

Figure 2. Friction welding machine.

Figure 3. Friction Welded joints.

Table 1. Chemical composition of the Base material (wt. %).

Elements Si Mn P S Cr Ni Mo C Cu

Composition (%) 0.374 1.522 0.018 0.004 19.893 25.557 4.124 0.018 1.650

Table 2. Welding parameter levels.

Parameters Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Speed (rpm) 1000 1200 1400 1600 1800 2000

Friction pressure – FP (MPa) 40 80 120 - - -

Upset pressure – UP (MPa) 125 150 175 - - -

Burn-off Length – BOL (mm) 2 4 6 - - -

as per the ASTM E647-04 standard. The fatigue tested 
specimens are shown in Figure 5. The experimental data is 
tabulated in Table 3.

3.	 Methodologies and Implementations

3.1.	 Grey relational analysis

Deng17  first proposed grey relational analysis in 1982 
to fulfill the crucial mathematical criteria for dealing with 
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Figure 4. Macrograph of the welded joint.

Table 3. Experimental results.

Exp. No. Rotational
speed (rpm)

Friction 
pressure 
(MPa)

Upsetting 
pressure
(MPa)

Burn-off 
length (mm)

Welding 
time (s)

L.PDZ 
(mm)

R.PDZ 
(mm)

Fatigue 
life (no. of 

cycles)

1 1000 40 125 2 62.78 0.575 0.637 135000

2 1000 80 150 4 33.5 0.534 0.596 184000

3 1000 120 175 6 17.25 0.308 0.452 300000

4 1200 40 125 4 196.43 0.658 1.006 175000

5 1200 80 150 6 36.64 0.493 0.411 235000

6 1200 120 175 2 15.63 0.431 0.575 325000

7 1400 40 150 2 128.63 0.617 0.575 200000

8 1400 80 175 4 24.47 0.658 0.678 302000

9 1400 120 125 6 20.5 0.78 0.76 250000

10 1600 40 175 6 81.05 0.596 0.678 195000

11 1600 80 125 2 24.41 0.513 0.678 172000

12 1600 120 150 4 15.02 0.514 0.596 155000

13 1800 40 150 6 119.17 0.534 0.699 220000

14 1800 80 175 2 35.64 0.37 0.493 240000

15 1800 120 125 4 17 0.534 0.555 185000

16 2000 40 175 4 209.07 0.493 0.431 310000

17 2000 80 125 6 31.89 0.555 0.596 275000

18 2000 120 150 2 20.52 0.555 0.699 290000
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Accordingly, the normalization of these responses was done 
using Equation “4”.

( ) ( ) ( )
( ) ( )

max min
*

max mini
yi k yi k

y k
yi k yi k

−
=

− 	 (4)

The S/N ratio values were normalized by using 
Equations  3 and 4 and calculated normalized values are 
presented in the same Table 4.

Step 3: The grey relational coefficient was calculated as

( ) ( )
min max

0 max'i k
i k

∆ + ϖ∆
ε =

∆ + ϖ∆ 	 (5)

where the grey relational coefficient of the ith experiment for 
the kth response is ∆

oi 
(k) =||y*

o
(k) - y*

i
(k)||, i.e. , absolute of 

the difference between y*
o
(k) and y*

i
(k) , y*

o
(k) is the ideal 

or reference sequence, ∆
max

 = max
i
 max

k
||y*

o
(k) - y*

i
(k)|| is the 

largest value of ∆
oi 

, and ∆
min

 = max
i
 max

k
 ||y*

o
(k) - y*

i
(k)|| is 

the smallest value of ∆
oi
 , and ω(0≤ ω ≤ 1) is the distinguish 

coefficient.

From the data in Table 4, the grey relational co-efficient 
for the normalized S/N ratio values was calculated by using 
Equation 5. The value for ξ∆max is taken as 0.6, 0.2, 0.1 and 
0.1 for fatigue strength, welding time, partially deformed 
zone left and right respectively in Equation 5. The results 
are given in Table 5

Step 4: The grey relational grade (Γ
i
) was calculated by 

averaging the grey relational coefficients corresponding to 
each experiment.

( )1
1

Qi i k=Γ = ∑ 	 (6)

Where, Q is the total number of responses. A high grey 
relational grade corresponds to intense relational degree 
between the given sequence and the reference sequence. 
The reference sequence, y*

o
 (k), represented the best process 

sequence; therefore, higher grey relational grade meant that 
the corresponding parameter combination was closer to the 
optimal setting. The grey relational grade can be computed 
by Equation  6. Finally, the grades were considered for 
optimizing the multi response parameter design problem. 
The results are given in the Table 5.

Step 5: The optimal factor and its level combination 
were determined. The higher grey relational grade implied 
the better product quality; therefore, on the basis of grey 
relational grade, the factor effect can be estimated and 
the optimal level for each controllable factor can also be 
determined. For example, to estimate the effect of factor 
‘i’, we calculated the average of grey grade values (AGV) 
for each level ‘j’, denoted as AGV

ij
, and then the effect, E

i
 

is defined as:

( ) ( )max minEi AGVij AGVij= − 	 (7)

If the factor i is controllable, the best level j*, is 
determined by

Table 4. S/N ratio values and normalized S/N ratio values.

Trail 
No.

S/N ratios Normalized values of S/N ratios yi *(k)

W. Time L.PDZ R.PDZ Fatigue life W. Time L.PDZ R.PDZ Fatigue life

1 –35.9564 4.806643 3.917211 102.6067 0.5431440 0.6718405 0.4895038 0

2 –30.5009 5.449175 4.495075 105.2964 0.3046242 0.5922294 0.4151817 0.3524681

3 –24.7358 10.22899 6.897231 109.5424 0.0525691 0 0.0344138 0.9088923

4 –45.8642 3.635482 –0.05196 104.8608 0.9763174 0.8169500 1 0.2953857

5 –31.2791 6.143062 7.723164 107.4214 0.3386483 0.5062552 0 0.6309379

6 –23.8792 7.310455 4.806643 110.2377 0.0151178 0.3616126 0.3751092 1

7 –42.1868 4.194297 4.806643 106.0206 0.8155426 0.7477116 0.3751092 0.4473762

8 –27.7727 3.635482 3.375406 109.6001 0.1853445 0.8169500 0.5591882 0.9164554

9 –26.2351 2.158108 2.383728 107.9588 0.1181194 1 0.6867332 0.7013669

10 –38.1751 4.495075 3.375406 105.8007 0.6401444 0.7104445 0.5591882 0.4185585

11 –27.7514 5.797653 3.375406 104.7106 0.1844122 0.1846389 0.5591882 0.2757038

12 –23.5334 5.780738 4.495075 103.8066 0 0.5511480 0.4151817 0.1572480

13 –41.5233 5.449175 3.110456 106.8485 0.7865336 0.5922294 0.5932648 0.5558620

14 –31.0388 8.635966 6.143062 107.6042 0.3281397 0.1973788 0.2032253 0.6549017

15 –24.609 5.449175 5.11414 105.3434 0.0470251 0.5922294 0.3355604 0.3586374

16 –46.4058 6.143062 7.310455 109.8272 1 0.5062552 0.0530807 0.9462149

17 –30.0731 5.11414 4.495075 108.7867 0.2859202 0.6337409 0.4151817 0.8098526

18 –26.2435 5.11414 3.110456 109.248 0.1184897 0.6337409 0.5932649 0.8703042

Figure 5. Fatigue tested specimens.
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( )* maxj AGVij= 	 (8)

From the value of grey relational grade in Table 5, by 
using Equations 7 and 8, the main effects are tabulated in 
Table 6 and the factor effects are plotted in Figure 6.

Step 5: ANOVA was performed for identifying the 
significant factors.

The main purpose of the analysis of variance (ANOVA) 
was to apply a statistical method to identify the effect of 
individual factors. Results from ANOVA would determine 
very clearly the impact of each factor on the process results. 
The Taguchi experimental method could not judge the 
effect of individual parameters on the entire process; thus, 
the percentage of contribution using ANOVA was used 
to compensate this effect. The total sum of the squared 
deviations SS

T 
was decomposed into two sources: the sum 

of the squared deviations due to each process parameter and 
the sum of the squared error. The percentage contribution by 
each of the process parameter in the total sum of the squared 
deviations SS

T
 can be used to evaluate the importance 

of the process parameter change on the performance 
characteristics. Usually, the change of the process parameter 
has a significant effect on the performance characteristic 
when the ‘F’ value is large.

The results of ANOVA are given in Table  7. From 
ANOVA, it is clear that rotational speed (50.44%) influences 
more on welding followed by upsetting pressure (25.38%), 
friction pressure (15.65%), and burn-off length (1.84%).

3.2.	 Desirability approach

The desirability function approach to optimize multiple 
equations  simultaneously was originally proposed by 
Harrington. Essentially, the approach is to translate the 
functions to a common scale (0, 1), combine them using 
the geometric mean and optimize the overall metric. There 
are many statistical techniques like overlaying the contours 
plot for each response, constrained optimization problems 
and desirability approach for solving multiple response 
problems. The desirability method is recommended due 
to its simplicity, availability in the software, flexibility in 
weighting and giving importance for individual response. 
Solving such multiple response optimization problems using 
this technique involves using a technique for combining 
multiple responses into a dimensionless measure of 
performance called the overall desirability function. The 
desirability approach involves transforming each estimated 
response, Yi, into a unit less utility bounded by 0<d

i
<1, 

where a higher ‘d
i
’ value indicates that response value Yi is 

more desirable, if di=0 this means a completely undesired 

Table 5. Grey relational co-efficient and grey grade values.

Trail
No

Grey relational co-efficient Grey grade

W. Time L.PDZ R.PDZ Fatigue life

1 0.304481 0.233558 0.163801 0.375 0.325632

2 0.22337 0.196939 0.146024 0.48095 0.36754

3 0.174302 0.090909 0.093845 0.868171 0.574239

4 0.894124 0.353294 1 0.459906 0.590098

5 0.232193 0.168423 0.090909 0.619155 0.443865

6 0.168793 0.13543 0.137952 1 0.661097

7 0.520214 0.283858 0.137952 0.520551 0.458555

8 0.197111 0.353294 0.184907 0.877777 0.619909

9 0.184863 1 0.241974 0.667681 0.561779

10 0.357235 0.256703 0.184907 0.507854 0.420321

11 0.19693 0.109247 0.184907 0.453071 0.340644

12 0.166667 0.182198 0.146024 0.415872 0.315679

13 0.483715 0.196939 0.197342 0.574637 0.480953

14 0.229395 0.110788 0.111511 0.634855 0.449022

15 0.173464 0.196939 0.130815 0.48334 0.357472

16 1 0.168423 0.095518 0.917733 0.777034

17 0.218799 0.214473 0.146024 0.759352 0.535421

18 0.184927 0.214473 0.197342 0.822261 0.571523

Table 6. Main effects on grey grades.

Factor/ level 1 2 3 4 5 6 Difference Rank Optimum 
Levels

Speed 0.42247 0.56502 0.54675 0.35888 0.42914 0.6279 0.26911 1 SPEED6

Friction Pressure 0.50876 0.4594 0.50696 - - - 0.04936 3 FB1

Upsetting Pressure 0.45184 0.43969 0.58360 - - - 0.14391 2 UP3

Burn-off length 0.46774 0.50462 0.50276 - - - 0.03687 4 BOL2
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response. In order to apply the desirability approach method 
for multi-response optimization, the following seven steps 
were followed:

Step 1: The individual desirability index (d
i
) for 

the corresponding responses was calculated using the 
following Equations 9 and 10. There were different forms 
of the desirability functions according to the response 
characteristics.

The Larger-the better

min

min
min max

max min

min

0,

, , 0

1,

j

r
j

i j

j

y y

y y
d y y y r

y y

y y

≤

 − = ≤ ≤ ≥ − 
 ≥ 	

(9)

The value of ‘y
j
’ was expected to be the larger the better. 

When the ‘y’ exceeded a particular criteria value, which can 
be viewed as the requirement, the desirability value equaled 
to 1; if the ‘y’ was less than a particular criteria value, which 
was unacceptable, the desirability value equaled to 0.

The Smaller-the better

min

max
min max

min max

min

1,

, , 0

0,

j

r
j

i j

j

y y

y y
d y y y r

y y

y y

≤

 − = ≤ ≤ ≥ − 
 ≥ 	

(10)

The value of ‘y
j
’ was expected to be the smaller the 

better. When the ‘y’ was less than a particular criteria value, 
the desirability value equaled to 1; if the ‘y’ exceeds a 
particular criteria value, the desirability value equaled to 0.

The individual desirability (d
i
) was calculated for all the 

responses depending upon the type of quality characteristics. 
The main objectives of this work are minimization of 
welding time, width of the partially deformed zone (left & 
right) and maximization of fatigue strength. According to 
this objective the responses were considered. The larger the 
better type and the smaller the better type were selected for 
this study. The values of computed individual desirability 
for each quality characteristics using the Equations 9 and 
10 are presented in Table 8.

Step 2: The composite desirability (d
G
) was computed. 

The individual desirability index of all the responses can 
be combined to form a single value called composite 
desirability (d

G
) by the following Equation 11.

( )1 2
1 2 .......w w wiwG id d d d= × 	 (11)

The composite desirability values (d
G
) were calculated 

using equation 11. The weightage for responses were based 
on assumption of fatigue strength (0.6), welding time (0.2) 
and Left partially deformed zone (0.1) and Right partially 
deformed zone (0.1). Finally, these values were considered 
for optimizing the multi-response parameter design problem 
and the calculated results are given in the Table 8.

Step 3: The optimal parameter and its level combination 
were determined. The higher composite desirability value 
implied better product quality. Therefore, on the basis of 
the composite desirability (d

G
), the parameter effect and 

the optimum level for each controllable parameter were 
estimated. For examples, to estimate the effect of factor 
‘i’, we calculated the composite desirability values (CDV) 
for each level ‘j’, denoted as CDV

ij
, and then the effect, E

i
 

is defined as:

( ) ( )  max   – min  i ij ijE CDV CDV= 	 (12)

If the factor i is controllable, the best level j*, is 
determined by

( )*   max j ijj CDV= 	 (13)

From the value of composite desirability in Table  8, 
by using Equations 12 and 13, the main parameter effects 
are tabulated in Table 9 and the factor effects are plotted 
in Figure 7.

Step 4: ANOVA was performed for identifying the 
significant parameters. ANOVA established the relative 
significance of parameters. The calculated total sum of 
square values was used to measure the relative influence 

Table 7. Results of ANOVA on grey grade.

Factor Sum of Squares Degree of 
freedom

Mean squares FCAL F-TEST % Contribution

Speed 0.14198 5 0.02840 9.05719 4.2565 50.44

Friction pressure 0.04405 2 0.02203 7.02514 4.2565 15.65

Upsetting Pressure 0.07144 2 0.03572 11.39339 4.2565 25.38

Burn-off length 0.00518 2 0.00259 0.82594 4.2565 1.84

Error 0.01881 6 0.00314 6.68

Total 0.28147 17

Figure 6. Factor effects on grade values.
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of the parameters. Using the composite desirability value, 
ANOVA was formulated for identifying the significance of 
the individual factors.

The results of ANOVA are given in Table  10. From 
ANOVA, it was clear that rotational speed (37.90%) 
influenced more on welding followed by upsetting pressure 
(22.60%), friction pressure (25.60%), and burn-off length 
(6.94%).

3.3.	  Genetic algorithm

Genetic algorithms (GAs) are well known types of 
evolutionary computation methods and they have been 
adapted for large number of applications in different 

areas. The GAs differ from most optimization techniques 
because of their global searching from one population 
of solutions rather than from one single solution. It is 
a heuristic technique inspired by the natural biological 
evolutionary process comprising of proper selection 
of, crossover, mutation, etc. The evolution starts with 
a population of randomly generated individuals in first 
generation. In each generation, the fitness of every 
individual in the population is evaluated, compared with 
the best value, and modified (recombined and possibly 
randomly mutated), if required, to form a new population. 
The new population is then used in the next iteration of 
the algorithm. The algorithm terminates, when either 
a maximum number of generations has been produced 
or a satisfactory fitness level has been reached for the 
population. The general schema (Figure 8) of GA may 
be summed up as follows

This study is to determine the set of optimal parameters 
of friction welding process to ensure minimum weld time, 
minimum partially deformed zone (Left and Right) and 
after satisfying the condition of maximum fatigue strength. 
Mathematical formulation of the problem was carried out to 
reach the desired output responses. The above constrained 
optimization problem can mathematically be stated as 
follows:

Figure 7. Factor effects on grade values.

Table 8. Desirability values and composite desirability values.

Trial No Individual desirability Composite 
desirability

Welding Time Left PDZ Right PDZ Fatigue life

1 0.753878 0.434322 0.620168 0 0

2 0.904767 0.521186 0.689076 0.257895 0.381832

3 0.988508 1 0.931092 0.868421 0.904763

4 0.065138 0.258475 0 0.210526 0

5 0.888585 0.608051 1 0.526316 0.639752

6 0.996856 0.739407 0.72437 1 0.909376

7 0.414532 0.345339 0.72437 0.342105 0.405572

8 0.951301 0.258475 0.551261 0.878947 0.71404

9 0.97176 0 0.413445 0.605263 0

10 0.659727 0.389831 0.551261 0.315789 0.388091

11 0.95161 0.565678 0.551261 0.194737 0.312639

12 1 0.563559 0.689076 0.105263 0.227046

13 0.463283 0.521186 0.515966 0.447368 0.469037

14 0.893739 0.868644 0.862185 0.552632 0.663112

15 0.989796 0.521186 0.757983 0.263158 0.39748

16 0 0.608051 0.966387 0.921053 0

17 0.913064 0.476695 0.689076 0.736842 0.711135

18 0.971657 0.476695 0.515966 0.815789 0.721092

Table 9. Main effects on desirability analysis.

Factor/level 1 2 3 4 5 6 Difference Rank Optimum 
Levels

Speed 0.42886 0.51638 0.37320 0.10325 0.50987 0.47740 0.41312 1 SPEED2

Friction Pressure 0.21045 0.57042 0.52663 - - - 0.35997 2 FB2

Upsetting Pressure 0.23687 0.47405 0.59656 - - - 0.35969 3 UP3

Burn-off length 0.50196 0.28673 0.51880 - - - 0.23206 4 BOL3
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( ) ( ) ( )

( ) ( )( )
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t t

c F F c w w
Of i

F w

c P L P L c P R P R

P L P R

− −
= +

− −
+ +

	

(14)

Where,
•	 Of(i)  - Value of the objective function at the “i” 

experiment;
•	 F

t
 - Target (desirable) value for fatigue life;

•	 F
exp

 (i) - Experimental value for the fatigue life at the 
“i” experiment;

•	 W
t
 - Target value for the welding time;

•	 W
exp

 (i) - Experimental value for the welding time at 
the“i” experiment;

•	 P(L)  - Target value for the left partially deformed 
zone;

•	 P(L)
exp

 (i) - Experimental value for the left partially 
deformed zone; at the “i” experiment;

•	 P(R) - Target value for the right partially deformed 
zone;

•	 P(R)
exp

 (i) - Experimental value for the right partially 
deformed zone at the “i”experiment;

•	 cf(0.6), cw(0.2) and cp(0.1) -Weights that give 
different status (importance) to each response

Subject to the condition that fatigue life takes the 
maximum value and welding time and partially deformed 
zone (left and right) within the range of input parameters.

Regression analysis was carried out using Minitab-14 
software using the experimental data collected as per the 
experiments conducted (Table 3). Output responses were 
expressed in a coded form as a linear function of process 
parameters, namely S, FP, UP and BOL, represented by X1, 
X2 X3 and X4, respectively.

( ) ( )
( ) ( )

exp 129103 37.1 1 563 2

1600 3 4700 4

F codec X X

X X

= − + +

+ +
	 (15)

( ) ( )
( ) ( )

exp 125 0.0217 1 1.44 2

0.100 3 0.79 4

W codec X X

X X

= + −

+ +
	 (16)

( ) ( ) ( )
( ) ( )

exp 0.939 0.000003 1 0.00073 1

0.00253 3 0.0085 4

P L X X

X X

= + −

− + 	 (17)

( ) ( ) ( )
( ) ( )

exp 1.20 0.000028 1 0.000810 2

0.00308 3 0.0025 4

P R X X

X X

= − −

− −
	 (18)

The coded and un-coded values of the variables can be 
related as given below

( )
( )

max min 2
1

max min
S S S

X
S S

− +
=

− 	 (19)

( )
( )

max min 2
2

max min
FP FP FP

X
FP FP
− +

=
− 	 (20)

( )
( )

max min 2
3

max min
UP UP UP

X
UP UP
− +

=
− 	 (21)

( )
( )

max min 2
4

max min
BOL BOL BOL

X
BOL BOL
− +

=
− 	 (22)

Analysis was carried out at a confidence level of 95%. 
The un-coded form of the response equations was found to 
be as follows:

( )
( ) ( ) ( )

exp un-coded 146020 0.0371

7.04 32 1177

F S

FP UP BOL

= − +

+ + +
	 (23)

( ) ( )
( ) ( )

exp un-coded 125.6 0.0000217 0.018

0.002 0.1975

W S FP

UP BOL

= + −

+ + 	
(24)

Table 10. Results of ANOVA on desirability analysis.

Factor Sum of Squares Degree of 
freedom

Mean squares FCAL F-TEST % Contribution

Speed 0.60605 5 0.12121 6.73290 4.2565 37.90

Friction Pressure 0.41292 2 0.20646 11.4683 4.2565 25.82

Upsetting Pressure 0.36128 2 0.18064 10.0339 4.2565 22.60

Burn-off length 0.11092 2 0.05546 3.08072 4.2565 6.94

Error 0.10802 6 0.01800 6.75

Total 1.59920 17

Figure 8. Flow chart representing the GA’s principle.
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( ) ( ) ( )
( ) ( )

exp 0.9375 0.000000003 0.0000092

0.000050 0.0021

P L S FP

UP BOL

= + −

− +
	 (25)

( ) ( ) ( )
( ) ( )

exp 1.22 0.000000028 0.000010

0.000062 0.00063

P R S FP

UP BOL

= − −

− −
	 (26)

A binary-coded genetic algorithm (GA) in MATLAB 
7.0 was used to solve the optimization problem presented. 
Inside the experimental space, the GAs chose, randomly, 
the initial welding setup, i.e., the parameters’ values of 
the first experiment within the input parameter range i.e. 
Speed (1000-2000rpm), Friction pressure (40-120Mpa), 
Upsetting pressure (125-175Mpa) and BOL (2-6mm). After 
it (the first exp.) was done, its response characteristics were 
measured and fed into the GAs. Then, based on the previous 
information, the algorithm chose another setup, carried out 
the experimentation and its data were again fed into the 
algorithm. This process was continued until the optimum 
was found, i.e., until the objective function (Equation 15) 
reached its minimum. In the GA, the population size, 
crossover rate and mutation rate were important factors 
in the performance of the algorithm. In this work, the GA 
parameters selected were as follows, Population size (100), 
Number of generations (50), Probability of mutation (0.008), 
Cross over rate (0.5) and Selection function (Roulette).

4.	 Results and Discussions
Investigations were carried out already to assess the 

relationship of microstructure/property relationships of 
similar and dissimilar joints of stainless steel by various 
welding processes18-20. Due to the difficulties associated with 
conventional way of optimization, we used evolutionary 
computational techniques to get the optimized parameters. 
Based on the preliminary trails for the grey relational 
and desirability analysis we identified that the process 
parameters namely rotational speed, friction pressure, 

upsetting pressure significantly influenced fatigue life, 
welding time and partially deformed zone (left& right) while 
burn-off-length had relatively small influence. The initial 
parameters were chosen based on the initial trails and the 
predicted parameters were selected based on the obtained 
result from grey relational and desirability analysis. The 
friction welding was performed on predicted parameters and 
the fatigue life, welding time, partially deformed zone (left 
& right) were measured and compared with the initial set 
of parameters output values. The predicted values were in 
good agreement with the initial values for both the models. 
The least percentage of errors was obtained for initial and 
predicted parameter output values.

Table 11 reflects the satisfactory results of confirmatory 
experiment. From Table  11 it is seen that, the predicted 
input parameters had better fatigue life, lower welding 
time and partially deformed zone (left & right). Similarly 
confirmation test was conducted for the outcomes of 
desirability analysis. The predicted parameters were found 
to be better when compared to initial parameters. The 
validation results demonstrated that the prediction analysis 
results were quite accurate as the percentages of error in 
prediction were in a good agreement. The parameters were 
optimized using binary-coded genetic algorithm (GA) in 
MATLAB 7.0 software. The properties to be optimized 
were welding time, partially deformed zone in the left, 
partially deformed zone in the right and fatigue life. The 
processed joint was further investigated by microstructure 
analysis and fracture surface of the fatigue tested sample 
through SEM analysis. The microstructures of the joint are 
presented in Figure 9a-c. Figure 9a, shows the well defined 
grain boundaries and Figure 9b it is easily distinguished the 
weld zone and PDZ. The weld side grains are finer when 
compared to the PDZ. From Figure 9c, it is observed that 
the material flow direction from the inner side of the contact 
surface to the outer boundary.

The fatigue fractured surfaces are analyzed through 
SEM and its structures are presented in Figure  10a-c. 

Table 11. Results of confirmatory experiment (Grey relational).

Rotational 
Speed

FP UP BOL Fatigue life W. time L-PDZ R-PDZ

Initial parameter 2000 40 175 4 310000 209.07 0.493 0.431

Predicted parameter 2000 40 175 4 312437 202.2 0.475 0.416

Error(%) 0.78 3.58 3.65 3.48

Figure 9. Different zones of the friction weld microstructures.
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From Figure 10a shows the fatigue crack propagated and 
the nature fracture took place. The fatigue crack fracture 
exhibits transgranularly under room temperature. From 
Figure 10b, c, the cleavage-type fractures were observed 
and also finer dimples are presented.

Since fatigue life was one of the important outputs 
for determining the life period of the weld, it was given 
more weightage for optimization of this work. Fatigue life 
was given a weightage of 0.6, welding time of 0.2 and the 
remaining properties such as L.PDZ, R.PDZ of 0.1 each. 
The optimal values of process parameters obtained by the 
GA are shown in Table 12.

The near optimum values of speed – 2000 rpm, FP – 120 
MPa, UP – 175 MPa and BOL – 6 mm were selected for 
confirmation test. The result of the confirmation test is 
shown in Table 13.

5.	 Conclusions
The following important conclusions were drawn:
•	 The optimization of friction welding parameters by 

grey relational analysis, desirability approach and 
genetic algorithm was found to be successful;

•	 Based on ANOVA results, it has been proved that both 
the grey relational and desirability approach analyses 
were accurate techniques to optimize the friction 
welding of super austenitic stainless steel joints;

•	 Grey relational analysis technique performed better 
in terms of predicting optimum welding parameters 
compared to desirability function analysis;

•	 The optimized values of the parameters by Genetic 
algorithm were; 

•	 Speed  –  1998.98 rpm; FP  –  119.69 MPa; 
UP – 174.42 MPa; Burn-off Length – 5.99 mm;

•	 For the optimized parameters, the friction welds 
were processed and joints exhibited higher fatigue 
life. There was a good agreement between the 
theoretically predicted and experimentally obtained 
values of fatigue life, welding time, L.PDZ and 
R.PDZ. These computational techniques are the 
best suited for the optimization of friction welding 
parameters;

•	 Cleavage-type fractures were occurred in the fatigue 
tested samples.
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Table 12. Optimum parameter values.

Speed (rpm) Frictional Pressure (MPa) Upsetting Pressure (MPa) Burn-off Length (mm)

1998.98 119.69 174.42 5.99

Table 13. Output values corresponding to optimum parameter values.

Welding time (s) L.PDZ (mm) R.PDZ (mm) Fatigue life (No of cycles)

47.27 0.481 0.437 310749

Figure 10. Fatigue tested fractured surface.
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